Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5251-2025
https://doi.org/10.5194/hess-29-5251-2025
Research article
 | 
17 Oct 2025
Research article |  | 17 Oct 2025

Improving heat transfer predictions in heterogeneous riparian zones using transfer learning techniques

Aohan Jin, Wenguang Shi, Jun Du, Renjie Zhou, Hongbin Zhan, Yao Huang, Quanrong Wang, and Xuan Gu

Model code and software

Python codes of the DTL and DNN models Aohan Jin https://github.com/Ahjin-CUG/TL

Download
Short summary
This study developed a novel physics-informed deep transfer learning (PDTL) approach, which integrates the physical mechanisms from an analytical model using a transfer learning technique. Results indicate that the DTL model maintains satisfactory performance even in heterogeneous conditions, with uncertainties in observations and sparse training data compared to the deep neural network (DNN) model.
Share