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Abstract. Data-driven deep learning models usually per-
form well in terms of improving computational efficiency
for predicting heat transfer processes in heterogeneous ri-
parian zones. However, traditional deep learning models of-
ten suffer from accuracy when data availability is limited.
In this study, a novel physics-informed deep transfer learn-
ing (PDTL) approach is proposed to improve the accuracy of
spatiotemporal temperature distribution predictions. The pro-
posed PDTL model integrates the physical mechanisms de-
scribed by an analytical model into the standard deep neural
network (DNN) model using a transfer learning technique.
To test the robustness of the proposed PDTL model, we an-
alyze the influence of the number of observation points at
different locations, streambed heterogeneity, and observation
noise levels on the mean squared error MSE values between
the observed and predicted temperature fields. Results indi-
cate that the PDTL model significantly outperforms the DNN
model in scenarios with scarce training data, and the MSE
values decrease with increasing observation points for both
PDTL and DNN models. Furthermore, increasing streambed
heterogeneity and observation noise levels raises the MSE
values of the PDTL and DNN models, with the PDTL model
exhibiting greater robustness than the DNN model, highlight-
ing its potential for practical applications in riparian zone
management.

1 Introduction

Understanding heat transfer processes in riparian zones is
critical for evaluating physical and biochemical processes
during surface water–groundwater interactions, such as con-
taminant transport (Elliott and Brooks, 1997; Schmidt et al.,
2011), water resource management (Bukaveckas, 2007;
Fleckenstein et al., 2010), and aquatic ecosystem regulation
(Ren et al., 2018; Halloran et al., 2016). As a primary source
of uncertainty in riparian zone modeling, the inherent het-
erogeneity of the streambed stands out as a pivotal factor
in accurately modeling groundwater flow and heat transfer
processes (Karan et al., 2014; Brunner et al., 2017). How-
ever, given the intricacies of streambed heterogeneity, data
acquisition in heterogeneous riparian zones is often time-
consuming and costly (Zhang et al., 2023; Kalbus et al.,
2006). Consequently, achieving accurate predictions of heat
transfer processes in heterogeneous riparian zones with lim-
ited observation data remains challenging.

Over the past few decades, there has been a substantial
increase in efforts toward simulating heat transfer processes
in riparian zones, which can be categorized into two groups:
physics-based models and data-driven models (Barclay et al.,
2023; Feigl et al., 2021; Heavilin and Neilson, 2012). Typi-
cally, the physics-based models employ partial differential
equations to characterize heat transfer dynamics within ripar-
ian zones, such as the convection–diffusion equation (Chen
et al., 2018; Keery et al., 2007), which aims to simulate and
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forecast temperature variations within riparian zones. Re-
solving the convection–diffusion equation generally involves
two approaches: analytical and numerical models. Analytical
models provide a precise mathematical representation of heat
transfer dynamics and offer fundamental insights into phys-
ical processes within riparian zones, but their applicability
is often limited to rather simplified and idealized scenarios
(Keery et al., 2007; Bandai and Ghezzehei, 2021; Zhou and
Zhang, 2022). Numerical models, which rely on discretizing
governing equations and solving them iteratively, are able to
handle more intricate scenarios and address unsteady flows
effectively (Cui and Zhu, 2018; Ren et al., 2019, 2023). Nev-
ertheless, numerical models are constrained by the uncertain-
ties of model structures and the prerequisites of streambed
characteristic parameters (Heavilin and Neilson, 2012; Shi
et al., 2023).

Data-driven models, unlike physics-based models, can
create a direct mapping between input and output vari-
ables without explicit knowledge of underlying physical pro-
cesses governing the system (Zhou and Zhang, 2023; Calla-
ham et al., 2021). In recent years, data-driven models have
achieved significant advancements and emerged as a suc-
cessful alternative in hydrological and environmental mod-
eling (Zhou et al., 2024; Cao et al., 2022; Wade et al., 2023).
However, their deficiency in incorporating physical princi-
ples restricts their capability to delineate explicit computa-
tional processes as physics-based models, posing a challenge
to achieve enhanced extrapolation capabilities (Read et al.,
2019; Cho and Kim, 2022). Meanwhile, data-driven models
typically require massive amounts of data for training and
may yield results that defy established physical laws due to
the lack of physical principles (Read et al., 2019; Xie et al.,
2022). The strengths and weaknesses inherent in both data-
driven and physically based models are evident across vari-
ous research domains (Kim et al., 2021; Wang et al., 2023).
Consequently, there is an increasing inclination towards in-
tegrating physical processes into data-driven models, which
enables these models to extract patterns and laws from both
observation data and underlying physical principles (Zhao
et al., 2021; Karpatne et al., 2017).

Typically, several methods exist to integrate two diver-
gent models: one is to employ a deep learning framework
to substitute either a submodule or an intermediary param-
eter in physically based models (Jiang et al., 2020; Zhao
et al., 2019; Cho and Kim, 2022; Arcomano et al., 2022),
and the other involves integrating physical models to furnish
additional constraints or penalizations to the deep learning
framework (Kamrava et al., 2021; Raissi et al., 2019; Yeung
et al., 2022). Additionally, transfer learning provides a fea-
sible approach for integrating analytical and deep learning
models, where knowledge is transferred from a distinct but
relevant source domain to enhance the efficacy of the target
domain (Zhang et al., 2023; Chen et al., 2021). This approach
can diminish the requirement for extensive training data in
the target domain, which is considered to be a major bar-

rier of deep learning applications. By leveraging knowledge
gained from pre-training models, it accelerates the learning
process and enhances model performance (Guo et al., 2023;
Jiang and Durlofsky, 2023). Recently, the use of the transfer
learning technique has gained attention in the field of hy-
drological modeling (Zhang et al., 2023; Cao et al., 2022;
Chen et al., 2021; Vandaele et al., 2021; Willard et al., 2021).
For example, Xiong et al. (2022) developed a long short-term
memory (LSTM) model of daily dissolved inorganic nitrogen
concentrations and fluxes in the coastal watershed located in
southeastern China. They retrained this model using multi-
watershed data and successfully applied it to seven diverse
watersheds through a transfer learning approach. Zhang et al.
(2023) used the transfer learning technique to integrate the
deep learning model and analytical models for predicting
groundwater flow in aquifers and obtained satisfactory pre-
diction performance for complex scenarios.

In this study, we introduce a novel physics-informed deep
transfer learning (PDTL) approach that incorporates phys-
ical information from analytical models into a deep learn-
ing framework using the transfer learning technique. The
proposed PDTL model is implemented to predict the spa-
tiotemporal temperature distribution in heterogeneous ripar-
ian zones by leveraging analytical solutions, deep learn-
ing models, and transfer learning techniques. The analyti-
cal model is used to efficiently produce physically consis-
tent heat distribution patterns and data in homogeneous ri-
parian zones, which serve as the training data for the pre-
training deep learning model. Subsequently, the weights and
biases learned from the pre-training model are transferred to
a new deep learning model under heterogeneous scenarios
through transfer learning. By integrating insights from an-
alytical models with the approximation capability of deep
learning models, the PDTL model achieves improved effi-
ciency and performance. Notably, the newly proposed ap-
proach demonstrates significant performance improvement,
even with scarce observational data. This innovative ap-
proach provides for accurate and efficient modeling of com-
plex heat transfer processes in heterogeneous environments,
even with limited observation data.

2 Methods

2.1 Conceptual model

The two-dimensional (2D) conceptual model of the heat
transfer process in a heterogeneous streambed is depicted in
Fig. 1. The coordinate system originates at the center of the
river, with the x axis oriented horizontally from left to right
along the streambed. The z axis is located vertically down-
ward along the left inlet boundary of the system and perpen-
dicular to the x axis. It is postulated that the thermal prop-
erties of the streambed are uniform. The river has a width
of 2L. Heat originated from the river, with its temperature
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represented by an arbitrary function. The initial and bound-
ary conditions are depicted in Fig. 1. An initial temperature
of 20 °C is prescribed. The boundary conditions on the left,
right, and bottom sides are all specified as no heat flux bound-
ary. The top boundary condition at 0≤ x ≤ L (L= 0.32m in
this study) is represented by a sinusoidal temperature signal
ranging between 19 and 21 °C (i.e., f (t)= 20+sin(2πt) °C).
Meanwhile, the top boundary condition at x > L is held con-
stant at a temperature of 20 °C. For this conceptual frame-
work, two modeling approaches are employed. The analyti-
cal model provides exact solutions for heat transfer in homo-
geneous streambeds with uniform hydraulic conductivity and
thermal properties (Shi et al., 2023). It generates physically
consistent temperature distributions efficiently for the pre-
training phase of our PDTL model. Meanwhile, the numeri-
cal model extends this solution to heterogeneous streambeds
with spatially variable hydraulic conductivity, accommodat-
ing complex flow paths created by streambed heterogeneity.
The details of the analytical solution for the homogeneous
streambed and the numerical solution for the heterogeneous
streambed are available in the Supplement.

2.2 Deep neural network (DNN)

The deep neural network (DNN) is a multi-layer feed-
forward network with an input layer, multiple hidden layers,
and an output layer. The backpropagation algorithm is uti-
lized to minimize the mean error of the output and has been
proven to be crucial in enhancing convergence (Jin et al.,
2024). Assuming the presence of m hidden layers, the in-
put and output vectors are denoted by X andO, respectively.
The forward equations of the DNN model can be represented
as follows:

Hi = tanh(WiX+ bi) i = 1, . . .,m, (1a)
O = tanh(Wm+1X+ bm+1), (1b)

whereHi represents the output of the ith hidden layer andW
and b represent the weight matrices and bias vectors, respec-
tively. Typically, W and b can amalgamate as the parame-
ter set θ = {Wi,bi}

m+1
i=1 , and tanh refers to the tanh activation

function. To mitigate the impact of dimensionality during the
training process, the temperature field dataset is normalized
to [−1,1] through the following equation in the pre-training
process:

Dnorm = 2
D−Dmin

Dmax−Dmin
− 1, (2)

where D denotes data utilized in the DNN model and Dmax
and Dmin denote the maximum and minimum values and are
computed with reference to the training samples exclusively.
The same values of Dmax and Dmin are employed to normal-
ize the testing samples to prevent data leakage (Zuo et al.,
2020).

2.3 Deep collocation method

The collocation technique uses a collection of randomly dis-
tributed points to minimize the loss function while adhering
to a specified set of constraints. This method demonstrates a
degree of immunity against instabilities, such as explosion or
vanishing gradients encountered in DNNs, offering a feasible
strategy for training DNNs (Guo et al., 2023). By incorpo-
rating the collocation points throughout the model domain,
along with the physical principles of the boundary and initial
conditions, the learning process aims to minimize the follow-
ing loss functions:

L(θ)=MSED+MSEBC+MSEIC, (3a)

MSED =
ξD

ND

NIC∑
i=1
‖TN(xi,yi, ti;θ)− T (xi,yi, ti)‖

2, (3b)

MSEBC =
ξBC

NBC

NBC∑
i=1
‖TN(xi,yi, ti;θ)−G(xi,yi, ti)‖

2, (3c)

MSEIC =
ξIC

NIC

NIC∑
i=1
‖TN(xi,yi,0;θ)− T (xi,yi,0)‖2, (3d)

where L(θ) refers to the total loss; MSED, MSEBC, and
MSEIC represent the mean squared error (MSE) of the model
domain, boundary conditions, and initial conditions, respec-
tively; ND, NBC, and NIC are the number of data points for
different terms; and ξD, ξBC, and ξIC are scaling factors to
normalize loss terms. According to the study of He and Tar-
takovsky (2021), the values of ξD, ξBC, and ξIC in this study
are set to 1, 10, and 10, respectively. TN(xi,yi, ti) represents
the values estimated by the DNN model; T (x,y, t) is the so-
lution of the 2D analytical model with boundary conditions
G(x,y, t) and initial conditions T (xy,0). The objective is
to find the parameter set θ that minimizes the loss function.
L(θ) considers the constraints of physical principles and im-
poses penalties for initial and boundary conditions. It allows
the neural networks to learn the underlying physical princi-
ples and the boundary and initial conditions rather than sim-
ply memorizing the training data, thus improving the effi-
ciency and accuracy (He and Tartakovsky, 2021; Raissi et al.,
2020; Tartakovsky et al., 2020).

2.4 Transfer learning

As depicted in Fig. 2, traditional deep learning models are al-
located to distinct learning tasks, which require each model
to be trained independently from scratch, leading to high
computational demands and the need for substantial amounts
of training data for each task. In contrast, the transfer learn-
ing technique offers an efficient alternative. By employing a
pre-trained model that is then fine-tuned for predicting heat
transfer in heterogeneous streambeds, transfer learning can
significantly reduce the computational burden and the need
for large datasets. This is achieved by leveraging the knowl-
edge gained from the source domain and applying it to the
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Figure 1. Schematic diagram of the temperature distribution in the riparian zones.

target domain, thereby accelerating the learning process and
improving the model performance.

The transfer learning technique involves training a model
to establish a mapping between the input vector X and
the observed data O derived from a target dataset D =
{(Xi,Oi)

n
i=1, Xi ∈X,Oi ∈O}. It assumes that both the

source and target tasks share similar parameters or prior dis-
tributions of the hyperparameters. The pre-training model is
established utilizing the dataset from the source tasks Ds =

{(Xs,Os)
n
s=1, Xs ∈X, Os ∈O}, which is generated through

analytical or numerical models. In this study, the source and
target datasets are spatiotemporal distributions of tempera-
ture fields in homogeneous and heterogeneous streambeds,
respectively. The analytical model developed by Shi et al.
(2023) is employed to provide a training dataset for pre-
training. However, for the heterogeneous streambed, the an-
alytical model is not available; the numerical models are
employed to generate the fine-tuning dataset and serve as
the benchmarks to evaluate the performance of the proposed
PDTL model. The parameter θT for the fine-tuning model is
acquired through the optimization of the loss function delin-
eated by

θT = argmin
θT

n∗∑
i=1

1
n∗
|ft (Xt ;θT)−Ot |

2, (4)

where n∗ denotes the number of training datasets employed
to fine-tune the pre-training model and ft () denotes the pre-
dictive function of the fine-tuning model.

The flowchart of the newly proposed framework is sum-
marized in Fig. 3: the PDTL model is developed by initially
generating an input dataset using the analytical model for
heat transfer in homogeneous streambeds. The dataset is sub-
sequently employed to pre-train a DNN model with physical

constraints, focusing on learning the weights and biases of
the fully connected layer. Next, the data of the observation
points in the corresponding numerical model for heat transfer
in heterogeneous streambeds are utilized to fine-tune the pre-
trained DNN model by transferring the learned insensitive
layers (i.e., freezing their weights and biases) and retrain-
ing the learnable parameters of the remaining layers. Finally,
the effectiveness of the PDTL model is evaluated by compar-
ing its performance against a traditional DNN model with a
different number of observation points, which evaluates the
model’s ability to predict the spatiotemporal temperature dis-
tribution in heterogeneous streambeds.

3 Results

3.1 Pre-training process

In this study, the pre-training model is a DNN model with
six hidden layers, each containing 16 neurons. To evaluate
the sensitivity of weights and biases to hydraulic conductiv-
ity and to identify which layers should be trainable or re-
main frozen, two pre-training models with identical struc-
tures but varying hydraulic conductivities are constructed.
Both datasets consist of a 100×100 grid with 100 time steps
generated by the 2D analytical model, where 80 % of the
dataset is utilized for training and the remaining 20 % is uti-
lized for testing. qx and qz depend on hydraulic conductivi-
ties in x and z directions. In this section, qx and qz are set to
0.2m/d , 0.3m/d and 0.6m/d , 0.9m/d for these two mod-
els, respectively. The input data consist of spatial locations
(x,y) and time t , while the output data consist of the cor-
responding temperature. Results indicate that the predictions
of the two pre-training models closely align with the ana-
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Figure 2. Schematic diagram of the pre-training and fine-tuning methods in the transfer learning model (revised from Guo et al., 2023).
(a) Traditional machine learning method. (b) Transfer learning method.

Figure 3. Proposed PDTL framework used in this study. The framework consists of a pre-training module, a transfer learning module, and
an evaluation module.

lytical model with average MSE values of 1.2× 10−6 and
1.5× 10−6, respectively. Similarly to the works of Hu et al.
(2020) and Zhang et al. (2023), the difference in weights and
biases between the two pre-training models is evaluated us-

ing the relative change rate (RCR):

RCR=
1
I

I∑
i

|θ1i − θ2i |

θ1i
, (5)

where θ1i and θ2i are parameter matrixes in two pre-training
models, respectively, and I is the number of elements in the
parameter matrix. For enhanced comparability and credibil-
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Figure 4. The average relative change rate (RCR) of weight when
pre-training the neural network with different K values.

ity, each of the two pre-training models undergoes 20 train-
ing processes. Figure 4 presents the average RCR of weights
and biases across all layers for the two pre-training models
over 20 trials. The RCR of biases shows consistent stability
across all layers, except for layer 3. In contrast, variations in
weights are more prominent, particularly in layers 1, 2, and
3, which underscores the heightened sensitivity of these lay-
ers to hydraulic conductivity. Consequently, layers 1, 2, and
3 of the pre-training models are marked as trainable, while
the remaining layers are held frozen in the following analy-
sis. Notably, the convergence criteria are defined as a thresh-
old of 3000 iterations with a minimum gradient alteration of
5× 10−6 throughout the training phase (Zhang et al., 2023;
Wang et al., 2021).

3.2 Spatial and temporal performance for the
homogeneous scenario

The spatiotemporal distribution of temperature in homoge-
neous streambeds is obtained by the analytical model. In this
study, we use 1, 5, 10, 20, 50, and 100 observation points,
each with 100 time steps. The hydrological parameters are
set at qx = 0.4m/d and qz = 0.6m/d, with all other param-
eters being consistent with those presented in Fig. 1. The
temperature data from these observation points are used as
training data for PDTL and DNN. The reference temperature
field on 0.5d (i.e., the 50th time step) is employed as testing
data. Figure 5 illustrates the absolute errors of the PDTL and
DNN models for the homogeneous riparian zone. The results
suggest that the PDTL model aligns well with the reference
temperature field, whereas the DNN model tends to struggle
in accurately capturing the reference temperature field. This
highlights the significant improvement in the performance of
the deep learning model facilitated by prior knowledge of
the analytical solution and physical information. The pre-

training model incorporates physical knowledge to provide
superior initial parameters (weights and biases), which nar-
rows the search space during the fine-tuning process. In con-
trast, the DNN model randomly initializes these parameters
and requires more training points to explore the entire param-
eter space. To further demonstrate the predictive performance
of the proposed model in time series, Fig. 6 shows the tem-
perature time series predicted by the PDTL and DNN models
at a given observation point (x = 0.5m, y = 0.5m). Results
indicate that the PDTL model predicts the temperature fluc-
tuation trend better compared to the DNN model. Especially
for the sparse dataset with a few observation points, the av-
erage MSE of the PDTL model with 5 observation points is
approximately 3.2 times lower than that of the DNN model.
As shown in Fig. S2 in the Supplement, there is no signif-
icant difference in the performance of the PDTL and DNN
models when the number of observation points increases to
200. Notably, the performance of the PDTL model appears
to be less sensitive to the number of observation points. We
attribute this phenomenon to two factors: (1) randomly se-
lected observation points lead to optimal performance when
the observation points are in proximity to the test point and
vice versa; (2) the PDTL model demonstrates the capacity to
integrate substantial information from the analytical model,
which diminishes the requirement for the number of obser-
vation points.

The choice of observation points can influence the out-
comes of the proposed PDTL model. To mitigate the effect of
their positions, each observation point is randomly generated
200 times. The distributions of the average MSE for both the
PDTL and DNN models across diverse numbers of observa-
tion points are illustrated in Fig. 7. Results reveal that both
the interquartile range and the mean values of MSE for the
PDTL model are considerably smaller than those of the DNN
model. As an illustration, when considering 10 observation
points, the average MSE for the PDTL model is approxi-
mately 0.11, whereas that for the DNN model is 0.54. Fur-
thermore, there is a significant reduction in both interquar-
tile range and mean values of MSE of the PDTL model,
and the interquartile range and mean values of MSE of the
PDTL model tend to stabilize as the number of observation
points exceeds 50. On the contrary, the interquartile range
and mean values of MSE of the DNN model consistently de-
crease with an increasing number of observation points, dis-
playing a consistent pattern as observed in Fig. 6. It should
be emphasized that the PDTL model can still produce satis-
factory results even with sparse data. Even with more than
50 observation points, the DNN model still underperforms
the PDTL model, which can be attributed to the following
reasons: (1) due to the lack of prior physical knowledge, the
DNN model may require more data to learn relatively com-
plex patterns; (2) both the PDTL and DNN models follow
the identical convergence criterion with a restricted number
of epochs during the fine-tuning process, which may result in
incomplete training for the DNN model.
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Figure 5. Absolute errors between the predicted temperature field and reference temperature field using PDTL and DNN models for the
homogeneous streambed.
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Figure 6. Comparisons of the predicted temperature (blue curves) and reference temperature (red curves) using PDTL and DNN models for
the homogeneous streambed.
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Figure 7. MSE distribution of normalized results from PDTL and DNN models plotted against the number of observation points for the
homogeneous streambed. (a) PDTL model. (b) DNN model.

3.3 Effects of nonuniform flow on heat transfer

In this section, we evaluate the performance of the PDTL
model in predicting the spatiotemporal temperature distribu-
tion in heterogeneous streambeds. The heterogeneous lnK
field is generated by the exponential covariance function
with mean µ= 0; correlation length l = 0.1m in both the
x and z directions; and variance σ 2

lnK = 0.2, 0.5, and 1.0,
respectively. Accordingly, three scenarios with low to high
heterogeneity are created. Figure 8 depicts the random lnK
fields and references flow fields of the three scenarios. The
other parameters remain consistent with those of the ho-
mogeneous streambed. The temperature distribution in the
heterogeneous streambed is estimated using the numerical
model. Temperature time series of 1, 5, 10, 20, 50, and 100
observation points are extracted to fine-tune both the PDTL
and DNN models.

To mitigate the impacts of random sampling during the
fine-tuning process, 200 stochastic simulations are per-
formed. The distribution of the average MSE for both the
PDTL and DNN models in three distinct heterogeneous
streambeds from low to high heterogeneity are shown in
Fig. 9. One can find that the average MSE of the PDTL model
is consistently minimal and significantly lower than that of
the DNN model. Besides, with the same number of obser-
vation points, a decrease in σ 2

lnK corresponds to a reduction
in average MSE. These findings can be explained by the fact
that the proposed PDTL model exhibits a strong ability to
transfer knowledge between two datasets with similar struc-
tures or features. A decreased σ 2

lnK indicates less heterogene-
ity in the lnK field, resulting in a temperature field that more
closely resembles those generated by the analytical model.

We attribute this improvement in the PDTL model to the
enhanced initial parameters of the DNN model through the
incorporation of physical knowledge during the fine-tuning
process. For both the PDTL and DNN models, the interquar-
tile ranges and mean values of MSE decrease as the num-
ber of observation points increases. Notably, by leveraging
the insights from the analytical model, the PDTL model can
effectively predict the temperature distribution in heteroge-
neous streambeds, even with sparse observation points (e.g.,
5 observation points). In contrast, while the DNN model ex-
hibits improved performance with an increased number of
observation points, its performance heavily relies on this fac-
tor, showing unsatisfactory outcomes with fewer observation
points. When the number of observation points reaches 50,
the interquartile range and MSE of the PDTL model exhibit
marginal changes, but the interquartile range and MSE of the
DNN model still decrease significantly. Furthermore, there is
no significant difference in the performance of the PDTL and
DNN models in heterogeneous scenarios when the number
of observation points increases to 200, as shown in Figs. S3
and S4 in the Supplement. The average MSE of the PDTL
model is approximately 2.8–18.4 times smaller than that of
the DNN model with the same observation points, which fur-
ther demonstrates the capability of the PDTL model to trans-
fer knowledge from homogeneous environments to heteroge-
neous environments.

3.4 Effects of river temperature uncertainty

In this section, we evaluate the effectiveness of the PDTL
model in the context of river temperature observation noises,
which may arise from suboptimal field conditions or sensor
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Figure 8. Heat map and the contours of hydraulic head, temperature field, and streamlines for different K fields. Panels (a1)–(c1) show the
heat map of K fields, panels (a2)–(c2) show the contours of hydraulic head and streamlines at 0.5d , and panels (a3)–(c3) show the contours
of temperature field and streamlines at 0.5d for σ 2

lnk = 0.2, 0.5, and 1.0, respectively.

resolution limitations (Chen et al., 2022; Shi et al., 2023).
Specifically, the white Gaussian noise is introduced at the
top boundary:

f (t)= 20+ sin(2πt)+ normrnd(ϕNoise,σNoise), (6)

where ϕNoise and σNoise denote the mean and variance of
white Gaussian noise, respectively, and normrnd() denotes
the Gaussian distribution. In this section, ϕNoise is set to 0 °C
and σNoise is set to 0.025, 0.05, and 0.075 °C, as shown in
Fig. 10. Similarly, the heterogeneous lnK field of streambed
is generated by the exponential covariance function with
µ= 0, l = 0.1m in both x and z directions and σ 2

lnK = 0.5.
The temperature time series from diverse numbers of obser-
vation points (1, 5, 10, 20, 50, and 100) are utilized as train-
ing datasets for both PDTL and DNN models. Additionally,
200 stochastic simulations are conducted to mitigate the in-

fluence of random sampling of observation points during the
fine-tuning process.

Figure 11 shows the distributions of the average MSE for
both the PDTL and DNN models under different noise levels.
It is observed that the PDTL and DNN models exhibit sensi-
tivity to noise, and the elevated noise levels result in dimin-
ished model performance. Nevertheless, the PDTL model
is less impacted by river temperature uncertainty compared
to the DNN model. For instance, in cases of 10 observa-
tion points, the average MSE of the DNN model varies from
0.59–0.45 as σ decreases from 0.075–0.025. In contrast, the
average MSE of the PDTL model ranges only from 0.11–
0.08 under the same conditions, demonstrating the superior
robustness of the PDTL model over the DNN model.
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Figure 9. MSE distribution of normalized results from PDTL and DNN models plotted against the number of observation points for different
heterogeneous streambeds. Panels (a1)–(c1) show the PDTL model and panels (a2)–(c2) show the DNN model for σ 2

lnk = 0.2, 0.5, and 1.0,
respectively.
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Figure 10. Time series diagram of river temperature under different observation noises. (a) σ = 0.025°C; (b) σ = 0.05°C; (c) σ = 0.075°C.

4 Discussion

This study investigates the effects of streambed heterogene-
ity, temperature observation noises, and the number of ob-
servation points at different locations on the performance
of the proposed PDTL model. Results indicate that the pro-
posed PDTL model exhibits robust prediction performance
with significantly reduced interquartile range and MSE, par-
ticularly in scenarios with sparse data. These findings sug-
gest that integrating analytical knowledge effectively de-
creases model uncertainties. Compared to conventional data-
driven models, which often require extensive training data,
the PDTL model leverages analytical knowledge to improve
accuracy while reducing uncertainty. This highlights its po-
tential advantages in environmental and hydrological studies
where data collection is often constrained. A key strength
of this framework is its transferability to other applications
beyond heat transfer in riparian zones. By integrating ana-
lytical knowledge with a data-driven approach, it can be ex-
tended to solute transport processes and heat transfer in other
heterogeneous porous media, such as groundwater contam-
inant migration and CO2 geological storage. This versatil-
ity highlights the framework’s potential for broader applica-
tions across various fields within environmental and hydro-
logical studies. However, scientists should carefully consider
the choice of training data and the assumptions underlying
the analytical solutions when applying this framework to dif-
ferent settings.

Despite its advantages, it is imperative to recognize sev-
eral constraints associated with the PDTL model proposed
in this study. Firstly, the incapacity for extrapolation of the
PDTL model restricts its applicability. As it lacks observa-
tion points outside the training domain, the PDTL model
tends to face limitations concerning extrapolative tasks. Sec-
ondly, this study centers on modeling heat transfer prob-
lems in heterogeneous riparian zones, and the effectiveness
of the PDTL model may be influenced by the selection of
the K value. Thirdly, using locations as inputs may limit the
model’s transferability to other sites and weaken its direct
connection to measurable physical variables. Future work

will incorporate additional physically measurable parame-
ters, such as surface temperature, river–aquifer fluxes, or hy-
draulic gradients, to enhance the model’s generalizability and
physical relevance. Finally, analytical models usually require
regular spatial domains, while real-world study areas (e.g.,
watersheds) often feature irregular spatial domains. The ef-
fectiveness of the PDTL model may be influenced by dis-
crepancies between the temperature field in the real-world
area and the simplified analytical solution, especially near
the boundary. Future research should systematically compare
transfer-learning-based models with conventional models re-
garding computational efficiency, predictive accuracy, and
adaptability to diverse hydrological settings. Additionally,
efforts should focus on improving the framework’s ability
to handle irregular spatial domains through coordinate trans-
formations, domain padding, or hybrid numerical–analytical
datasets and on refining its extrapolation capability. Address-
ing these challenges will further enhance the applicability of
the PDTL model in environmental and hydrological research.

5 Conclusions

In this study, we propose a novel physics-informed deep
transfer learning (PDTL) approach, which enhances DNN
models by integrating physical mechanisms described by an
analytical model using a transfer learning technique. The
proposed PDTL model is tested against the DNN model
under different heterogeneous streambeds and observation
noise levels. Results indicate that the PDTL model signif-
icantly improves the robustness and accuracy in predict-
ing the spatiotemporal temperature distribution in hetero-
geneous streambeds by incorporating knowledge transferred
from pre-trained DNN models. Importantly, the PDTL model
maintains satisfactory performance even with sparse training
data and high uncertainties in geological conditions and ob-
servations, making it a promising tool for practical applica-
tions in riparian zone management. This is particularly rele-
vant in situations where data acquisition is often challenging
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Figure 11. MSE distribution of normalized results from PDTL and DNN models plotted against the number of observation points for different
observation noises. Panels (a1)–(c1) show the PDTL model and panels (a2)–(c2) show the DNN model for σ = 0.025, 0.05, and 0.075 °C,
respectively.
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and costly, highlighting the potential impact of our research.
The main conclusions are summarized as follows:

1. The hydraulic conductivity primarily influences the pa-
rameters of the shallow layers in the DNN model, ren-
dering it visible for using a transfer learning approach
in predicting spatiotemporal temperature distribution in
heterogeneous streambeds.

2. The accuracy of predicted temperature fields for both
the PDTL and DNN models improves with an increased
number of observation points, and the PDTL model sig-
nificantly outperforms the DNN model for both homo-
geneous and heterogeneous scenarios.

3. The PDTL model demonstrates stronger robustness in
dealing with observation noise compared to the DNN
model and performs satisfactorily even with sparse
training data.

4. The successful application of the PDTL model for pre-
dicting the spatiotemporal temperature distribution in
heterogeneous streambeds indicates its pronounced ad-
vantages and prospects for estimating surface water and
groundwater interaction fluxes in such heterogeneous ri-
parian zones.
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