Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2811-2025
https://doi.org/10.5194/hess-29-2811-2025
Research article
 | 
04 Jul 2025
Research article |  | 04 Jul 2025

Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks

Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron

Related authors

Towards a semi-asynchronous method for hydrological modeling in climate change studies
Frédéric Talbot, Simon Ricard, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3037,https://doi.org/10.5194/egusphere-2024-3037, 2024
Preprint archived
Short summary
Exploring the ability of LSTM-based hydrological models to simulate streamflow time series for flood frequency analysis
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134,https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Assessing the Hydrological Impact Sensitivity to Climate Model Weighting Strategies
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183,https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023,https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary

Cited articles

Agarap, A. F.: Deep learning using rectified linear units (relu), arXiv [preprint], https://doi.org/10.48550/arXiv.1803.08375, 2018. 
Althoff, D. and Rodrigues, L. N.: Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment, J. Hydrol., 600, 126674, https://doi.org/10.1016/j.jhydrol.2021.126674, 2021. 
Althoff, D., Rodrigues, L. N., and Silva, D. D.: Addressing hydrological modeling in watersheds under land cover change with deep learning, Adv. Water Resour., 154, 103965, https://doi.org/10.1016/j.advwatres.2021.103965, 2021. 
Arsenault, R. and Brissette, F.: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach, J. Hydrometeorol., 15, 517–526, https://doi.org/10.1175/jhm-d-13-088.1, 2014a. 
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches, Water Resour. Res., 50, 6135–6153, https://doi.org/10.1002/2013WR014898, 2014b. 
Download
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Share