Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-1061-2025
https://doi.org/10.5194/hess-29-1061-2025
Research article
 | Highlight paper
 | 
27 Feb 2025
Research article | Highlight paper |  | 27 Feb 2025

CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland

Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson

Related authors

On the added value of sequential deep learning for the upscaling of evapotranspiration
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Hamdi, and Martin Jung
Biogeosciences, 22, 3965–3987, https://doi.org/10.5194/bg-22-3965-2025,https://doi.org/10.5194/bg-22-3965-2025, 2025
Short summary
H2CM (v1.0): hybrid modeling of global water–carbon cycles constrained by atmospheric and land observations
Zavud Baghirov, Markus Reichstein, Basil Kraft, Bernhard Ahrens, Marco Körner, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3123,https://doi.org/10.5194/egusphere-2025-3123, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
Constraining biospheric carbon dioxide fluxes by combined top-down and bottom-up approaches
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024,https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023,https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary

Cited articles

Addor, N. and Melsen, L. A.: Legacy, rather than adequacy, drives the selection of hydrological models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: a next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '19, Association for Computing Machinery, New York, NY, USA, 4–8 August 2019, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Amari, S.-i.: Backpropagation and stochastic gradient descent method, Neurocomputing, 5, 185–196, https://doi.org/10.1016/0925-2312(93)90006-O, 1993. a
Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., et al.: Intergovernmental Panel on Climate Change (IPCC). Technical summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 33–144, https://doi.org/10.1017/9781009157896.002, 2023. a, b
Download
Executive editor
This study integrates deep learning techniques into hydrological modelling to reconstruct runoff data. The extended reconstruction of runoff spanning over six decades (1962-2023) provides an unprecedented data basis to study long-term runoff patterns and trends in Switzerland. The findings spotlight a shift towards less frequent wet years and more frequent dry conditions in Switzerland. This insight is also relevant given the current situation of extreme droughts and floods in Europe.
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Share