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Abstract. Climate change impact studies are essential for un-
derstanding the effects of changing climate conditions on wa-
ter resources. This paper assesses the effectiveness of long
short-term memory (LSTM) neural networks compared to
traditional hydrological models for these studies. Traditional
hydrological models, which rely on simplified process pa-
rameterization with a limited number of parameters, are ex-
amined for their capability to accurately predict future hy-
drological streamflow under scenarios of significant warm-
ing. In contrast, LSTM models, known for their capacity to
learn from extensive sequences of data and capture temporal
dependencies, present a promising alternative. This study is
performed on 148 catchments, comparing four traditional hy-
drological models, each calibrated specifically on each catch-
ment, against two LSTM models. The first LSTM model is
trained regionally across the 148 catchments, while the sec-
ond incorporates data from an additional 1000 catchments at
the continental scale, many located in climate zones repre-
sentative of the future climate within the study domain. The
climate sensitivity of all six hydrological models is assessed
using four simple climate scenarios (+3, +6 °C, −20 %, and
+20 % mean annual precipitation) and an ensemble of 22
CMIP6 GCMs under the SSP5-8.5 scenario. Results indi-
cate that LSTM-based models demonstrate a different cli-
mate sensitivity compared to traditional hydrological mod-
els. Moreover, analyses of precipitation elasticity to stream-

flow and multiple streamflow simulations on analogue catch-
ments suggest that the continental LSTM model performs
better and is therefore better suited for climate change impact
studies – a conclusion that is also supported by theoretical ar-
guments.

1 Introduction

A warming climate has profound cascading impacts affecting
the entire biosphere (e.g. Bellard et al., 2012; Jackson, 2021;
Scheffers et al., 2016). The potential influence of an evolving
climate is typically assessed through climate change impact
studies. These studies evaluate the impacts of climate change
on environmental, economic, and social systems. They cover
how a changing climate affects ecosystems and the weather
and how it ultimately impacts the human population and in-
frastructures. Impact studies are a critical tool to enable ef-
ficient adaptation strategies addressing climate-related chal-
lenges.

There are many different ways to conduct impact studies,
but the most common approach is to use a top-down mod-
elling chain connecting general circulation or Earth system
models (GCM for short) to a specific impact model such as a
crop (Jägermeyr et al., 2021), forest fire (Dupuy et al., 2020),
or hydrological model (Hagemann et al., 2013; Minville et
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al., 2008). A climate change impact study should not only
quantify future changes but also the uncertainty in the pro-
jected change (Chen et al., 2011; Clark et al., 2016; Wilby
and Harris, 2006).

To adequately frame climate change impact uncertainty,
the importance of incorporating multiple GCMs cannot be
overstated. GCMs are instrumental in projecting future cli-
mate scenarios, yet the inherent uncertainty in their climate
sensitivity – defined as the equilibrium climate sensitivity
(ECS), which quantifies the Earth’s temperature response to a
doubling of carbon dioxide concentrations (CO2) – presents a
significant challenge. Given the variability in the ECS among
different GCMs (Hausfather et al., 2022), leveraging a suite
of GCMs is essential to adequately sample this pivotal source
of uncertainty, thereby enhancing the robustness of climate
projections. This has been the norm for many years, as re-
flected in a multitude of climate change impact studies in
hydrology and other fields (e.g. Chen et al., 2012; Deb et al.,
2018; Martel et al., 2022; Thompson et al., 2013; Wang et
al., 2020).

The climate sensitivity of impact models has compara-
tively been much less studied but has nonetheless been shown
to be significant (Brigode et al., 2013; Giuntoli et al., 2018;
Kay et al., 2009; Krysanova et al., 2018; Mendoza et al.,
2015; Poulin et al., 2011), sometimes to the point of being
more important than that of GCMs (Her et al., 2019). The cli-
mate sensitivity of impact models is dependent on the param-
eterization of various (and often simplified) processes. The
calibration parameter sets are typically optimized for histor-
ical climatic conditions (e.g. Althoff and Rodrigues, 2021;
Chlumsky et al., 2021) and may not be well suited to fu-
ture climates, especially under scenarios of significant warm-
ing. Recognizing and evaluating the uncertainty tied to im-
pact model sensitivity is crucial and is typically approached
by employing multiple impact models or multiple parameter
sets when feasible. However, using multiple impact models
without a priori knowledge of their transferability to a differ-
ent climate is a likely path towards an overestimation of im-
pact model uncertainty, which is as likely to lead to maladap-
tation as underestimating it (Sem, 2007). Mearns (2010) and
many others emphasize the crucial importance of correctly
framing uncertainty to help decision-makers adopt proper
adaptation measures.

In hydrology, this has spurred a body of literature focused
on refining models and calibration approaches for hydrology
models to better account for future climate variability and
change. Using physically based hydrological models (Feng
et al., 2023; Michel et al., 2022) or best-performing models
(Li et al., 2015) has been proposed as a more robust alterna-
tive. However, such models typically require complex obser-
vational inputs that are often not available, and even the most
physical models do require some level of parameterization.
Hydrological models always had to contend with internal cli-
mate variability, and this is why a calibration period should
be as long as possible, as argued by Arsenault et al. (2018)

and Shen et al. (2022) for optimal robustness. They suggest
that by maximizing the length of the calibration time series, it
exposes the models to more contrasted conditions and there-
fore improves robustness. However, internal climate variabil-
ity over a typical calibration historical period remains small
compared to end-of-century climate projections, especially
for near-surface temperature. To address this, multi-model
approaches (Arsenault et al., 2015; Seiller et al., 2015) and
various split-sample procedures have been proposed to study
model robustness over contrasting periods, such as dry/wet or
cold/hot periods (e.g. Bérubé et al., 2022; Coron et al., 2012;
Thirel et al., 2015; Vansteenkiste et al., 2014). Ultimately,
none of the above approaches have proven particularly con-
vincing. In particular, Bérubé et al. (2022) conducted a large-
sample study of contrasting-condition calibration strategies
and showed that no single calibration strategy or length was
successful for all metrics and study catchments. Some of the
underlying reasons for that are discussed by Duethmann et
al. (2020), including issues with precipitation data – such as
evolving measurement networks that alter statistical proper-
ties – and the neglect of changes in vegetation over time.
Finally, the large number of studies on regionalization also
demonstrated that hydrological models have a relatively lim-
ited transferability to other catchments even in similar cli-
mate zones (Arsenault and Brissette, 2014b; Guo et al., 2021;
Parajka et al., 2013; Tarek et al., 2021).

In this context, deep-learning models may have the abil-
ity to overcome such problems (Althoff et al., 2021; Wi and
Steinschneider, 2022; Zhong et al., 2023). In particular, long
short-term memory (LSTM; Hochreiter and Schmidhuber,
1997) networks offer a promising alternative. LSTM models
are a special kind of recurrent neural network (RNN) archi-
tecture which can learn from sequences of data by capturing
temporal dependencies and relationships. They are specifi-
cally designed to avoid the long-term dependency problem
of vanishing or exploding gradients during training. Their
unique architecture enables them to learn and remember
over longer sequences of data compared to RNNs, making
them highly effective for predictions of time series. In ad-
dition, unlike traditional conceptual models that are typi-
cally calibrated on data from a single catchment or from a
small number of catchments pooled together (Gaborit et al.,
2015; Ricard et al., 2013), LSTM models are trained across
a diverse array of catchments, encompassing a wide range
of climatic conditions and physical characteristics, poten-
tially covering a range similar to or beyond that expected
due to climate change over many catchments. For these rea-
sons, this methodological shift is anticipated to yield mod-
els with enhanced robustness to varying climate scenarios.
Kratzert et al. (2019a, b) underscored this potential, demon-
strating that a regional LSTM model can significantly outper-
form traditional hydrological model regionalization methods,
which rely on locally calibrated models. This was then val-
idated on independent datasets by Arsenault et al. (2023),
Li et al. (2022) and Nogueira Filho et al. (2022). Kratzert
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et al. (2024) provided a rationale on why LSTM-based hy-
drological models should always use more than one catch-
ment for training. Essentially, deep-learning approaches re-
quire a large amount of data to be trained properly, and in-
cluding more data allows the model to better detect patterns
and relationships between catchment descriptors, meteoro-
logical forcings, and the target streamflow.

The implementation of LSTM-based regional hydrologi-
cal models is an alternative to traditional “trading space for
time” methodologies. Trading space for time is an approach
used in ecological and environmental studies to infer long-
term environmental changes by examining spatial gradients
at a single time point. In the context of climate change, this
method assumes that spatial variations across different geo-
graphical regions can serve as proxies for temporal changes,
thereby allowing researchers to predict the effects of cli-
mate change over time by observing current spatial patterns
(Singh et al., 2014). Using LSTM models for hydrologi-
cal simulation under changing climate conditions could like-
wise be compared to methods based on climatic analogues.
Analogue-based methods, which identify past weather pat-
terns similar to those projected for the future, offer an intu-
itive way to understand potential climate impacts by drawing
direct parallels with historical events (e.g. Ford et al., 2010;
Ramírez Villegas et al., 2011). While such methods provide
valuable insights, particularly in elucidating the practical im-
plications of climate projections, they inherently rely on the
assumption that past climate variability is a sufficient proxy
for future conditions. This assumption may not always hold,
especially under scenarios of unprecedented climate change.
However, by including a larger sample of catchments from
varied climatic zones, LSTM models could have enough in-
formation to stay in interpolation mode, even at the upper
end of future climate change estimates.

The objectives of this paper are threefold. The first is to as-
sess the performance of an LSTM-based hydrological model
in a climate change impact study, focusing on its potential
ability to capture future hydrological streamflow. The second
is to compare the future streamflow projections derived from
the LSTM-based model against those obtained from conven-
tional hydrological models, aiming to identify differences in
the response across a spectrum of streamflow metrics and
multiple catchments. Finally, the third objective is to explore
the climate sensitivity of the LSTM-based model in contrast
to traditional hydrological models, thereby contributing to
a deeper understanding of LSTM-based hydrological model
uncertainties in climate impact studies.

2 Study area and data

This section covers the study area, the data used to train the
traditional and LSTM-based hydrological models, the var-
ious analyses to investigate the climate change impact on

hydrological simulations, and the evaluation metrics used in
this study.

2.1 Study area

This study focuses on a collection of 148 catchments located
in the northeastern region of North America. These catch-
ments are characterized by their exposure to snow-related
processes, including accumulation and melt phases, playing
a significant role in their hydrological dynamics. The se-
lection of these catchments was done through the compre-
hensive HYSETS database (Arsenault et al., 2020, 2024a),
which catalogues over 14 425 North American catchments,
complete with hydrological, meteorological, and geophysi-
cal data. The choice of this specific subset was motivated by
a previous study in which the same catchments were used
in the context of predicting streamflow in ungauged basins
(Arsenault et al., 2023). The LSTM models in that study
proved to outperform conceptual hydrological models for
this task, paving the way to the present study to determine
how regional LSTM models can integrate spatially diverse
information to predict streamflow in changing conditions.
This is akin to a trading space for time approach using the
LSTM model to do the work. This diversity is particularly
pronounced between the southern and northern catchments,
with notable differences in peak streamflow timings and pre-
cipitation rates, necessitating a detailed modelling approach
beyond simple area-based extrapolations. In the Arsenault et
al. (2023) study, only those catchments with a drainage area
exceeding 500 km2 were included, thereby sidestepping po-
tential issues related to scale and time lag in model region-
alization efforts. Catchments also required at least 30 years
of data over the 1979–2018 period to be selected in order to
have sufficient data to train both the conceptual hydrological
models and the deep-learning implementations. The basin se-
lection criterion was set to a minimum of 30 years of data to
ensure not only a sufficient data length but also a robust sam-
ple of basins for performance assessment. This criterion was
also used in this study, resulting in the selection of the same
148 catchments for the analysis.

For one LSTM configuration in this study, an extra set of
1000 donor catchments was added. This was done to de-
termine if adding information from more catchments with
different climate and physical characteristics could help in-
crease the regionalization ability of the LSTM models and in
turn help increase reliability in terms of climate change im-
pact studies. This was performed by first widening the spatial
extents of the study area and pre-selecting catchments with
more than 20 years of available streamflow data within the
new spatial bounds, as shown in Fig. 1a and b. Note that the
20-year limit differs from the 30-year limit used for the study
catchment selection to widen the set of available catchments
for this analysis, but these were not as critical as the origi-
nal 148 as they were not used for model testing. Therefore,
this constraint was relaxed to 20 years for the extra set of
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catchments. From there, 1000 donor catchments on top of
the initial 148 were selected at random to be included in the
extended LSTM model’s training, with a larger distribution
of these catchments being from more southern regions of the
United States. This was done to ensure warmer catchments
would be included in the training of the extended LSTM
model, aiming to improve its ability to simulate a warmer
climate in the northeastern North America catchments. The
LSTM configuration trained on the study’s 148 catchments
will be referred to LSTM-R (regional), while the one trained
using the additional 1000 donor catchments will be referred
to LSTM-C (continental) throughout the paper.

2.2 Data

2.2.1 Meteorological and hydrometric data

All hydrological models in this study shared the same meteo-
rological datasets to ensure a fair comparison between mod-
els and model types. Indeed, while conceptual models are
limited in their type of meteorological inputs, deep-learning
models can ingest any type of data and extract useful infor-
mation if it is available. Therefore, the dataset that was the
common denominator (i.e. the one that corresponds to the
intersection between both datasets) for all models was used
for all models. This consists of maximum and minimum daily
temperature, as well as daily rainfall and snowfall. These data
were initially provided through the ERA5 reanalysis dataset
(Hersbach et al., 2020) but were directly used from the HY-
SETS database as they were already catchment-averaged and
processed at the daily scale for all catchments in this study.
Tarek et al. (2020) showed that daily ERA5 data can be used
for hydrological modelling applications as a replacement for
observed datasets with little to no loss in performance, while
ensuring no missing data for the entire period. Meteorologi-
cal data therefore covered the period 1980–2018 inclusively.

Hydrometric data were taken from the HYSETS database
as well and covered the same period as the meteorological
data. However, observed streamflow records contain many
missing data, which justifies the use of catchments that only
had at least 20 years of observed streamflow in the catchment
selection (and 30 years for the 148 basins used for testing).

Boxplots will be used throughout this paper to outline
study results (Wickham and Stryjewski, 2011). A boxplot is a
concise graphical tool which highlights the central tendency
(median), variability (interquartile range; IQR), and outliers
(data extending beyond the whiskers or 1.5 times the IQR)
within the distribution of results across all of the study catch-
ments.

Figure 1 presents a first comparison between the meteoro-
logical data of the initial 148-catchment set (regional dataset
– large circles in Fig. 1) and the 1000-catchment extension
(continental dataset – small circles) using maps and box-
plots. Specifically, the regional dataset encompasses a nar-
rower climatic range, with mean annual temperatures varying

from 0.5 to 11.1 °C and precipitation levels spanning 809 to
1425 mm. Conversely, the continental group dataset extends
these boundaries significantly, covering a broader spectrum
of climate conditions. This dataset records mean annual tem-
peratures ranging from −9.1 to 21.8 °C and total precipita-
tion ranging from 328 to 1570 mm.

Such a wide range of key climatic variables enables a com-
prehensive assessment of climate impacts across a wider ge-
ographic area. The extended range of the continental dataset
is particularly critical for the development of robust LSTM
models. By incorporating a broader spectrum of mean an-
nual temperatures and precipitation, the continental dataset
not only captures significant variability within climate data
but also enhances the model’s capacity to generalize across a
diverse array of climate conditions. This aspect is especially
beneficial for anticipating and adapting to a future warmer
climate, where the variability and extremities of climate con-
ditions are expected to intensify.

2.2.2 Catchment descriptors

Catchment descriptors are required for regional LSTM-based
hydrological modelling, as the simulated streamflow is a
function of not only the meteorological data, but also the
catchment properties. These descriptors allow the LSTM
models to learn patterns and relationships to modulate and
adjust simulated streamflow based on each catchment’s static
properties. This has already been implemented in Kratzert et
al. (2019a) and Arsenault et al. (2023). The catchment de-
scriptors used in this study represent geographic (i.e. catch-
ment’s drainage area, elevation, slope, aspect, perimeter, and
Gravelius index), land-use (i.e. fraction of crops, forests,
grass, shrubs, water, wetlands, and urban areas), and geologic
(i.e. permeability and soil porosity) descriptors, for a total of
15 descriptors. These are a subset of those used successfully
in Arsenault et al. (2023) and are presented in Fig. S1.

2.3 Hydrological models

2.3.1 Traditional hydrological model setup

The traditional hydrological models are characterized by
their lumped and conceptual nature, enabling local calibra-
tion across the large array of catchments used in this study.
Meteorological data from all ERA5 grid points within the
drainage area boundary of each catchment were averaged due
to the lumped structure of the models. A total of four tradi-
tional hydrological models with a relatively wide range of
potential evapotranspiration (PET) estimation methods and
degree-day snow models were used as a benchmark for com-
parison with the LSTM-based models.

1. GR4J (French for Model of Rural Engineering with
four parameters – Daily) is a parsimonious four-
parameter lumped model developed by Perrin et
al. (2003). Due to its limitation in simulating snow pro-
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Figure 1. Maps (a, b) of study area showing the location of the 148 studied catchments (large circles with black outline) and the 1000 donor
catchments for the continental LSTM model (small circles with grey outline). The fill colour represents the mean annual temperature (a) and
total precipitation (b) of each catchment. The circles are located at the centroid of each catchment. Boxplots showing the comparison of mean
annual temperature (c) and total precipitation (d) across the target sample of 148 catchments (green boxes) and the 1000 donor catchments
(orange boxes) for the continental LSTM simulation.

cesses, it has been coupled with a two-parameter vari-
ant of the simple degree-day snow model CemaNeige
proposed by (Valéry et al., 2014), thereby ensuring a
basic representation of the evolution of the snow cover.
This integration results in a hydrological model termed
GR4J_CN, which comprises a total of six parameters.
PET was computed using the Oudin formula (Oudin et
al., 2005), which is a variant from the McGuinness and
Bordne (1972) that showed the best performance among
27 other PET formulas for the simulation of streamflow.
Previous studies have demonstrated the effectiveness of
this model structure in accurately simulating continuous
daily streamflow for snowmelt-dominated catchments
similar to those used in the regional dataset of this study
(Troin et al., 2015, 2018; Dallaire et al., 2021).

2. HMETS (Hydrological Model – École de technologie
supérieure; Martel et al., 2017), a 21-parameter lumped
hydrological model, stands as a simple model originally
designed for research and educational purposes. One
notable feature of this model is its snow model based
on the work of Vehviläinen (1992), a 10-parameter
degree-day model which enables the representation of
the snowpack’s melting and refreezing process. The rel-
atively large number of parameters allows it to pro-
vide good performance on a wide variety of catchments
across North America as shown by Martel et al. (2017).
Similar to GR4J_CN, PET was provided to the model
by the Oudin formula (Oudin et al., 2005).

3. HSAMI, a 23-parameter lumped model, has been uti-
lized for daily streamflow forecasting across over
100 catchments by Hydro-Québec, a prominent hy-
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dropower producer. A simple empirical PET formula
based on minimum and maximum temperature is used
by HSAMI:

PET= 0.0029718 · (Tmax− Tmin)

· e(0.0342·(Tmax+Tmin)+1.216), (1)

where temperatures are in degree Celsius (°C) and
PET in centimetres per day (cm d−1). The model uses
a six-parameter degree-day snow model, allowing us
to simulate the processes linked with accumulation of
snow, rain interception, and melting of the snow cover.
HSAMI has found application in various hydrological
and climate change impact studies, such as those con-
ducted by Minville et al. (2008), Arsenault and Bris-
sette (2014a), and Martel et al. (2020).

4. MOHYSE, a French abbreviation for HYdrological
MOdel simplified to the EXtreme, is a very basic 10-
parameter lumped hydrological model created by Fortin
and Turcotte (2007) for teaching undergraduates. De-
spite its simplicity, it is widely used in research due to its
effectiveness in simulating streamflow. The PET estima-
tion method used by MOHYSE is inspired by a simpli-
fied version of the method proposed by Hamon (1961),
and its snow model uses a simple two-parameter degree-
day approach. A comparative analysis with the three
other lumped models used in this study (i.e. GR4J_CN,
HMETS, and HSAMI) on 3375 North American catch-
ments (a subset of the HYSETS database) showed MO-
HYSE’s performance was lower but still acceptable.
The model is kept to better study model structural un-
certainty and climate sensitivity.

The HMETS and HSAMI models were calibrated using the
Covariance Matrix Adaptation – Evolution Strategy (CMA-
ES; Hansen and Ostermeier, 2001) stochastic optimization
method, known for its superior performance in handling
larger parameter spaces (Arsenault et al., 2014). With respect
to GR4J_CN and MOHYSE, their calibration was conducted
using the Shuffled Complex Evolution – University of Ari-
zona (SCE-UA; Duan et al., 1992; Duan et al., 1994) op-
timization method, which is more suitable for models with
smaller parameter spaces (Arsenault et al., 2014). Follow-
ing the recommendation of Arsenault et al. (2018), calibra-
tion utilized much of the available observations (i.e. data be-
tween 1981 and 2007) rather than the traditional split-sample
validation, providing more suitable parameters for climate
change impact studies. However, a short validation period
of 5 years (2008 to 2012) was still kept to allow for a fair
comparison between the traditional hydrological models and
the LSTM-based models. A warm-up period of 2 years was
used to ensure reasonable starting values for the models’
state variables. A total of 10 000 model evaluations were per-
formed on each catchment using a modified version of the
Kling–Gupta efficiency (KGE; Gupta et al., 2009) proposed

by Kling et al. (2012), an objective function based on the
correlation (r), variability bias, and mean bias:

KGE= 1−

√
(r − 1)2+

(
σsim/µsim

σobs/µobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (2)

where σ represents the variance and µsim (µobs) the average
of the simulation (observed) streamflow.

2.3.2 LSTM-based model setup

The conceptual lumped hydrological models are compared
against an implementation of a long short-term memory
(LSTM) model. LSTM models have been used in many ap-
plications related to hydrology, from simple rainfall–runoff
modelling in single catchments and on regional domains
(Kratzert et al., 2018, 2019a), in streamflow forecasting (Gir-
ihagama et al., 2022; Sabzipour et al., 2023), and in stream-
flow prediction at ungauged sites (Arsenault et al., 2023) to
name a few. The LSTM model is designed to integrate both
dynamic and static features, capturing the temporal patterns
of weather variables (e.g. precipitation and temperature) and
the intrinsic characteristics of catchments (e.g. drainage area,
slope, and land use). The model structure is detailed in the
Supplement (Fig. S2), but it is important to note that the
model was implemented twice: once using a regional set of
catchments (regional model in Table 1; 148 catchments) and
the other integrating data from the extra set of 1000 donor
catchments to improve training, referred to as the continen-
tal model in Table 1 (1148 catchments overall). For both ap-
plications, only the amount of input data for training was
changed. The structure and hyperparameters remained ex-
actly the same in both instances. A summary of the LSTM
model is presented here.

First, the LSTM model ingests data for four dynamic
(i.e. time series) variables, namely minimum and maximum
daily temperature, as well as rainfall and snowfall. For each
streamflow simulation day, a 365 d look-back window of pre-
vious meteorological data is used to allow the LSTM model
to determine the impact of these data on the streamflow for
the simulation day. This block of 365 d× 4 variables is then
passed to four LSTM layers each having 256 units. Results
are concatenated in two branches and then merged with the
static data representing the catchment descriptors. These be-
ing static, they are represented by a vector in which each el-
ement represents a catchment descriptor. The descriptors are
passed into a 128-unit dense layer with a rectified linear unit
(ReLU; Agarap, 2018) activation layer. A series of LSTM
layers and concatenations is then applied to mimic a part of a
residual neural network (ResNET) with residual connections
(He et al., 2016; Sarwinda et al., 2021), where shortcuts exist
between earlier and later layers. This has led to significant
performance gains in other fields, although for applications
with much more data and larger LSTM models. As such, to
the authors’ knowledge, this is the first LSTM-based residual
neural network applied in hydrology. Dropout layers are also
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added throughout the model to increase its robustness and
generalizability, given that it is used as a regional model that
should consider a wide array of catchments and hydrometeo-
rological conditions for application in climate change scenar-
ios. The final layers in the model are a series of dense layers
and activation functions leading to a single output, which is
the estimate of the streamflow for the given inputs.

There are key differences in training the LSTM-based
model compared to the traditional conceptual hydrological
models, particularly in terms of the objective function and the
necessity of incorporating a third period of data. The model
was then trained using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a learning rate that was allowed to
change according to the model validation performance, using
the Reduce Learning Rate on Plateau (or RLRP) algorithm
(Smith and Topin, 2019). To do so, the model compared the
simulated streamflow obtained in training with the observed
streamflow for each catchment. However, it was necessary
to train the LSTM model using data from all catchments at
once to ensure that it could learn the relationships between
meteorological, geophysical, and hydrologic data in a unique
parameterization. Because of this, the objective function is
computed on the observed and simulated flows of all catch-
ments. This required normalizing the observed streamflow
by dividing it by the catchment area for each catchment in
the dataset, ensuring that larger catchments did not outweigh
smaller ones in the objective function value. Then, a vari-
ant of the Nash–Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970) was used as an objective function, which was
modified to weigh the mean square error (MSE) values for
each catchment according to their observed streamflow devi-
ations, as was done by Kratzert et al. (2019b) and repeated
with success on the same 148 catchments as in this present
study in Arsenault et al. (2023). While slightly different than
the objective function used to train the hydrological mod-
els, it was deemed satisfactory for three reasons. First, KGE
is not an option due to the batching mechanism used dur-
ing LSTM training, which would compute variability ratios
on very small samples (256 in our case). Second, since the
LSTM model is trained on all data at once, and the hydro-
logical models are calibrated independently, there needed to
be some adjustments to the objective function. Finally, in do-
ing so, we place the LSTM model at a disadvantage as KGE
metrics are used to assess performance, meaning the concep-
tual hydrological models have a slight advantage, making the
conclusions more conservative.

The optimization was performed using data from 1981–
2002 inclusively (22 years) for training, from 2003 to 2007
inclusively (5 years) for validation, and from 2008 to 2012
(5 years) for testing. This allowed providing sufficient train-
ing data for both the regional and extended LSTM models,
while allowing enough independent data for comparison and
evaluation. It is important to note that the validation period
in deep learning is not the same as the validation period for
conceptual hydrological models. In deep learning, validation

refers to the intermediate evaluation between training epochs
and is used as a stopping criterion for model training; thus, it
is excluded from both the training and the data scaling/nor-
malization processes. When the validation score stops im-
proving or starts deteriorating for a certain number of con-
secutive epochs, the model stops training and returns the ver-
sion with the best validation score. It is then evaluated on
the testing period, which is the same as the validation period
for conceptual hydrological models. Also, only training data
are used for scaling, and then the parameterized scaling func-
tion is applied to other datasets to prevent contamination (i.e.
training or scaling using data that are out of sample). The list
of traditional conceptual lumped and LSTM-based hydrolog-
ical models used in this study is summarized in Table 1.

2.4 Climate change impacts on hydrological
simulations

Two different tests were implemented to evaluate the ability
of the conceptual and LSTM-based hydrological models to
simulate streamflow in conditions that differ from those in
the historical period. The first is a simple sensitivity analysis
in which simple delta factors are applied to historical mete-
orological data. The second uses the more realistic approach
of driving the models with bias-corrected climate model sim-
ulations. Both methods are presented in this section.

2.4.1 Simple climate sensitivity analysis

A key component of the climate change impact assessment
methodology involved conducting a sensitivity analysis to
evaluate the impact of hypothetical changes in key climatic
variables on streamflow within catchments. This method
was designed to evaluate how the conceptual and LSTM
hydrological models react to these simple but significant
changes in meteorological variables. To achieve this, his-
torical weather data over the entire period was modified by
applying predetermined factors to create new datasets that
served as rough estimates of future weather conditions. This
approach enabled directly assessing the sensitivity of the hy-
drological system to specific changes in temperature and pre-
cipitation, irrespective of the complex dynamics captured by
climate models, as will be explored in the next section. Note
that no combination of temperature and precipitation changes
was used in any of the tests.

The sensitivity analysis included four distinct tests. Two
were performed by modifying temperature (i.e. +3 and
+6 °C), reflecting potential increases in daily minimum and
maximum temperatures. These adjustments were based on
the premise that elevated temperatures can significantly im-
pact evapotranspiration rates, snowmelt timing, and ulti-
mately streamflow patterns in catchments. Then, two other
tests focused on precipitation (i.e.+20 % and−20 %), recog-
nizing that climate change could increase or decrease precip-
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Table 1. List of hydrological models used in this study.

Acronym Model type Number of adjustable Calibration
parameters

GR4J_CN Lumped conceptual 6 Local
HMETS Lumped conceptual 21 Local
HSAMI Lumped conceptual 23 Local
MOHYSE Lumped conceptual 10 Local
LSTM-R Deep learning – Regional
LSTM-C Deep learning – Continental

itation rates depending on the catchment locations and thus
alter streamflow peaks and volumes.

2.4.2 Climate models

The second climate change analysis was performed using
GCM climate model data to evaluate the differences between
conceptual lumped and LSTM-based hydrological models
for simulating more complex scenarios than those generated
in the sensitivity analysis.

Climate model data

To drive the hydrological models (both conceptual and the
LSTM models) with future climate data, GCMs were used.
For this purpose, output data from 22 GCMs were down-
loaded from the Coupled Model Intercomparison Project
Phase 6 (CMIP6; Eyring et al., 2016) as shown in Table 2.
Availability of the required data was the only factor during
model selection. This ensured a broad representation of the
current state-of-the-art in climate modelling without any pre-
selection bias. As with the historical period simulations, the
variables required were maximum and minimum temperature
as well as solid and liquid precipitation. This wide array of
climate models plays an important role in capturing the range
of possible future climate conditions, which allows assessing
the robustness of the LSTM-based model compared to the
conceptual hydrological models in various future conditions.

Future climate forcings are those of the Shared Socioeco-
nomic Pathway 8.5 (SSP5-8.5; Gidden et al., 2019), a sce-
nario characterized by high greenhouse gas emissions and
significant global warming. While acknowledging that SSP5-
8.5 represents a pessimistic outlook on future climate change,
this scenario was chosen for its utility in maximizing pro-
jected climatic changes. This approach is strategic, aiming
to reduce the influence of internal climate variability and en-
hance the discernibility of differences between LSTM-based
hydrological simulations and those generated by traditional
hydrological models. The integration of scenarios with more
pronounced changes aligns with the objective to evaluate the
adaptability and predictive power of LSTM models in ex-
treme future conditions.

Climate model data processing

Since it is not possible to calibrate hydrological models or
LSTMs on climate model data directly, the GCM data were
bias-corrected before being used as inputs to the models. The
chosen method, the multivariate bias correction (MBCn) de-
veloped by Cannon (2018), stands out for its efficacy in cor-
recting biases across multiple meteorological variables si-
multaneously. This high-performance correction technique
ensures that climate projections maintain statistical proper-
ties consistent with the reference datasets, thereby enhanc-
ing the reliability of the hydrological assessments. For this
study, the reference data were the same as those used for hy-
drological modelling (i.e. the ERA5 reanalysis data). How-
ever, no downscaling of climate data was performed, a de-
cision underpinned by the spatial scale of our hydrologi-
cal analysis. By aggregating precipitation and temperature
data at the catchment scale, we effectively mitigate potential
mismatches between the coarse resolution of CMIP6 GCM
grids and the finer scales of the catchments. This approach is
deemed sufficient despite a portion of the catchments being
smaller than the typical resolution of CMIP6 models.

Climate model evaluation period

The bias-correction and climate change simulations were
performed on a reference period (1971–2000) and a future
period (2070–2099). This design allows for a direct compar-
ison of climate impacts on hydrology under current and pro-
jected conditions. However, to accommodate the requisite 2-
year warm-up period for the hydrological models, the effec-
tive analysis windows are adjusted to 1973–2000 and 2072–
2099. This adjustment ensures that the conceptual model
states are adequate for accurate simulation, covering 28 years
within each period.

From Fig. 2, it can be seen that the climate model projec-
tions cover a wide range of future conditions, especially in
terms of temperatures (Fig. 2a). CanESM5 (model 3) is the
warmest GCM (median increase of 8.7 °C), while KIOST-
ESM (model 16) is the one with the lowest warming (me-
dian increase of 3.9 °C). For most models, the range of the
increase in temperature for the various catchments is rela-
tively small, with the widest range being that of CanESM5
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Table 2. List of the 22 CMIP6 GCM models used in this study.

Acronym Modelling centre CMIP6 model name Spatial resolution ID number in
(degrees, lat.× long.) figures

BCC Beijing Climate Center, China Meteorological
Administration

BCC-CSM2-MR 1.125× 1.125 1

CAS Chinese Academy of Sciences, Institute of At-
mospheric Physics, China

FGOALS-g3 2.0× 2.25 2

CCMA Canadian Centre for Climate Modelling and
Analysis, Canada

CanESM5 2.8× 2.8 3

CSIRO Commonwealth Scientific and Industrial Re-
search Organization, Australia

ACCESS-ESM1-5 1.125× 1.875 4

EC EC-Earth Consortium, Europe EC-Earth3 0.7× 0.7 5

EC-Earth3-CC 0.7× 0.7 6

EC-Earth3-Veg 0.7× 0.7 7

EC-Earth3-Veg-LR 1.125× 1.125 8

GFDL NOAA Geophysical Fluid Dynamics Labora-
tory, USA

GFDL-CM4 2.0× 2.5 9

GFDL-CM4 1.0× 1.0 10

GFDL-ESM4 1.0× 1.0 11

INM Russian Institute for Numerical Mathematics INM-CM4-8 1.5× 2.0 12

INM-CM5-0 1.5× 2.0 13

IPSL Institut Pierre Simon Laplace, France IPSL-CM6A-LR 1.25× 2.5 14

JAMSTEC JAMSTEC, AORI, NIES, R-CCS, Japan MIROC6 1.4× 1.4 15

KIOST Korea Institute of Ocean Science and Technol-
ogy, South Korea

KIOST-ESM 1.875× 1.875 16

MPI Max Planck Institute for Meteorology, Ger-
many

MPI-ESM1-2-LR 1.875× 1.875 17

MPI-ESM1-2-HR 0.94× 0.94 18

MRI Meteorological Research Institute, Japan MRI-ESM2-0 1.875× 1.875 19

NCC Norwegian Climate Centre, Norway NorESM2-LM 1.875× 2.5 20

NorESM2-MM 0.9375× 1.25 21

NUIST Nanjing University of Information Science and
Technology, China

NESM3 1.875× 1.875 22

(model 3), with approximately 3.9 °C. This indicates that
the temperature variability between models is larger than
the spatial variability within the study domain. In Fig. 2b,
it can be seen that precipitation increases are almost al-
ways projected with median increases from 5.6 % in MPI-
HR (model 18) to 19.9 % for CanESM5 (model 3). For pre-
cipitation, the variability between catchments is higher than
the variability between climate models, at least at the climate
timescale.

2.5 Evaluation metrics used in this study

In this study, in addition to the KGE and NSE metrics used
for model evaluation on the historical period, six streamflow
metrics were selected to provide a general overview of the
hydrological cycle in future climates: annual mean stream-
flow (QMA), winter mean streamflow (QMDJF), spring
mean streamflow (QMMAM), summer mean streamflow
(QMJJA), fall mean streamflow (QMSON), and mean an-
nual maximum streamflow (QMM). The computed metrics
specifically target various aspects of streamflow behaviour.
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Figure 2. Distribution of the climate change signal for all 148 catchments for the 22 GCMs for mean annual temperature change (fu-
ture− reference; a) and mean annual total precipitation ([future− reference]/reference× 100; b). The future period refers to 2072–2099,
while the reference period refers to 1973–2000, inclusively. Each boxplot contains 148 points (i.e. one per catchment).

– The annual metric is used to assess the overall hydro-
logical response on a yearly basis, offering insights into
long-term changes and trends.

– The seasonal metrics are used to show the temporal dis-
tribution of streamflow, allowing for the identification
of shifts in hydrological patterns across different times
of the year.

– The extreme metric is used for the evaluation of ex-
tremes and provides information on potential flooding
conditions, which are important for risk assessment and
adaptation strategies. However, they are also the most
likely to show divergences between methods due to their
de facto rarity in datasets, meaning models have fewer
examples to learn from than more common streamflow
events.

Finally, a third and final general independent metric that was
not used as an objective function for training the conceptual
models and LSTM models was implemented. This metric is
the normalized root mean square error (NRMSE) and is the
RMSE normalized by the range of the streamflows in the
time series. This allows comparing results between water-
sheds despite their size differences. It is computed as follows:

NRMSE=

√
1
n

∑n
i=1

((
qiobs− q

i
sim
)2)

max(qobs)−min(qobs)
, (3)

where qobs and qsim are the observed and simulated flows,
respectively, and n is the number of days of data in the eval-
uation period.

The six streamflow metrics were chosen as they are all re-
liably simulated by all six hydrological models over the ref-
erence period. Low flow and large extremes metrics were not
selected as they are less reliably simulated by the hydrologi-
cal models over the reference period, and, therefore, project-
ing these metrics in the future comes with larger uncertainty.

3 Results and discussion

This section presents the analysis of results and interprets
them within the context of existing literature. We begin with
the results related to model calibration, validation, and test-
ing, followed by an interpretation of the sensitivity analysis
and an assessment of climate-model-based impacts. Finally,
we return to the central question of this paper: which type
of hydrological model is more reliable for climate impact
studies? The concepts of precipitation elasticity of stream-
flow and the use of catchment analogues allow us to further
deepen this reflection.

3.1 Model calibration, validation, and testing

This section presents the validation/testing results for both
the conceptual and LSTM-based hydrological models. First,
Fig. 3 presents various performance metrics over the 5-year
independent testing period (2008–2012): Kling–Gupta effi-
ciency (KGE), Nash–Sutcliffe efficiency (NSE), relative bias
(β), correlation coefficient (r), variance ratio (γ ), and nor-
malized root mean square error (NRMSE). The optimal value
for each metric is as follows: KGE= 1, NSE= 1, β = 0,
r = 1, γ = 1, and NRMSE= 0. Figure S3 in the Supple-
ment presents the results over the calibration (training) pe-
riod (1983–2002) and shows that the LSTM models outper-
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form the traditional models by a very wide margin, particu-
larly for the LSTM-C. Note that the validation period for the
LSTM-based models is not shown as the validation data are
contaminated by the training data and, thus, should not be
investigated.

Figure 3 (testing period) shows that the LSTM-based
models significantly outperform the conceptual hydrologi-
cal models for the KGE and NSE metrics. Results between
the conceptual models are somewhat similar, with GR4J and
HMETS leading the pack and HSAMI not far behind in
third place. MOHYSE, on the other hand, displays the low-
est performance although the median KGE and NSE are still
above 0.7 and 0.5, respectively. The LSTM model variants
display better scores, with the continental model (LSTM-C)
performing better than the regional one. In terms of NSE,
the LSTM-C shows a median value of 0.76, whereas the best
conceptual model obtains a median value of 0.63. The re-
gional LSTM has a value slightly above 0.71 for comparison.
KGE values for the LSTM-C are again significantly better
than those of the nearest contender (LSTM-R, 0.80) or the
best conceptual model (GR4J, 0.77). Overall, these results
indicate that the models were able to simulate streamflow
adequately on the 148 catchments and could be used for the
remainder of this study, save perhaps the MOHYSE model,
whose impacts will be considered in light of these validation
results.

To further investigate the source of the gains made by the
LSTM models for the KGE metric, Fig. 3c to f present the
KGE results for the testing period as decomposed into their
individual elements, i.e. relative bias, correlation coefficient,
and variability ratio, as well as the NRMSE. It can be seen
that the relative bias (Fig. 3c) is similar between models, with
more than 75 % of the modelled catchments having a nega-
tive bias. The LSTM-R model shows a slightly larger neg-
ative bias than the others, and the LSTM-C has the lowest
one. The correlation coefficient, on the other hand, clearly
shows that MOHYSE lost much of its performance due to
its poor correlation coefficient but that both LSTM models
scored much higher than the other models for this metric
(Fig. 3b). LSTM-C had a particularly large correlation coef-
ficient, with a median correlation coefficient of 0.88, higher
than that of the best-performing conceptual model (0.81). In-
terestingly, the variance ratio (Fig. 3e) shows a striking dif-
ference between the conceptual and LSTM-based models.
Indeed, the conceptual models tend to overestimate the vari-
ability (median values larger than 1), and LSTM-based mod-
els tend to underestimate it (median values below 1). In both
cases, the over-/underestimation of the median is approxi-
mately 10 %. This could be related to the objective function
used, as the LSTM training operated on a metric that inher-
ently scaled simulated and observed streamflow by the stan-
dard deviation of the observations during its computation,
lowering its impact. Conceptual models were calibrated in-
dividually using KGE, which has a term specific to variance
and is thus directly considered. However, this should favour

the conceptual models having better (i.e. closer to 1.0) values
of the variance ratios. Finally, the NRMSE (Fig. 3d) shows
a slightly smaller relative error for the LSTM models, es-
pecially the LSTM-C model. However, differences are not
as striking as for correlation or variance ratio. In summary,
compared to the traditional hydrological models, the LSTM
models have similar bias and slightly lower variability but a
much stronger correlation, which suggests a better stream-
flow timing performance.

In evaluating the six hydrological models, the testing pe-
riod (equivalent to the validation period for traditional hy-
drological models) serves as a common independent period
for model intercomparison (refer to Fig. 3). Results indicate
that LSTM models, particularly LSTM-C, significantly out-
perform traditional models, as highlighted in recent state-of-
the-art papers on LSTM (e.g. Arsenault et al., 2023; Kratzert
et al., 2019a; Li et al., 2022), provided they are calibrated
with a sufficiently large sample of catchments (Kratzert et
al., 2024).

The training period performance of LSTM models, espe-
cially LSTM-C, should not be overly emphasized, impressive
though it may be. The numerous parameters in LSTM mod-
els can and will lead to overfitting if left unchecked. From
Fig. S3, it is evident that LSTM training period performance
surpasses that of conceptual models. LSTM training scores,
such as NSE and KGE, benefit from much better correlation,
though variance ratios are slightly lower compared to those
of hydrological models, which almost exactly match the lev-
els of variance. There is a broader spread of bias for LSTM,
albeit centred at 0. Nonetheless, LSTM models also demon-
strate superior performance during the independent testing
period, indicating no overfitting despite having many more
parameters than traditional hydrological models. LSTM-C,
benefiting from data from 1000 additional donor catchments,
shows enhanced performance even when tested on the inde-
pendent period. This indicates the model’s ability to leverage
additional training catchment data effectively. It underscores
the necessity for a large sample size in training to maximize
the potential of LSTM models (Kratzert et al., 2024).

LSTMs also excel in utilizing more diverse data types (me-
teorological and others) than traditional hydrological mod-
els. The hydrological models used in this study cannot take
advantage of any catchment descriptors, for example. More
physically based models could in theory make use of such
data. The LSTM implementations discussed in this paper,
which only use daily minimum and maximum temperatures,
rain, and snow besides the catchment descriptors, represent a
fraction of their full potential. Incorporating additional vari-
ables would likely improve performance further, albeit at the
cost of a decrease in interpretability, increased training re-
sources, and the need for a more flexible model structure with
additional nodes to maximize the potential of the added data.
This could also enhance the robustness of LSTM models to
climate change by constraining outputs more effectively.
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Figure 3. Kling–Gupta efficiency (KGE; a), Nash–Sutcliffe efficiency (NSE; b), relative bias (β; c), correlation coefficient (r; d), variance
ratio (γ ; e), and normalized root mean square error (NRMSE; f) metrics over the independent 5-year testing period (2008–2012).

However, the complexity of implementing more advanced
LSTM models means that all sources of information must
also be available for all future time horizons. For instance,
employing remote sensing observations (e.g. satellite data) as
inputs to LSTM models would likely further improve stream-
flow simulations for the current period, but such data are not
available for future climate change scenarios.

Finally, it should be recognized that not all hydrological
models should be considered equal in the interpretation of
results. It is quite clear that the continental LSTM model
(LSTM-C) clearly outperforms its regional counterpart, from

a theoretical and practical point of view. Similarly, the MO-
HYSE hydrological model is clearly the worst traditional
model in this study, from both a performance point of view
and based on its simple fully parameterized model structure.

3.2 Sensitivity analysis interpretation

The sensitivity analysis conducted in this study serves
as a preliminary approximation, focusing on the expected
changes in precipitation and temperature as predicted by
GCMs. When looking at Fig. 2, it can be seen that most
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GCMs’ median projected precipitation increase is in the 15 %
to 20 % precipitation range, which supports the use of the
+20 % scenario. Although the −20 % scenario may not ap-
pear realistic over the study area, its use enhances the overall
understanding of the model limitations. This approach en-
abled assessing how the models would react to reductions
in precipitation and thus gain deeper insights into their per-
formance in climate change studies. It is also worthwhile to
stress that Fig. 2 presents mean projected changes at the an-
nual scale. At the seasonal scale, many GCMs project impor-
tant decreases in precipitation for certain seasons.

Most median temperature projections among the GCMs
ranged between 5 and 8 °C increases, hence the choice of
+6 °C. These projections are all from the SSP5-8.5 scenario,
which is increasingly seen by many as an overly pessimistic
scenario (e.g. Hausfather and Peters, 2020).

Figure 4 shows the expected changes for mean annual
streamflow (QMA) for the four sensitivity cases. Results for
the five other metrics (QMDJF, QMMAM, QMJJA, QM-
SON, and QMM) are presented in the Supplement, Figs. S4–
S8. In all four scenarios, the four conceptual models behave
in a similar way, with small differences depending on the
model structure and scenario. However, some divergence is
observed in the response of traditional versus LSTM-based
models.

The most notable difference is a systematic lower sensitiv-
ity of LSTM models to changes in precipitation. When pre-
cipitation is altered by adding or subtracting 20 %, the LSTM
models generally show smaller changes for all six metrics
(Figs. 4 and S4 to S8). The median mean annual stream-
flow change for a 20 % increase in precipitation is 31.1 %
for LSTM-C compared to 35.5 % (GR4J), 34.3 % (HMETS),
33.1 % (HSAMI), and 31.1 % for MOHYSE, with a me-
dian average of 33.5 %. The lower sensitivity to precipitation
is particularly striking in the spring (Fig. S5) and summer
months (Fig. S6), especially for LSTM-C. On the other hand,
LSTM models show a larger sensitivity in the winter months
(Fig. S4). The LSTM models may incorporate a more nu-
anced understanding of the hydrological balance compared
to the conceptual models, whose change in streamflow is
larger than that of the LSTM models for the same variation
in precipitation. However, although the results of the LSTM
models are different from those of the conceptual models, it
is still unclear which of these are more representative of real-
world impacts of climate change.

The differences are more nuanced for the temperature in-
creases. For QMA (Fig. 4a and b), LSTM-R and LSTM-C
are, respectively, more and less sensitive than the four tradi-
tional models for the +3 and +6 °C scenarios. The seasonal
sensitivity shows a different pattern, with the LSTM mod-
els less sensitive to temperature during spring (Fig. S5) and
summer (Fig. S6) but significantly more sensitive during fall
(Fig. S7). The LSTM models are also less sensitive to tem-
perature for the QMM metric (Fig. S8). Despite some vari-
ability between the different streamflow metrics and across

seasons, LSTM models show a different climate sensitiv-
ity than that of traditional hydrological models. They are
less sensitive to precipitation changes across all metrics. The
best-performing LSTM-C model also shows decreased sen-
sitivity to temperature compared to the four traditional hy-
drological models, with the exception of fall (SON) flows.
LSTM-R’s increased sensitivity to temperature at the annual
scale (Fig. 4) is largely the result of its very large sensitivity
for the fall (SON) season (Fig. S7). Its sensitivity tracks that
of LSTM-C for the other seasons.

Overall, the LSTM models (and particularly the LSTM-C)
exhibit a lower sensitivity to a changing climate compared to
the traditional hydrological models. This would suggest that
climate change estimates using the traditional hydrological
models may be larger than those projected by LSTM models,
at least for the streamflow metrics used in this study.

By independently altering each variable – precipitation
and temperature – we were able to quantify the impact of
each change, thus avoiding the complication of introducing
confounding factors, which is the case when solely relying
on GCM simulations for this analysis. This approach pro-
vides a clearer understanding of how changes in these vari-
ables could impact streamflow, an essential factor in climate
change impact assessments. Compared to the hydrological
models used in this study, our results show that LSTM mod-
els have a lower sensitivity to a changing climate, particularly
with respect to precipitation. These observations are useful
in the interpretation of streamflow projections obtained from
GCM-derived climate scenarios.

3.3 Climate-model-based impact assessment

The sensitivity analysis provided some insights about the tra-
ditional and LSTM hydrological model sensitivity to temper-
ature increase and precipitation changes. From Fig. 2, it ap-
pears that the SSP5-8.5 scenario corresponds more closely to
a combination of the +6 °C and +20 % precipitation sensi-
tivity scenarios. Figure 2 shows that median temperature in-
creases range from +4 to +8.5 °C and from +4 % to +20 %
for precipitation. Based on this, the +6 °C and +20 % sensi-
tivity scenarios are more realistic with respect to the SSP5-
8.5 scenario than the +3 °C and −20 % ones. Figure 2 also
shows that the warmest models also tend to be the wettest,
which follows the fundamental principles of atmospheric
physics and thermodynamics, with increased evaporation and
convection in a warmer climate. The simple sensitivity sce-
narios did not alter the annual cycles of precipitation and
temperature, whereas GCM-derived scenarios present more
realistic but also more complex future projections.

Figure 5 presents combined projected changes for all
six streamflow metrics and six hydrological models. Each
boxplot represents the distribution of 3256 values, 1 for each
combination of 148 catchments and 22 GCMs. Results show
that LSTM models tend once again to behave differently than
the four traditional hydrological models and in a manner con-
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Figure 4. Projected mean annual streamflow (QMA) changes for the four sensitivity scenarios: temperature increase of +3 °C (a) and +6 °C
(b) and precipitation relative change of −20 % (c) and +20 % (d).

sistent with some of the observations made from the simple
sensitivity studies. In particular, we can note the following
features:

– For mean annual streamflow (QMA), the LSTM models
project future changes similar to that of the traditional
models. There are, however, significant changes at the
seasonal scale.

– LSTM models project smaller flow decreases in winter
(DJF), spring (MAM), and summer (JJA) compared to
the traditional hydrological models.

– LSTM models project much larger streamflow de-
creases during the fall (SON).

A Wilcoxon signed-rank test was used to test for statistical
differences between the LSTM-based models and the con-
ceptual hydrological models. LSTM-based models are statis-
tically different than all other models in all cases except the
following:

– Fig. 5a (QMA) – LSTM-R is not statistically different
from HSAMI and LSTM-C is not statistically different
from GR4J;

– Fig. 5e (QMJJA) – LSTM-R and LSTM-C are not sta-
tistically different from HSAMI.

One objective of this study is to look at the climate sen-
sitivity of hydrological models, which is how their future
streamflow response depends on forcing-induced changes in
climate variables at (for precipitation) or near (2 m height
for air temperature) the surface. In order to do so, we have
looked at the differential response of all six hydrological
models to the following combinations of six contrasted cli-
mate models: (1) hot vs. cold, (2) high vs. low precipita-
tion scaling, and (3) wet vs. dry models. Precipitation scal-
ing evaluates the sensitivity of precipitation change to an in-
crease to temperature. Here, precipitation scaling is simply
the increase percent (%) in mean annual precipitation di-
vided by the mean annual temperature increase. The median
changes between both pairs of three climate models are out-
lined below.

1. Hot vs. cold climate models.

– The three hottest models are CanESM5 (model 3:
+8.75 °C), IPSL (model 14: +7.90 °C), and EC-
Earth3 (model 5: +7.55 °C).
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Figure 5. Boxplots of the range of expected change for all six streamflow metrics. The boxplots are aggregations of the 22 GCMs and
148 catchments. The boxplots are thus drawn from a distribution of 3246 points (148 catchments× 22 GCMs). Note that the y-axis range is
different in panel (c) than the others due to the much larger values for this period.

– The three coldest models are KIOST-ESM (model
16: +3.88 °C), INM-CM4-8 (model 12: +4.76 °C),
and FGOALS-g3 (model 2: +4.80 °C).

2. Highest vs. lowest precipitation scaling climate models.

– The three highest scaling models are FGOALS-
g3 (model 2: +3.65 % °C−1), KIOST-ESM (model
16: +3.28 % °C−1), and MRI-ESM2-0 (model 19:
+3.12 % °C−1).

– The three lowest scaling models are MPI-ESM1-
2-LR (model 17: +1.00 % °C−1), BCC-CSM2-
MR (+1.5 % °C−1), and NESM3 (model 20:
+1.62 % °C−1).

3. Wet vs. dry climate models.

– The three wettest models are EC-Earth3-Veg
(model 7: +19.9 %), CanESM5 (model 3:
+19.4 %), and FGOALS-g3 (model 2: +17.5 %).
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– The three driest models are MPI-ESM1-2-LR
(model 17: +5.6 %), BCC-CSM2-MR (model 1:
+9.3 %), and NESM3 (model 20: +10.7 %).

The results are presented in Fig. 6 for mean annual stream-
flow (QMA). Figure 6 shows the changes (in percentage) be-
tween both contrasted groups for all six hydrological models.
For example, for the hot vs. cold model test, a value of−10 %
indicates that mean annual streamflow is 10 % smaller for the
three hottest models compared to the three coldest ones (cor-
responding, for example, to a 5 % increase for the hot mod-
els and a 15 % increase for the cold ones). Each boxplot of
Fig. 6 is therefore made of 148× 3 values, corresponding to
the number of catchments and climate models. The median
results are shown in Table 3.

Results do not show large differences in terms of annual
climate sensitivity. This applies both to the traditional hydro-
logical model group and when comparing the LSTM models
to the traditional ones. The LSTM models show a larger sen-
sitivity to temperature and precipitation scaling (Fig. 6a and
b). The differences are less striking than for the sensitivity
analysis, and this is likely because hot models also tend to be
wet as discussed above.

This analysis, based on climate model projections, inte-
grates the temporal dynamics between variables, compared
to sensitivity analysis, which preserves the historical tim-
ing of events. This more complete picture provides details
on transformations in hydrological indicators under climate
change and allows for comparing the conceptual and LSTM-
based models under these conditions.

The analysis showed that the results were generally con-
sistent with those of the sensitivity analysis but were not
as contrasted, likely due to the combination of precipitation
and temperature changes that tend to compensate for one an-
other in the LSTM models. An important objective of this
paper was to investigate the climate sensitivity of hydrolog-
ical models. The climate sensitivity of traditional hydrolog-
ical models mostly comes from model structure and com-
plexity but also from parametric uncertainty. The four tradi-
tional hydrological models share similar structures, all being
lumped conceptual models. Within that group, model com-
plexity varied significantly, especially with respect to snow
and evapotranspiration models, ranging from extremely sim-
ple parametric formulas (MOHYSE) to more complex for-
mulations such as the HMETS snow model. Based on these
considerations, it was perhaps surprising to observe that cli-
mate sensitivity was relatively similar across all six hydro-
logical models. The LSTM models did show a larger sensitiv-
ity to temperature in the hot/cold model experiment. LSTM
models also showed a larger sensitivity to high vs. low pre-
cipitation scaling but not when looking at the wet/dry model
experiment. All four traditional hydrological models were
similar in their climate sensitivity, and even the simple MO-
HYSE model was not an outlier for the six streamflow met-
rics considered, which tends to demonstrate the robustness

Figure 6. Boxplots of percent (%) change between two groups of
three contrasted climate models: (a) hot vs. cold models, (b) high
vs. low precipitation scaling models, and (c) wet vs. dry models.
The boxplots are drawn from a distribution of 444 points (148 catch-
ments× 3 climate models).
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Table 3. Median results from Fig. 6, indicating percent (%) change between two groups of three contrasted climate models.

GR4J HMETS HSAMI MOHYSE LSTM-R LSTM-C Average traditional Average LSTMs

Hot/cold −4.7 −1.3 +2.1 −4.0 −0.9 −2.0 −1.97 −0.5
High/low +14.6 +10.5 +13.9 +9.5 +13.4 +15.3 +12.14 +14.3
Wet/dry +15.5 +14.6 +17.4 +10.2 +17.9 +18.8 +14.44 +18.3

of the results. It is important to note that the climate sensi-
tivity experiment only looked at the mean annual streamflow
metric. No effort was made to sideline some of the climate
models that have high climate sensitivity, also known as hot
models (e.g. Hausfather et al., 2022; Kreienkamp et al., 2020;
Rahimpour Asenjan et al., 2023).

3.4 The main question: which type of hydrological
model should we trust more for climate change
impact studies?

This is ultimately the most important question but also the
most difficult one to answer. Since there are no future stream-
flow data available, we are mostly left with theoretical argu-
ments. One way to navigate this issue is simply to state that
these LSTM models should be included in multi-model en-
sembles to better assess modelling uncertainty (e.g. Dams
et al., 2015; Najafi and Moradkhani, 2015). However, many
studies suggest that we should have more confidence in hy-
drological models that yield better results in the histori-
cal period, as they are better at representing processes (e.g.
Krysanova et al., 2018), which leads back to the initial ques-
tion: which type of model should we trust more? Based on
this sole consideration, LSTM methods should be favoured.
Nonetheless, no matter how appealing the argument, relying
solely on model performance over the historical record falls
short in a few aspects. The concept of the death of stationar-
ity (e.g. Galloway, 2011; Milly et al., 2008) tells us that past
hydrological behaviour is not a reliable indicator of future
conditions, meaning that a model calibrated solely on histor-
ical data might not accurately capture future dynamics. As
discussed above, all hydrological models are somewhat pa-
rameterized, even the most physically based ones, and there
is no guarantee that the climate sensitivity of these parame-
terizations is adequate.

The observation that all six hydrological models display
an overall somewhat similar climate sensitivity is perhaps
comforting, for example, by telling us that all existing cli-
mate change impact studies are not obsolete, but also per-
haps premature, as our analysis did not examine this in much
detail, and, clearly, a more detailed seasonal analysis look-
ing at more streamflow metrics is warranted. Still, there is
an argument to be made that the continental LSTM-C model
is the best fit for climate change studies. The inclusion of
1000 additional catchments, mostly located in a warmer cli-
mate, indicates that LSTM-C should have, at the very least, a

theoretical advantage over single-catchment or local models.
It has learned the complex relationship between climate vari-
ables and streamflow, not only over the study domain but also
from 1000 catchments, many of which are representative of,
and even warmer than, the expected end-of-century climate
over the study domain. Other types of hydrological mod-
els (regional, distributed, and more physically based mod-
els) can also make use of some aspects of this trove of data
(more catchments, more meteorological variables), but they
still face the problem of stationarity: model parameters are
still fixed in time, and thus the model cannot account for non-
stationarity in the same way the LSTM models can. LSTM
models are particularly fit at capturing the complex, non-
linear climate interactions leading to streamflow due to this
large-scale training and exposure to various climates. They
may, therefore, be better at capturing the temporal dynam-
ics of hydrological processes and their sensitivity to long-
term changes in climate patterns. However, the LSTM model
process representation is quite challenging and obfuscated,
meaning it cannot easily be probed directly to assess how
the hydrological cycle is modelled. This is a limitation, as
it is currently very difficult or nearly impossible (depending
on the model complexity) to assess this in an LSTM-based
model, which means it requires more blind trust than con-
ceptual models.

When it comes to extreme or rare events, it is likely that
the training dataset contains too few of these events, lead-
ing to more doubtful performance compared to conceptual
models. In such cases, traditional hydrological models may
still be better, despite other weaknesses. For example, the pa-
rameter sets of conceptual hydrological models are fixed dur-
ing the calibration period with the hypothesis that these are
constant over time (e.g. seasonally). However, this has been
shown to be inaccurate (e.g. Kim et al., 2015; Mendoza et al.,
2015; Bérubé et al., 2022), and LSTM-based models are not
constrained to these same processes and can learn to modify
streamflow patterns according to hydrometeorological con-
ditions through their immense number of internal weights.
Nonetheless, beyond theoretical arguments, there are ways
to practically investigate hydrological model fitness. Several
authors (e.g. Bérubé et al., 2022; Krysanova et al., 2018;
Roudier et al., 2016; Todorović et al., 2022) have suggested
approaches using historical data to assess hydrological model
fitness for climate change impact studies. While these ap-
proaches offer interesting insights, hydrological variability
over the recent historical record remains small compared to
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expected changes by the end of this century (Bérubé et al.,
2022), and it is therefore extremely difficult to assess the true
sensitivity of hydrological models to climate change simply
using historical data. We therefore looked at two different
ways of assessing hydrological model sensitivity: precipita-
tion elasticity of streamflow and climate analogues.

3.5 Precipitation elasticity of streamflow

One metric that can be used to assess the sensitivity of
streamflow to precipitation is the precipitation elasticity of
streamflow index, which is defined here as the change in
mean annual streamflow divided by the change in mean an-
nual precipitation. For example, an elasticity of 0.5 means
that for every change of 1 % in precipitation, streamflow re-
sponds with a change in the same direction of only 0.5 %
(Schaake, 1990). Precipitation elasticity is not easily com-
puted, but in the case of our +20 % precipitation increase
sensitivity scenario, it is easy to do since only precipitation
is changed (temperature is constant), and we do not have to
account for co-dependencies between precipitation, temper-
ature, and streamflow. Results in Fig. 4c and d showed sig-
nificant disparities in how both types of hydrological mod-
els (conceptual and LSTM-based) handled changes in pre-
cipitation volumes. Figure 7 shows the spatial distribution of
precipitation elasticity for all tested models (traditional and
LSTM-based). It can be seen that precipitation elasticity is
smaller for both LSTM models (median values of 1.51 and
1.55 for LSTM-R and LSTM-C) compared to values of 1.77,
1.72, and 1.65 for the three best traditional hydrological mod-
els (GR4J, HMETS, and HSAMI, respectively). The simplest
model (MOHYSE) is more in line with the LSTM estimates.

Precipitation elasticity can be used as a metric to assess
how each model type compares to values obtained from the
literature (Maharjan et al., 2022). This analysis has one major
caveat in that it considers the same temporal pattern of pre-
cipitation but with modified amplitude. This is a simplistic
representation of the precipitation drivers and processes, but,
nonetheless, it allows comparing the obtained values to es-
tablished precipitation elasticity of streamflow values in the
literature to validate plausible ranges.

Chiew et al. (2006) provide an estimate of precipitation
elasticity of streamflow for catchments throughout the world,
using the median elasticity of all available years of data for
a set of over 500 catchments worldwide. Overall, their study
shows that elasticity values ranging between 1.0 and 3.0 are
reasonable, with values below 2.0 being more representative
of colder, higher-latitude catchments such as those in this
study. Twenty catchments of Chiew’s (2006) study are within
our study zone, and all but one (95 %) have precipitation elas-
ticity below 2, compared to 76 %, 82 %, and 83 % for GR4J,
HMETS, and HSAMI, respectively, compared to 89 % and
92 % for LSTM-R and LSTM-C. In addition, 75 % of Chiew
et al. catchments have values below 1.5. This compares to
7 %, 16 %, and 23 % for GR4J, HMETS, and HSAMI, re-

spectively, and 48 % and 37 % for both LSTM models. Our
estimates are slightly larger than that of Chiew et al. (2006),
but both LSTM models provide the ones that are closest.
Sankarasubramanian et al. (2001) also provided estimates in
a large-sample US study. Their estimates are smaller than
that of Chiew et al., but they used a different methodology
that underestimates values for catchments with significant
snowfall, which is the case for most catchments within our
study domain. This shows that estimating precipitation elas-
ticity is not a straightforward task. Zhang et al. (2022) recom-
mend using decadal time steps to assess the elasticity, which
is more in line with what was performed in this study. Over-
all, the precipitation elasticity values obtained in this study
are lower for LSTM models and are consistent with the lower
sensitivity to precipitation observed earlier. Our estimates are
slightly larger than that of the literature but are much closer
for the LSTM models.

3.6 Catchment analogues

One additional way to quantitatively assess the climate
change fitness of hydrological models is to examine how the
six hydrological models perform on analogue catchments.
This was done for all of the 148 target catchments and for
all 22 GCM future climate scenarios. In all cases (for each
single catchment and each given climate model), we look
for catchments within the 1000-donor group that had simi-
lar annual precipitation and temperature cycles to that of the
target catchment in the future. The best 10 analogues out of
1000 were selected, based on Euclidean vectors composed
of the following values: mean annual temperature, mean an-
nual precipitation, catchment areas, 12 monthly mean tem-
peratures, and 12 monthly mean total precipitations. Equal
weighing was used for each of those 27 values in order to
find the best analogues. It was decided not to use any phys-
ical catchment descriptors (e.g. land cover) as this would
likely favour the LSTM models, which can make explicit
use of such descriptors. The future streamflow computed by
each hydrological model over the target catchment was then
compared to the mean streamflow of all 10 chosen analogues
over the reference period. All streamflow hydrographs were
normalized to a unit area to account for catchment size mis-
match. Figure 8 shows typical results from this procedure.
It shows the annual mean hydrographs for all six hydrologi-
cal models for catchment 140 and climate model 16, super-
imposed on the envelope of mean streamflow hydrographs
from the 10 closest analogues. It also shows the target catch-
ment location (red circle) as well as the 10 closest analogues
(blue circles). Figure 8 shows that there is a large disparity in
performance among hydrological models, especially in the
spring and fall.

In order to extend the analysis of Fig. 8 to all catchments
and provide a more quantitative assessment, the root mean
square difference between the normalized annual streamflow
hydrograph (NRMSE) of each hydrological model and the
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Figure 7. Rainfall elasticity for each of the 148 catchments as evaluated by the six hydrological models.

Figure 8. (a) Mean annual streamflow hydrographs for catchment 140 projected by climate model 16. The hydrographs are superimposed
over the shaded area of the 10 closest analogue catchments from the 1000-donor population. (b) Location of target catchment (red circle)
and the 10 closest analogues (blue circles).

mean of the 10 analogues was computed for all catchments
and all climate models, for a total of 3256 test cases (148 tar-
get catchments× 22 climate model projections). The results
are shown in Fig. 9. The results show that LSTM-C provides
on average the best streamflow estimates for the analogues,
having a statistically significant lower median NRMSE than
all other models. LSTM-R is second best. Amongst the four
traditional hydrological models, GR4J performs the best al-

though differences are small. Figure S7 decomposes the re-
sults of Fig. 9 into the four seasons for a more detailed
picture. It shows that LSTM-C’s better performance comes
mostly from the winter and spring seasons.

Figured S8 presents annual results (same as Fig. 9) for
all 22 GCMs separately. They show that the conclusions are
quite consistent across all GCMs, although the advantage
of both LSTM models varies depending on the considered
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Figure 9. NRMSE difference between the annual mean hydrograph
and the mean of the 10 closest analogue catchments out of the 1000-
donor population. The boxplots are drawn from the 148 NRMSE
values, 1 for each catchment. Each catchment value represents the
average across all 22 GCMs. Seasonal performance is presented in
Fig. S7.

GCM. A peculiar observation is that both LSTM models per-
form worst for GCMs 12 and 13, which are two versions of
the same GCM (INM4.8 and INM5.0). A deep look at the
climate projections of the INM GCM over the study domain
would probably show that it likely projects outlier climate
projections amongst our chosen 22-member GCM ensemble.
Like all analogue approaches, success depends on the ability
of finding proper analogues. Nonetheless, results show that
both LSTM approaches are consistently better at matching
observed mean annual streamflows for the chosen analogues.
The differences are not large but are statistically significant.

As mentioned above, the NRMSE differences shown in
Figs. 9, S7, and S8 are relatively small for each of the
3256 test cases. Each of the six hydrological models was
ranked from 1 (smallest root mean square error; RMSE) to 6
(largest). Figure 10 presents the ranking results. Results are
similar to that of Fig. 9 but with larger separation between the
boxes. This emphasizes the consistency of LSTM-C at being
the best hydrological model for the analogue catchments due
to the somewhat relatively small RMSEs.

The analogue approach, as used in this study, faces several
limitations. It is based solely on precipitation, temperature,
and area, without considering other variables. This limitation
makes it difficult to find perfect analogues for the study ar-
eas. Even small differences in precipitation and temperature,
which might seem negligible when selecting analogues, can
lead to significant differences in streamflow. Despite these
limitations, the approach conclusively demonstrates that hy-
drological models exhibit significant differences in their abil-

Figure 10. Average performance ranking from 1 (best) to 6 (worst)
of six hydrological models at reproducing the mean streamflow hy-
drograph from the 10 best analogues out of the 1000 donor catch-
ments. The boxplots are made of 148 values (1 for each catchment)
and represent the mean ranking across the 22 GCMs.

ity to generate streamflow on analogue catchments and that
the continental LSTM appears best-fitted for climate change
impact studies.

4 Conclusion

This study compared four traditional hydrological models
against two LSTM-based models across a domain of 148
catchments, focusing on projecting future streamflow. One
LSTM model (LSTM-R) was trained exclusively on the
study domain, while the other (LSTM-C) included 1000 ad-
ditional catchments from a broader range of climate zones.
The climate sensitivity of all six models was evaluated using
four simple climate change scenarios (+3, +6 °C, −20 %,
and+20 % precipitation change) and 22 CMIP6 climate pro-
jections under the SSP5-8.5 scenario.

The first objective of this paper was to assess the per-
formance of LSTM-based hydrological models in climate
change impact studies. Results showed that both LSTM mod-
els clearly outperformed the four traditional hydrological
models during the reference testing periods. Annual-scale
streamflow projections from the LSTM models were rela-
tively similar to those of the traditional models, demonstrat-
ing that LSTM models can be effectively used for hydrolog-
ical impact studies and provide realistic streamflow projec-
tions.

The second objective was to compare future streamflow
projections from the LSTM models with those obtained from
conventional hydrological models, aiming to identify differ-
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ences across various streamflow metrics and multiple catch-
ments. Despite similarities between all models at the annual
scale, there were notable differences at the seasonal scale be-
tween the four traditional models and the two LSTM models.
In most cases, the differences between the two model classes
(traditional vs. LSTM) were larger than those within mod-
els of the same class, indicating that LSTM models differ in
climate sensitivity compared to traditional hydrological mod-
els.

The third and final objective of the paper was to explore
the climate sensitivity of both model classes in greater de-
tail. Results showed that LSTM models exhibited reduced
sensitivity to precipitation changes compared to traditional
models, and this reduced sensitivity was consistent across all
streamflow metrics and seasons. LSTM models also showed
slightly reduced sensitivity to temperature changes at the an-
nual scale, with variability depending on the metric and sea-
son. For example, for mean flows, the LSTM models pro-
jected smaller changes in winter, spring, and summer stream-
flow but much larger decreases in fall. Overall, the results
suggest that traditional hydrological models exhibit greater
climate sensitivity than LSTM models and may overestimate
future streamflow changes, at least for the streamflow metrics
considered in this study.

From a theoretical perspective, LSTM models, particularly
LSTM-C, appear to be the most suitable. LSTM-C outper-
formed all other models during the reference period, a widely
considered critical factor for climate change studies. Addi-
tionally, LSTM-C was trained on a larger dataset of catch-
ments from diverse climate zones, ensuring sufficient climate
information to remain in interpolation mode, even under ex-
treme future climate scenarios. In contrast, all other hydro-
logical models, especially the traditional ones, operate in ex-
trapolation mode for climate change studies, relying on cli-
matic inputs not encountered during their calibration or train-
ing periods.

The theoretical advantage of LSTM models was further
quantified by demonstrating that the rainfall elasticity ob-
tained from both LSTM models was lower than that of tra-
ditional hydrological models (consistent with the observed
reduced sensitivity to precipitation). More importantly, these
elasticity values aligned with estimates from other studies
conducted over the same study domain. Furthermore, both
LSTM models consistently outperformed traditional models
in predicting streamflow for analogue catchments approx-
imating future climate conditions of the 148 target catch-
ments.

Our findings strongly support the use of LSTM models for
hydrological climate change studies. Transitioning to LSTM
models, however, requires careful consideration of their data
requirements, their computational complexity, and the inter-
pretability of their projections. This highlights the need for
ongoing research and methodological advancements in hy-
drological modelling within the context of climate change.
Nevertheless, the role of traditional hydrological models in

climate change studies is far from obsolete. While LSTM-
based models appear better suited for such studies, the fu-
ture streamflow projections from both model types were of-
ten similar, and the quantitative advantages of LSTM models
over the best-performing traditional model were sometimes
modest.

Further research is essential to fully explore the potential
benefits of LSTM-based models, particularly for catchments
in different climate zones and their effects on streamflow
extremes, which are critical for many adaptation strategies.
Additionally, process-based hydrological models should be
given more consideration, as they may, at least theoretically,
be better suited to climate change impact studies than the
simpler models used in this study.

Finally, the potential impacts of climate change extend be-
yond the six streamflow metrics analysed here. Future re-
search should consider annual and seasonal extremes, as well
as changes in seasonal and interannual variability, which are
hallmarks of a changing climate.
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