Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel
CORRESPONDING AUTHOR
Hydrology, Climate and Climate Change (HC3) laboratory, École de technologie supérieure, Montréal, H3C 1K3, Canada
François Brissette
Hydrology, Climate and Climate Change (HC3) laboratory, École de technologie supérieure, Montréal, H3C 1K3, Canada
Richard Arsenault
Hydrology, Climate and Climate Change (HC3) laboratory, École de technologie supérieure, Montréal, H3C 1K3, Canada
Richard Turcotte
Direction principale de l'expertise hydrique (DPEH), Ministère de l'Environnement et de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Québec, G1R 5V7, Canada
Mariana Castañeda-Gonzalez
Hydrology, Climate and Climate Change (HC3) laboratory, École de technologie supérieure, Montréal, H3C 1K3, Canada
William Armstrong
Hydrology, Climate and Climate Change (HC3) laboratory, École de technologie supérieure, Montréal, H3C 1K3, Canada
Edouard Mailhot
Direction principale de l'expertise hydrique (DPEH), Ministère de l'Environnement et de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Québec, G1R 5V7, Canada
Jasmine Pelletier-Dumont
Direction principale de l'expertise hydrique (DPEH), Ministère de l'Environnement et de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Québec, G1R 5V7, Canada
Gabriel Rondeau-Genesse
Ouranos, Montréal, H3A 1B9, Canada
Louis-Philippe Caron
Ouranos, Montréal, H3A 1B9, Canada
Related authors
Frédéric Talbot, Simon Ricard, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3037, https://doi.org/10.5194/egusphere-2024-3037, 2024
Preprint archived
Short summary
Short summary
This study compares two hydrological modeling approaches for assessing climate change impacts on water systems. We evaluate the conventional method alongside the asynchronous method, which excels in capturing extreme events but faces challenges with event timing. Our findings suggest that a semi-asynchronous approach, blending the strengths of both methods, could offer better results. This research provides key insights for supporting sustainable resource planning in a changing climate.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183, https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary
Short summary
Our study examines how combining climate models impacts future streamflow predictions, crucial for understanding climate change. Comparing six methods across 3,107 North American catchments, we found unequal weighting significantly improves rainfall and temperature projections. However, for streamflow, both equal and unequal weighting perform similarly with bias correction. Our findings underscore the need to carefully select weighting methods and correct biases for accurate climate projections.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Behmard Sabzipour, Philippe Lucas-Picher, Richard Turcotte, and Gabriel Rondeau-Genesse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3436, https://doi.org/10.5194/egusphere-2025-3436, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Quebec, Canada is experiencing more frequent and intense rainfall events during the warm seasons, a trend expected to increase due to climate change. This raises the risk of more frequent and severe flooding in urban areas. To better understand extreme rainfall and the resulting floods, this study evaluates, for the first time in Canada, the advantages of using high-resolution climate model outputs. We then assess whether these data can improve peak flow simulations using a hydrological model.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Frédéric Talbot, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3353, https://doi.org/10.5194/egusphere-2024-3353, 2024
Short summary
Short summary
This research explores different modelling approaches within a distributed and physically based hydrological model, emphasizing configurations that integrate groundwater recharge and dynamics. The study demonstrates that precise adjustments in model calibration can enhance the accuracy and representation of hydrological variables, which are crucial for effective water management and climate change adaptation strategies.
Frédéric Talbot, Simon Ricard, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3037, https://doi.org/10.5194/egusphere-2024-3037, 2024
Preprint archived
Short summary
Short summary
This study compares two hydrological modeling approaches for assessing climate change impacts on water systems. We evaluate the conventional method alongside the asynchronous method, which excels in capturing extreme events but faces challenges with event timing. Our findings suggest that a semi-asynchronous approach, blending the strengths of both methods, could offer better results. This research provides key insights for supporting sustainable resource planning in a changing climate.
Gabriel Rondeau-Genesse, Louis-Philippe Caron, Kristelle Audet, Laurent Da Silva, Daniel Tarte, Rachel Parent, Élise Comeau, and Dominic Matte
EGUsphere, https://doi.org/10.5194/egusphere-2024-2595, https://doi.org/10.5194/egusphere-2024-2595, 2024
Short summary
Short summary
The 2021 drought in Quebec showcased the province’s potential vulnerability. This study uses a storyline approach to explore impacts of future extreme droughts under +2 °C and +3 °C warming scenarios. By combining regional climate and hydrological simulations, it highlights the potential for severe water deficits. Collaboration with water management experts helped project the impacts of those future extreme droughts and their consequences for ecosystems and human activities.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183, https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary
Short summary
Our study examines how combining climate models impacts future streamflow predictions, crucial for understanding climate change. Comparing six methods across 3,107 North American catchments, we found unequal weighting significantly improves rainfall and temperature projections. However, for streamflow, both equal and unequal weighting perform similarly with bias correction. Our findings underscore the need to carefully select weighting methods and correct biases for accurate climate projections.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis
The Cryosphere, 16, 3489–3506, https://doi.org/10.5194/tc-16-3489-2022, https://doi.org/10.5194/tc-16-3489-2022, 2022
Short summary
Short summary
The research deals with the assimilation of in-situ local snow observations in a large-scale spatialized snow modeling framework over the province of Quebec (eastern Canada). The methodology is based on proposing multiple spatialized snow scenarios using the snow model and weighting them according to the available observations. The paper especially focuses on the spatial coherence of the snow scenario proposed in the framework.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Mostafa Tarek, François Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, https://doi.org/10.5194/hess-25-3331-2021, 2021
Short summary
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
Cited articles
Agarap, A. F.: Deep learning using rectified linear units (relu), arXiv [preprint], https://doi.org/10.48550/arXiv.1803.08375, 2018.
Althoff, D. and Rodrigues, L. N.: Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment, J. Hydrol., 600, 126674, https://doi.org/10.1016/j.jhydrol.2021.126674, 2021.
Althoff, D., Rodrigues, L. N., and Silva, D. D.: Addressing hydrological modeling in watersheds under land cover change with deep learning, Adv. Water Resour., 154, 103965, https://doi.org/10.1016/j.advwatres.2021.103965, 2021.
Arsenault, R. and Brissette, F.: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach, J. Hydrometeorol., 15, 517–526, https://doi.org/10.1175/jhm-d-13-088.1, 2014a.
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches, Water Resour. Res., 50, 6135–6153, https://doi.org/10.1002/2013WR014898, 2014b.
Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Comparison of stochastic optimization algorithms in hydrological model calibration, J. Hydrol. Eng., 19, 1374–1384, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938, 2014.
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation, J. Hydrol., 529, 754–767, https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015.
Arsenault, R., Brissette, F., and Martel, J.-L.: The hazards of split-sample validation in hydrological model calibration, J. Hydrol., 566, 346–362, https://doi.org/10.1016/j.jhydrol.2018.09.027, 2018.
Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., Castañeda Gonzalez, M., Ameli, A., and Poulin, A.: A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds, Scientific Data, 7, 243, https://doi.org/10.1038/s41597-020-00583-2, 2020.
Arsenault, R., Martel, J.-L., Brunet, F., Brissette, F., and Mai, J.: Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models, Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, 2023.
Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., Castañeda Gonzalez, M., Ameli, A. and Poulin, A.: HYSETS – A 14425 watershed Hydrometeorological Sandbox over North America, OSF [data set], https://doi.org/10.17605/OSF.IO/RPC3W, 2024a.
Arsenault, R., Martel, J.-L., and Brissette, F.: LSTM climate change paper codes and data, OSF [code and data set], https://osf.io/5yw4u (last access: 3 July 2024), 2024b.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.: Impacts of climate change on the future of biodiversity, Ecol. Lett., 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012.
Bérubé, S., Brissette, F., and Arsenault, R.: Optimal hydrological model calibration strategy for climate change impact studies, J. Hydrol. Eng., 27, 04021053, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002148, 2022.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?, J. Hydrol., 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018.
Chen, H., Xu, C.-Y., and Guo, S.: Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff, J. Hydrol., 434–435, 36–45, https://doi.org/10.1016/j.jhydrol.2012.02.040, 2012.
Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011WR010602, 2011.
Chiew, F. H. S.: Estimation of rainfall elasticity of streamflow in Australia, Hydrolog. Sci. J., 51, 613–625, https://doi.org/10.1623/hysj.51.4.613, 2006.
Chiew, F. H. S., Peel, M. C., McMahon, T. A., and Siriwardena, L. W.: Precipitation elasticity of streamflow in catchments across the world, IAHS Publication, 308, 256, https://iahs.info/uploads/dms/13670.49-256-262-08-308-Chiew.pdf (last access: 3 July 2024), 2006.
Chlumsky, R., Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneous calibration of hydrologic model structure and parameters using a blended model, Water Resour. Res., 57, e2020WR029229, https://doi.org/10.1029/2020WR029229, 2021.
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.: Characterizing uncertainty of the hydrologic impacts of climate change, Current Climate Change Reports, 2, 55–64, https://doi.org/10.1007/s40641-016-0034-x, 2016.
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, https://doi.org/10.1029/2011WR011721, 2012.
Dallaire, G., Poulin, A., Arsenault, R., and Brissette, F.: Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America, Hydrolog. Sci. J., 66, 689–702, https://doi.org/10.1080/02626667.2021.1888955, 2021.
Dams, J., Nossent, J., Senbeta, T. B., Willems, P., and Batelaan, O.: Multi-model approach to assess the impact of climate change on runoff, J. Hydrol., 529, 1601–1616, https://doi.org/10.1016/j.jhydrol.2015.08.023, 2015.
Deb, P., Babel, M. S., and Denis, A. F.: Multi-GCMs approach for assessing climate change impact on water resources in Thailand, Modeling Earth Systems and Environment, 4, 825–839, https://doi.org/10.1007/s40808-018-0428-y, 2018.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994.
Duethmann, D., Blöschl, G., and Parajka, J.: Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?, Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, 2020.
Dupuy, J.-L., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., and Fernandes, P.: Climate change impact on future wildfire danger and activity in southern Europe: a review, Ann. For. Sci., 77, 35, https://doi.org/10.1007/s13595-020-00933-5, 2020.
Earth System Grid Federation: CMIP6 data, Lawrence Livermore National Laboratory [data set], https://esgf-node.llnl.gov/search/cmip6/, last access: 12 February 2024.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feng, D., Beck, H., Lawson, K., and Shen, C.: The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment, Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, 2023.
Ford, J. D., Keskitalo, E. C. H., Smith, T., Pearce, T., Berrang-Ford, L., Duerden, F., and Smit, B.: Case study and analogue methodologies in climate change vulnerability research, WIREs Clim. Change, 1, 374–392, https://doi.org/10.1002/wcc.48, 2010.
Fortin, V. and Turcotte, R.: Le modèle hydrologique MOHYSE, Université du Québec à Montréal Note SCA7420, 14 pp., 2007 (in French).
Gaborit, É., Ricard, S., Lachance-Cloutier, S., Anctil, F., and Turcotte, R.: Comparing global and local calibration schemes from a differential split-sample test perspective, Can. J. Earth Sci., 52, 990–999, https://doi.org/10.1139/cjes-2015-0015, 2015.
Galloway, G. E.: If stationarity is dead, what do we do now?, J. Am. Water Resour. As., 47, 563–570, https://doi.org/10.1111/j.1752-1688.2011.00550.x, 2011.
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.
Girihagama, L., Naveed Khaliq, M., Lamontagne, P., Perdikaris, J., Roy, R., Sushama, L., and Elshorbagy, A.: Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism, Neural Computing and Applications, 34, 19995–20015, https://doi.org/10.1007/s00521-022-07523-8, 2022.
Giuntoli, I., Villarini, G., Prudhomme, C., and Hannah, D. M.: Uncertainties in projected runoff over the conterminous United States, Climatic Change, 150, 149–162, https://doi.org/10.1007/s10584-018-2280-5, 2018.
Guo, Y., Zhang, Y., Zhang, L., and Wang, Z.: Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review, WIREs Water, 8, e1487, https://doi.org/10.1002/wat2.1487, 2021.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., and Wiltshire, A. J.: Climate change impact on available water resources obtained using multiple global climate and hydrology models, Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, 2013.
Hamon, W. R.: Estimating potential evaporation, ASCE Journal of the Hydraulics Division, 87, 107–120, 1961.
Hansen, N. and Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies, Evol. Comput., 9, 159–195, https://doi.org/10.1162/106365601750190398, 2001.
Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story is misleading, Nature, 577, 618–620, 2020.
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and Zelinka, M.: Climate simulations: recognize the “hot model” problem, Nature, 605, 26–29, 2022.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, United States, 27–30 June 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016.
Her, Y., Yoo, S.-H., Cho, J., Hwang, S., Jeong, J., and Seong, C.: Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions, Scientific Reports, 9, 4974, https://doi.org/10.1038/s41598-019-41334-7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Jackson, S. T.: Transformational ecology and climate change, Science, 373, 1085–1086, https://doi.org/10.1126/science.abj6777, 2021.
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models, Nature Food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y, 2021.
Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G.: Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic Change, 92, 41–63, https://doi.org/10.1007/s10584-008-9471-4, 2009.
Kim, K. B., Kwon, H.-H., and Han, D.: Hydrological modelling under climate change considering nonstationarity and seasonal effects, Hydrol. Res., 47, 260–273, https://doi.org/10.2166/nh.2015.103, 2015.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting the power of machine learning, Water Resour. Res., 55, 11344–11354, https://doi.org/10.1029/2019WR026065, 2019a.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b.
Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024.
Kreienkamp, F., Lorenz, P., and Geiger, T.: Statistically downscaled CMIP6 projections show stronger warming for Germany, Atmosphere, 11, 1245, https://doi.org/10.3390/atmos11111245, 2020.
Krysanova, V., Donnelly, C., Gelfan, A., Gerten, D., Arheimer, B., Hattermann, F., and Kundzewicz, Z. W.: How the performance of hydrological models relates to credibility of projections under climate change, Hydrolog. Sci. J., 63, 696–720, https://doi.org/10.1080/02626667.2018.1446214, 2018.
Li, H., Beldring, S., and Xu, C.-Y.: Stability of model performance and parameter values on two catchments facing changes in climatic conditions, Hydrolog. Sci. J., 60, 1317–1330, https://doi.org/10.1080/02626667.2014.978333, 2015.
Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal, K., Nieber, J., Duffy, C., Steinbach, M., and Kumar, V.: Regionalization in a global hydrologic deep learning model: From physical descriptors to random vectors, Water Resour. Res., 58, e2021WR031794, https://doi.org/10.1029/2021WR031794, 2022.
Loshchilov, I. and Hutter, F.: Decoupled weight decay regularization, arXiv [preprint], https://doi.org/10.48550/arXiv.1711.05101, 2017.
Maharjan, M., Eluwa, C., Brown, C., and Francois, B.: Evaluating Long Short-Term Memory (LSTM) credibility for climate change impact assessment studies, in: AGU Fall Meeting Abstracts, Chicago, IL, United States, 12–16 December 2022, H36F-02, https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1180404 (last access: 3 July 2024), 2022.
Martel, J.-L., Demeester, K., Brissette, F., Poulin, A., and Arsenault, R.: HMETS – A simple and efficient hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts, Int. J. Eng. Educ., 33, 1307–1316, 2017.
Martel, J.-L., Brissette, F., and Poulin, A.: Impact of the spatial density of weather stations on the performance of distributed and lumped hydrological models, Can. Water Resour. J., 45, 158–171, https://doi.org/10.1080/07011784.2020.1729241, 2020.
Martel, J.-L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T., and Lucas-Picher, P.: CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America, Geophys. Res. Lett., 49, e2022GL098364, https://doi.org/10.1029/2022GL098364, 2022.
McGuinness, J. L. and Bordne, E. F.: A comparison of lysimeter-derived potential evapotranspiration with computed values, 1452, US Department of Agriculture, https://doi.org/10.22004/ag.econ.171893, 1972.
Mearns, L. O.: Quantification of uncertainties of future climate change: Challenges and applications, Philos. Sci., 77, 998–1011, https://doi.org/10.1086/656817, 2010.
Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and Arnold, J. R.: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts, J. Hydrometeorol., 16, 762–780, https://doi.org/10.1175/JHM-D-14-0104.1, 2015.
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, 2022.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither water management?, Science, 319, 573, https://doi.org/10.1126/science.1151915, 2008.
Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of climate change on the hydrology of a nordic watershed, J. Hydrol., 358, 70–83, https://doi.org/10.1016/j.jhydrol.2008.05.033, 2008.
Najafi, M. R. and Moradkhani, H.: Multi-model ensemble analysis of runoff extremes for climate change impact assessments, J. Hydrol., 525, 352–361, https://doi.org/10.1016/j.jhydrol.2015.03.045, 2015.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nogueira Filho, F. J. M., Souza Filho, F. A., Porto, V. C., Vieira Rocha, R., Sousa Estácio, Á. B., and Martins, E. S. P. R.: Deep learning for streamflow regionalization for ungauged basins: Application of long-short-term-memory cells in semiarid regions, Water, 14, 1318, https://doi.org/10.3390/w14091318, 2022.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2 – Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.
Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies, Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, 2013.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Poulin, A., Brissette, F., Leconte, R., Arsenault, R., and Malo, J.-S.: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin, J. Hydrol., 409, 626–636, https://doi.org/10.1016/j.jhydrol.2011.08.057, 2011.
Rahimpour Asenjan, M., Brissette, F., Martel, J.-L., and Arsenault, R.: Understanding the influence of “hot” models in climate impact studies: a hydrological perspective, Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, 2023.
Ramírez Villegas, J., Lau, C., Köhler, A.-K., Jarvis, A., Arnell, N., Osborne, T. M., and Hooker, J.: Climate analogues: finding tomorrow's agriculture today, CCAFS Working Paper, https://hdl.handle.net/10568/16420 (last access: 3 July 2024), 2011.
Ricard, S., Bourdillon, R., Roussel, D., and Turcotte, R.: Global calibration of distributed hydrological models for large-scale applications, J. Hydrol. Eng., 18, 719–721, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000665, 2013.
Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., and Ludwig, F.: Projections of future floods and hydrological droughts in Europe under a +2 °C global warming, Climatic Change, 135, 341–355, https://doi.org/10.1007/s10584-015-1570-4, 2016.
Sabzipour, B., Arsenault, R., Troin, M., Martel, J.-L., Brissette, F., Brunet, F., and Mai, J.: Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment, J. Hydrol., 627, 130380, https://doi.org/10.1016/j.jhydrol.2023.130380, 2023.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United States, Water Resour. Res., 37, 1771–1781, https://doi.org/10.1029/2000WR900330, 2001.
Sarwinda, D., Paradisa, R. H., Bustamam, A., and Anggia, P.: Deep Learning in Image classification using residual network (ResNet) variants for detection of colorectal cancer, Procedia Comput. Sci., 179, 423–431, https://doi.org/10.1016/j.procs.2021.01.025, 2021.
Schaake, J. C.: From climate to flow, in: Climate Change and U.S. Water Resources, edited by: Waggoner, P. E., John Wiley & Sons, New York, USA, 177–206, 1990.
Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., and Watson, J. E. M.: The broad footprint of climate change from genes to biomes to people, Science, 354, aaf7671, https://doi.org/10.1126/science.aaf7671, 2016.
Seiller, G., Hajji, I., and Anctil, F.: Improving the temporal transposability of lumped hydrological models on twenty diversified U.S. watersheds, Journal of Hydrology: Regional Studies, 3, 379–399, https://doi.org/10.1016/j.ejrh.2015.02.012, 2015.
Sem, G.: Vulnerability and adaptation to climate change in small island developing states, United Nations Development Programme, New York, https://unfccc.int/files/adaptation/adverse_effects_and_response_measures_art_48/application/pdf/200702_sids_adaptation_bg.pdf (last access: 3 July 2024), 2007.
Shen, H., Tolson, B. A., and Mai, J.: Time to update the split-sample approach in hydrological model calibration, Water Resour. Res., 58, e2021WR031523, https://doi.org/10.1029/2021WR031523, 2022.
Singh, R., van Werkhoven, K., and Wagener, T.: Hydrological impacts of climate change in gauged and ungauged watersheds of the Olifants basin: a trading-space-for-time approach, Hydrolog. Sci. J., 59, 29–55, https://doi.org/10.1080/02626667.2013.819431, 2014.
Smith, L. and Topin, N.: Super-convergence: very fast training of neural networks using large learning rates, SPIE Defense + Commercial Sensing, SPIE2019, https://doi.org/10.1117/12.2520589, 2019.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020.
Tarek, M., Arsenault, R., Brissette, F., and Martel, J.-L.: Daily streamflow prediction in ungauged basins: an analysis of common regionalization methods over the African continent, Hydrolog. Sci. J., 66, 1695–1711, https://doi.org/10.1080/02626667.2021.1948046, 2021.
Thirel, G., Andréassian, V., and Perrin, C.: On the need to test hydrological models under changing conditions, Hydrolog. Sci. J., 60, 1165–1173, https://doi.org/10.1080/02626667.2015.1050027, 2015.
Thompson, J. R., Green, A. J., Kingston, D. G., and Gosling, S. N.: Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models, J. Hydrol., 486, 1–30, https://doi.org/10.1016/j.jhydrol.2013.01.029, 2013.
Todorović, A., Grabs, T., and Teutschbein, C.: Advancing traditional strategies for testing hydrological model fitness in a changing climate, Hydrolog. Sci. J., 67, 1790–1811, https://doi.org/10.1080/02626667.2022.2104646, 2022.
Troin, M., Arsenault, R., and Brissette, F.: Performance and uncertainty evaluation of snow models on snowmelt flow simulations over a nordic catchment (Mistassibi, Canada), Hydrology, 2, 289, https://doi.org/10.3390/hydrology2040289, 2015.
Troin, M., Arsenault, R., Martel, J.-L., and Brissette, F.: Uncertainty of hydrological model components in climate change studies over two nordic Quebec catchments, J. Hydrometeorol., 19, 27–46, https://doi.org/10.1175/jhm-d-17-0002.1, 2018.
Valéry, A., Andréassian, V., and Perrin, C.: `As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments, J. Hydrol., 517, 1166–1175, https://doi.org/10.1016/j.jhydrol.2014.04.059, 2014.
Vansteenkiste, T., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., and Willems, P.: Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections, J. Hydrol., 519, 743–755, https://doi.org/10.1016/j.jhydrol.2014.07.062, 2014.
Vehviläinen, B.: Snow cover models in operational watershed forecasting, PhD dissertation, Finnish Environment Institute, 112 pp., https://helda.helsinki.fi/bitstreams/c7a274ee-28d4-4c4d-96e1-94f1930dd985/download (last access: 3 July 2024), 1992.
Wang, H., -M., Chen, J., Xu, C.-Y., Zhang, J., and Chen, H.: A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change, Earth's Future, 8, e2020EF001602, https://doi.org/10.1029/2020EF001602, 2020.
Wi, S. and Steinschneider, S.: Assessing the physical realism of deep learning hydrologic model projections under climate change, Water Resour. Res., 58, e2022WR032123, https://doi.org/10.1029/2022WR032123, 2022.
Wickham, H. and Stryjewski, L.: 40 years of boxplots, The American Statistician, https://vita.had.co.nz/papers/boxplots.pdf (last access: 3 July 2024), 2011.
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, https://doi.org/10.1029/2005WR004065, 2006.
Zhang, Y., Viglione, A., and Blöschl, G.: Temporal scaling of streamflow elasticity to precipitation: A global analysis, Water Resour. Res., 58, e2021WR030601, https://doi.org/10.1029/2021WR030601, 2022.
Zhong, L., Lei, H., and Gao, B.: Developing a physics-informed deep learning model to simulate runoff response to climate change in alpine catchments, Water Resour. Res., 59, e2022WR034118, https://doi.org/10.1029/2022WR034118, 2023.
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
This study compares long short-term memory (LSTM) neural networks with traditional hydrological...