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Abstract. This study presents a data-driven reconstruction
of daily runoff that covers the entirety of Switzerland over
an extensive period from 1962 to 2023. To this end, we har-
ness the capabilities of deep-learning-based models to learn
complex runoff-generating processes directly from obser-
vations, thereby facilitating efficient large-scale simulation
of runoff rates at ungauged locations. We test two sequen-
tial deep-learning architectures: a long short-term memory
(LSTM) model, which is a recurrent neural network able
to learn complex temporal features from sequences, and a
convolution-based model, which learns temporal dependen-
cies via 1D convolutions in the time domain. The models re-
ceive temperature, precipitation, and static catchment prop-
erties as input. By driving the resulting model with gridded
temperature and precipitation data available since the 1960s,
we provide a spatiotemporally continuous reconstruction of
runoff. The efficacy of the developed model is thoroughly
assessed through spatiotemporal cross-validation and com-
pared against a distributed hydrological model used opera-
tionally in Switzerland.

The developed data-driven model demonstrates not only
competitive performance, but also notable improvements
over traditional hydrological modeling in replicating daily
runoff patterns, capturing interannual variability, and dis-
cerning long-term trends. The resulting long-term recon-
struction of runoff is subsequently used to delineate sub-
stantial shifts in Swiss water resources throughout the past
decades. These are characterized by an increased occurrence
of dry years, contributing to a negative decadal trend in

runoff, particularly during the summer months. These in-
sights are pivotal for the understanding and management of
water resources, particularly in the context of climate change
and environmental conservation. The reconstruction product
is made available online.

Furthermore, the low data requirements and computational
efficiency of our model pave the way for simulating diverse
scenarios and conducting comprehensive climate attribution
studies. This represents a substantial progression in the field,
allowing for the analysis of thousands of scenarios in a time
frame significantly shorter than those of traditional methods.

1 Introduction

Hydrological modeling and runoff prediction are critical for
understanding and managing water resources, particularly in
the face of climate change and increasing human impacts on
the environment (Seneviratne et al., 2021; Arias et al., 2023).
In Switzerland, a country characterized by diverse topog-
raphy and climatic conditions, understanding and predict-
ing runoff patterns is essential for effective water manage-
ment, flood control, and environmental conservation (Brun-
ner et al., 2019a).

Traditional hydrological models offer pivotal insights
into land surface processes. For Switzerland, a diverse ar-
ray of hydrological models has been employed (Horton
et al., 2022), ranging from complex ones, which are heav-
ily founded on physical principles, to lightweight ones using
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conceptual process representations with calibrated parame-
ters. While the former offer detailed insights and control,
they rely on a large number of inputs and are computation-
ally expensive. The latter, in contrast, can be parsimonious
in terms of data and computational resources, yet they need
to be calibrated per catchment, which limits their applica-
bility to prediction in ungauged catchments. Generalization
to ungauged catchments via regionalization is possible but
introduces another layer of complexity (Beck et al., 2016).
As a complementary approach, deep learning holds potential
as a tool for hydrological modeling in terms of both perfor-
mance and efficiency (Nearing et al., 2021), and it comes
with built-in regionalization when trained jointly on multiple
catchments (Kratzert et al., 2024).

The potential of machine learning to represent land sur-
face processes, including runoff, has been widely demon-
strated and discussed (Camps-Valls et al., 2021; Reichstein
et al., 2018; Kraft et al., 2019; Gudmundsson and Senevi-
ratne, 2015; Ghiggi et al., 2021). Deep learning, in particu-
lar, has shown promise for nowcasting and forecasting runoff
in gauged catchments, aiding in warning systems for ex-
treme flow events (Kratzert et al., 2018; Gauch et al., 2021a).
It is, however, less common to employ data-driven mod-
els for large-scale reconstruction and monitoring (Nasreen
et al., 2022). Reconstruction products are widely used for
process understanding, investigation of long-term trends, and
study of extreme events within a wider spatiotemporal con-
text (Gudmundsson and Seneviratne, 2015; Ghiggi et al.,
2019, 2021; Muelchi et al., 2022). In addition, machine-
learning-based models enable simulation of scenarios and
real-time monitoring with significant speedup (Reichstein
et al., 2019; Kraft et al., 2021).

This study introduces a data-driven approach to recon-
structing daily runoff in Switzerland with contiguous spa-
tial coverage, spanning an extensive period from 1962 to
2023 with the potential for continuous updates. We opti-
mize a range of neural-network-based models in different se-
tups and evaluate their performance at the catchment level
in a comprehensive spatiotemporal cross-validation scheme.
The results are benchmarked against simulations from the
PREVAH (PREecipitation-Runoff-EVApotranspiration Hy-
drological) model, which is used operationally in Switzer-
land. The extended coverage compared to PREVAH is en-
abled by reduced data requirements by only using tempera-
ture and precipitation as meteorological drivers. In the Swiss
context, these variables cover the period from the 1960s on-
ward as regular grids, while additional variables, such as rel-
ative humidity and wind speed, are available from the 1980s.
The best-performing model has subsequently been used to
reconstruct daily runoff rates with complete spatiotemporal
coverage since the 1960s. The paper closes with a discussion
of the strengths and limitations of the approach and the first
insights from the extended reconstruction.
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2 Data
2.1 Runoff observations

The observed discharges were taken from the CAMELS-CH
dataset (Hoge et al., 2023), which was updated with cur-
rent data from the Swiss Federal Office for the Environment
(FOEN, 2024) and supplemented by stations operated by the
cantons Aargau, Baselland, Bern, St. Gallen, and Zurich. In
total, 267 stations were available. A subset of 98 catchments
was selected to minimize the anthropogenic impact (Fig. 1);
i.e., no hydropower plant or reservoir was located upstream
of the gauging station. This selection was based on the at-
tributes of the CAMELS-CH dataset and insights from a pre-
vious study (Brunner et al., 2019c¢).

2.2 Meteorological drivers

We considered daily precipitation and air temperature to be
meteorological drivers from interpolated observational data
with a spatial resolution of 1km, i.e., the daily gridded
datasets RhiresD (Schwarb, 2000; MeteoSwiss, 2021a) and
TabsD (Frei, 2014; MeteoSwiss, 2021b). Gridded daily tem-
perature and precipitation were spatially averaged for all the
considered catchments.

2.3 Catchment properties

For the across-catchment modeling of runoff, a set of static
catchment properties was considered. These variables can
improve generalization to catchments not seen during train-
ing. The static variables used are identical to those needed
to force the spatially distributed PREVAH model (see the
next section) and include elevation, aspect, land use, soil
depth, soil water holding capacity, hydraulic conductivity,
and two further indices describing soil and hydraulic prop-
erties. These gridded variables were aggregated to appropri-
ate catchment values depending on the level of measurement,
e.g., a circular mean for aspect or a distribution of classes
within each catchment for land use. As compared to previ-
ous applications of PREVAH (Viviroli et al., 2009b; Speich
etal., 2015), the sources of the data providing the static prop-
erties have been updated and include the following:

— the swissALTI3D digital elevation model (swisstopo,
2018; Weidmann et al., 2018);

— the new habitat map of Switzerland (Price et al., 2023),
aggregated to match the land use classes integrated into
PREVAH;

— the SoilGrids products (Hengl et al., 2017; Poggio et al.,
2021), enriched with high-resolution data for Swiss
forests (Baltensweiler et al., 2022) and merged and used
to estimate soil properties; and

— the recent information on the extent of glaciers in
Switzerland (Linsbauer et al., 2021).
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Figure 1. From sparse observations with low anthropogenic impact

on contiguous spatial coverage, the 98 observational catchments high-

lighted in magenta were selected to be only marginally affected by anthropogenic factors and served as a basis for training and evaluating
the data-driven models. These catchments are of similar sizes to the target catchments for reconstruction (grey).

2.4 PREVAH runoff simulations as a benchmark

The modeling of Swiss catchments has a long history in hy-
drology research (Horton et al., 2022; Addor and Melsen,
2019). Among a set of 21 models compared, Horton et al.
(2022) found the PREVAH model (Viviroli et al., 2009b)
to be the most commonly used one, with applications go-
ing from the plot-scale process evaluation (Zappa and Gurtz,
2003) to the operational implementation for drought antici-
pation (Bogner et al., 2022) and to the Switzerland-wide as-
sessment of climate impacts on hydrology (Brunner et al.,
2019a). Furthermore, a PREVAH-based baseline is included
in the Swiss version of the CAMELS (Hoge et al., 2023)
dataset (catchment attributes and meteorology for large-
sample studies) as introduced by Addor et al. (2017).

For this study, we created a benchmark runoff simula-
tion for the selected catchments on the basis of PREVAH.
The simulations cover the period from 1981 until the end of
2022. The procedure adopted to obtain the PREVAH bench-
mark closely follows the methodologies presented in pre-
vious studies (Speich et al., 2015; Brunner et al., 2019c;
Hoge et al., 2023). The gridded version of PREVAH (Vivi-
roli et al., 2009b; Speich et al., 2015) has been applied at
500 m resolution. The time series of the investigated catch-
ments were then obtained by spatially averaging daily grid-
ded values. For further details on the setup and application
of PREVAH, we refer the reader to the references provided
above. For the present study it is nevertheless important to
know that the gridded simulations at 500m x 500m reso-
lution have not been specifically recalibrated for the catch-
ments investigated. Instead, the spatially explicit version of

https://doi.org/10.5194/hess-29-1061-2025

PREVAH accesses a previously calibrated set of model pa-
rameters covering Switzerland that have been estimated us-
ing a regionalization approach (Viviroli et al., 2009¢c, a; Ko-
plin et al., 2010). We also note that runoff rates from PRE-
VAH are to be considered the natural response of the grids
within the catchments investigated, without any considera-
tions of water diversions for hydropower, flood damping by
(regulated) lakes, or any kind of water use (Brunner et al.,
2019d).

3 Methods
3.1 Neural network architectures

We used two classes of temporal neural network models for
runoff modeling, i.e., the long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) model and the tempo-
ral convolutional network (TCN; Bai et al., 2018). While the
LSTM model maintains an internal state that is updated dy-
namically, the TCN is based on a sparse and efficient 1D con-
volution in the time domain. The latter is parallelizable in
time and therefore computationally more efficient. We em-
ploy three approaches, described hereafter, to fuse the dy-
namic meteorological variables x; . at time ¢ and catchment
¢ with the static variables s., independent of the tempo-
ral model used. The selection of the best fusion approach
was part of the hyperparameter tuning (Sect. 3.3) and was
performed independently of the model setup described in
Sect. 3.5. Note that the following description of the model
architectures is simplified and that the actual setup uses vec-
torized and efficient computation.

Hydrol. Earth Syst. Sci., 29, 1061-1082, 2025
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3.1.1 Pre-fusion with encoding

In the first approach, which we called pre-fusion with en-
coding, x; . € RM (a vector of M meteorological features)
and s. € RS (a vector of S static features) are, as part of
the model training, encoded into e; . € RP i.e., into a vec-
tor of length D (the model dimensionality). The encoding is
done using the stacked feed-forward neural network layers
/NN, and fnn,, respectively. The two encodings are com-
bined by element-wise addition; i.e., static encoding is added
to each meteorological encoding equally, as shown in Eq. (1).
The resulting combined encoding e; . is then fed into one or
more temporal layers frnn (Eq. 2), yielding the temporal en-
coding h, . € RP, which is then decoded into a single value
q; . € R (Eq. 3) by another stack of feed-forward neural net-
works fNN;-

Feature encode ;. = fNN, (X1.c) + /NN, (S¢) (1)
Temporal encode  h; . = frnn(€r,c.€i—1,¢s - €1—k,c) (2)
Output decode ¢, = fn; (yr.c) 3)
Output transform g, =log (1+exp(q;’,)) 4)

While the LSTM model uses all the input time steps, the TCN
uses the limited-context k, depending on its hyperparameters.
The decoded output is then transformed into the positive do-
main, ¢; . € Ry, using the softplus activation, as shown in
Eq. (4). This output mapping is consistent across the fusion
methods.

In this fusion approach, the potentially complex interac-
tions of the dynamic and static input variables are injected
prior to the temporal layer, presumably offloading some non-
temporal interaction complexity from it. Note that the selec-
tion of model characteristics, such as the number of hidden
nodes and layers, was based on hyperparameter tuning (see
the next section).

3.1.2 Pre-fusion with repetition

In the second approach, pre-fusion with repetition, the static
vector §. is simply repeated in time and concatenated to the
temporal input x; . (Eq. 5). This combined encoding, based
on a feed-forward neural network fnn,, is then fed into the
temporal module (Eq. 6) and mapped to the output with an-
other neural network fnns as previously described and as
shown in Eqs. (7) and (8). This approach is conceptually sim-
ilar to pre-fusion with encoding, but it leaves the learning of
the nonlinear interactions within the static inputs to the tem-
poral layer.

Feature encode e; . = fnn, ([X1.¢.Sc]) 5
Temporal encode  h; . = frnn(€rc,€—1.cr--- €—kc) (6)
Output decode ¢/, = fxns (By,c) (N
Output transform ¢, . = log (1 +exp(q;’,)) (®)
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3.1.3 Post-fusion with repetition

Post-fusion with repetition, finally, first encodes the meteoro-
logical input x; » (Eq. 9) with a feed-forward neural network
JNNg and then runs the encoding through the temporal mod-
ule (Eq. 10). It then decodes the combined temporal encoding
and static inputs s, via repetition in time (Eq. 11) by fxn,,
followed by mapping to the positive domain (Eq. 12). In this
approach, the dynamics learned by the temporal layers can-
not be modulated by the static variables.

Feature encode e; . = fnng (X1,c) )
Temporal encode h; . = frnn(er,c, €i—1,cr---» €1—k,c) (10)
Output decode g, = fnN; (B¢, Sc]) (11
Output transform ¢, . = log (1 +exp(q;’.)) (12)

3.2 Model training and hyperparameter tuning
3.2.1 Data transformation

We transformed both the dynamic and static input features
using Z transformation to have zero mean and unit vari-
ance. This process was executed individually for each cycle
of cross-validation (see Sect. 3.4) and based on the specific
training set assigned to that cycle. To maintain the target vari-
able, i.e., runoff, within a positive range, its values were ad-
justed through normalization by dividing the values by the
global 95th percentile derived from the training set.

3.2.2 Model optimization

The model parameters were updated using standard back-
propagation (Amari, 1993) with the AdamW optimizer
(Loshchilov and Hutter, 2019), a stochastic gradient descent
method with adaptive first-order and second-order moments.
As the objective function, we used the mean squared er-
ror (MSE), defined as Luse = 1= 2o 1 Soret Ve — I1.6)
where y; . is the normalized observation and y, . is the re-
spective predicted runoff at time # of 7 number of time steps
and catchment ¢ of C catchments. Optionally, we considered
the square-root-transformed prediction and target to reduce
the right-skewness of the distribution and therefore to facili-
tate the training.

The training sets were constructed with the goal of ensur-
ing equal representation of each catchment, regardless of the
number of observations available from each. To do this, we
iteratively selected samples from each catchment in a ran-
domized order. We refer to one complete iteration through
all the catchments as an “epoch”. For each catchment, a 2-
year period was randomly selected, ensuring that at least 30 d
of runoff data were present. Additionally, a 1-year lead-in
phase was introduced for model spinup, which was not fac-
tored into the optimization calculations.

Throughout the model training phase, we used mini-
batches of 32 samples. A minibatch is a subset of the train-
ing data used in each step of the gradient descent process to

https://doi.org/10.5194/hess-29-1061-2025
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update the model’s parameters. This approach strikes a bal-
ance between computational efficiency and the stochastic na-
ture of the training, allowing more frequent updates and ef-
ficient use of parallel processing. For validation and testing,
the complete time series was processed in each evaluation
epoch, optimizing for efficiency since no parameter updates
were needed in these phases.

3.3 Hyperparameter tuning

Hyperparameter tuning, an essential step in enhancing a
deep-learning model’s performance, was conducted system-
atically. This involves identifying the best combination of
preset parameters, like the learning rate or the number of
neurons per layer, to optimize model performance. We re-
fer the reader to Appendix Al for a comprehensive list of the
hyperparameters used. We used the initial cycle of our cross-
validation (see Sect. 3.4) process for this tuning. The hyper-
parameters were tuned using the Optuna framework (Akiba
et al., 2019). After the evaluation of 15 random hyperparam-
eter combinations, 45 further configurations were suggested
iteratively using a Bayesian surrogate model based on the
tree-structured Parzen estimator (TPE) algorithm (Bergstra
et al., 2011). As some configurations may perform poorly in
the early training phase, we used hyperband pruning to stop
such unpromising runs early on without wasting resources
(Li et al., 2018). With the optimal hyperparameters deter-
mined, we completed the full cross-validation process de-
scribed in the next section.

3.4 Cross-validation

We carefully designed a k-fold cross-validation setup for a
fair model evaluation and to assert the high quality of the fi-
nal reconstruction product. The 98 training catchments were
randomly divided into k = 8 sets and iterated over such that
each set was used once for both validation and testing dur-
ing the cross-validation process (Fig. 2a). While the train-
ing data are used to optimize the model and the validation
data are used to monitor model generalization during train-
ing, the test data are used for the final model evaluation. The
remaining 169 catchments, which are more impacted by an-
thropogenic factors, were used optionally as additional train-
ing catchments — but never to evaluate the model. In addi-
tion, the time domain was split into training, validation, and
test periods (Fig. 2b). These periods were kept fixed dur-
ing cross-validation. The temporal splitting was chosen to
be representative of the model’s temporal interpolation and
extrapolation skills. At the same time, the validation and test
periods should contain minimal missing data in order not to
place more emphasis on catchments with more observations.
Therefore, we selected two 5-year blocks of test data, one
from (the beginning of) 1995 to (the end of) 1999 and one
from 2016 to 2020. The test ranges were separated from the
training set to ensure minimal data leakage. This relates to

https://doi.org/10.5194/hess-29-1061-2025

1065

the fact that autocorrelation in time series data can lead to
overfitting because it causes models to mistake random pat-
terns in the data as being significant. In addition, the buffer
added after every temporal block avoids overlap of the test
set spinup period of 1 year with the training set, which would
again encourage overfitting. Note that the validation set was
not separated by a buffer from the training set in order to
avoid discarding any observations and because the final eval-
uation was done on the test set. Overall, the spatiotempo-
ral data splitting was a trade-off between computational effi-
ciency, autocorrelation concerns, and data limitations.

In each of the k iterations, six catchment sets were used for
training, i.e., for optimizing the neural network parameters,
while one set was used for validation and one for testing.
After an epoch, i.e., one full iteration through the training
data, the loss was computed on the validation set. The loss
was monitored and training was interrupted if the loss on
the validation set increased over a given number of epochs
(the “patience”). The best model in terms of the validation
loss was then restored and used for prediction on the test set.
This routine is called “early stopping” and reduces overfitting
(Yao et al., 2007). The final predictions on the test set were
then used for model evaluation. As each catchment set was
the test set once, we obtained independent test predictions for
each of the 98 catchments.

3.5 Factorial experiment and model evaluation

In this section, we describe the model setups tested in a
factorial experiment and the model evaluation procedures.
We selected the best-performing model based on the me-
dian Nash-Sutcliffe modeling efficiency (NSE, Nash and
Sutcliffe, 1970) across catchments, evaluated on the test set.
The NSE as defined in Eq. (13) is calculated at the catchment
level:

Zszl(yt _ﬁt)z
S =92

where y; is the observed runoff and j; is the simulated runoff
at time ¢ of T total time steps. y is the mean of the observed
time series. The NSE can take values from —oo to 1, where
values above 0 indicate that the predictions are better than
taking the mean of the observations and 1 means perfect pre-
diction. Note that the NSE is closely related to RZ, but the
NSE normalizes the sum of the squared residuals using the
catchment variance instead of the global variance. Hence,
the NSE does not place more emphasis on catchments with
larger variance and is, therefore, also sensitive to catchments
with a low dynamic range.

Different model setups were tested in a factorial experi-
ment, and each combination of the factors was evaluated. The
first factor determines the temporal component of the over-
arching model architecture: {LSTM, TCN}. The next factor
determines whether the target variable and predictions are
transformed using the square root, in order to reduce the

NSE=1-— (13)
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Figure 2. Cross-validation scheme: panel (a) shows the spatial domain, consisting of 98 catchments in Switzerland, which we randomly
divided into k = 8 sets. These sets were used iteratively, allowing each to serve once as a validation set and test set. Catchments significantly
affected by human actions were optionally included in the training phase to enrich model learning, but they were consistently excluded from
the validation and test phases to maintain the focus on natural runoff patterns. In panel (b), the time domain is delineated into fixed training,
validation, and test periods. The used sets are the intersections of these spatiotemporal splits. With the initial iteration, hyperparameter (HP)
tuning was performed, and the best HPs identified were then applied in subsequent cross-validation steps. By evaluating the model on the
test sets, we comprehensively assessed the model’s skill in generalizing across both spatial and temporal dimensions.

skewness of the distribution: {Thone, Tsqrt}. We tested the in-
clusion of the 169 optional catchments (267 in total with the
98 default catchments) in the training set, compared to the
98 only (Fig. 2a): {Cog, C267}. The last factor concerns the
usage of static input variables. Due to the relatively large
number of catchment properties (28), we alternatively used
dimensionality-reduced static features. Using principal com-
ponent analysis (PCA, Wold et al., 1987), all static features
except catchment area were compressed into five compo-
nents, which represent 66 % of the variance. Catchment area
was always treated as a separate static input, as we consider
it to be a key input feature. Hence, we either use catchment
area only, a dimensionality-reduced version of the static vari-
ables using PCA, or all static variables described in the data
section: {Sarea, SPCA, Sall}-

This yields a total of 24 models, and for each of them in-
dependent hyperparameter tuning and cross-validation were
performed. Note that the fusion strategy for static and dy-
namic features, introduced in Sect. 3.1, was not considered a
factor here but was part of the hyperparameter tuning.

To better understand the error structure, we also evaluate
the MSE decomposition into bias, variance, and phase error

Hydrol. Earth Syst. Sci., 29, 1061-1082, 2025

(Kobayashi and Salam, 2000; Gupta et al., 2009):

€bias €variance €phase

—_—~—
emsE = (5 — 1)) + (05 = 0y)* + 2050,(1 = 1), (14)
where w is the mean and o is the standard deviation of the
simulations y and the observations y, and r is the linear cor-
relation coefficient between them. The squared bias epj,s re-
flects the model fit in terms of the average and the variance
ETTOT evariance iN terms of the scale. The phase error eppase
measures the reproduction of the timing, i.e., how well the
dynamics are matched regardless of bias and scale.

3.6 Runoff reconstruction

To achieve a complete contiguous reconstruction from 1962
to 2023 for the small- to medium-sized catchments with na-
tional coverage (Fig. 1), we used the best-performing model
from the cross-validation. The best model was selected based
on median test set NSE across catchments. From the ensem-
ble members from the 8-fold cross-validation, we obtained
eight reconstructions with full coverage, of which we use the
median (average of the two middle values) as the final data

https://doi.org/10.5194/hess-29-1061-2025
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product. The year 1961 was removed from the reconstruction
as it served as spinup.

4 Results
4.1 Catchment-level performance and benchmarking

In this section, we evaluate the model performance at the
catchment level and compare the data-driven models. All the
analyses are, unless stated otherwise, based on the test set
(Fig. 2), i.e., spatially and temporally distinct data. Due to the
iteration over the catchment groups in the cross-validation,
each catchment was in the test set once. The fixed splitting
of the time domain, however, restricts our evaluation to the
test periods, i.e., January 1995-December 1999 and January
2016-December 2020. Throughout the evaluation, we use
the hydrological model PREVAH as a benchmark.

4.1.1 Model performance

To understand the capabilities of our model to represent daily
runoff at the catchment level, we evaluate the model perfor-
mance first. Figure 3 presents the empirical cumulative den-
sity functions for different metrics across the 98 catchments.
Models based on the TCN architecture are depicted in blue,
those using LSTM networks in red, and the PREVAH model
in black. The model with the best performance is emphasized
using a thicker line. Figure 3a focuses on the NSE, while
Fig. 3b—d provide a detailed breakdown of the MSE into its
components — squared bias, variance error, and phase error —
as introduced previously.

Overall, we observed a large variance in performance
across the model setups in terms of catchment-level NSE,
and the TCN-based models performed worse than the LSTM
model in general. This is mainly due to the two best-
performing LSTM models (see also the model NSE in Ap-
pendix A, Tables A2 and A3). The best-performing LSTM
(LSTMpegt) achieved a median NSE of 0.76. The MSE de-
composition shown in Fig. 3b—d indicates that LSTMpeg
(thick red line) is among the best models in terms of all error
components. The phase error contributed most to the overall
error by a wide margin, signifying that representing the tim-
ing of the runoff is more challenging than representing the
average and the scale.

The best-performing setup was {LSTM, Sa1, C267, Tsqrt)
i.e., with all the static features, additional training catch-
ments, and square root transform of the target, paired with the
LSTM architecture. This model performed only marginally
better than {LSTM, San, Cog, Tsqr}, i.€., the one not using
the additional catchments for training. These models both
worked best with the pre-fusion with encoding approach (see
Sect. 3.1). An overview of all the model setups and their per-
formance is provided in Appendix A1, and a short discussion
of the factorial experiment can be found in Appendix A2.

https://doi.org/10.5194/hess-29-1061-2025

1067
1.04@ P
A
—— PREVAH i
—— LSTM iy
0.8 —— LSTMpest /
TCN

0.6
) median
g 0.4 1 0.76
[}
o
(]
2
© 0.2 1
=)
1S
>
O

0.0 A

0.0

1.0 A

0.5

0.0 1 ; ; ; ; ;

0 5 0 5 0 5
Squared bias Variance error Phase error
(mm? d~2)

Figure 3. The catchment-level model performance across the 98
catchments evaluated on the test set that was not used for model
calibration. We show different versions of the data-driven models,
corresponding to the model setups: blue represents the convolution-
based architectures (TCN) and red the LSTM architectures. The
PREVAH model (black solid line) serves as a benchmark. The best-
performing model (LSTMyes;), used for the reconstruction, is high-
lighted. The y axis represents the cumulative probability density,
i.e., the fraction of catchments that have the given value or lower.
Panel (a) shows the Nash—Sutcliffe modeling efficiency (NSE), with
median values as the vertical lines. Panels (b)—(d) show the squared
bias, variance error, and phase error, respectively. Note that here,
other than for the NSE in panel (a), lower values are better. The
x axes are truncated.

The PREVAH model achieved a median NSE of 0.72
(Fig. 3a), which is marginally lower than LSTMygg; (NSE of
0.76) yet better than some of the other data-driven models.
The PREVAH model showed a similar bias and variance er-
ror (Fig. 3b—d) to those of LSTMyg in terms of the median,
yet it seems to be more robust in representing these aspects,
as LSTMyeg: lags behind in the larger errors. Regarding the
phase error, in contrast, the data-driven models in general
and LSTMpeg; in particular clearly outperformed PREVAH
across the catchments.

Next, we investigate the spatial distribution of the errors.
First, we notice that the performance of LSTMpeg in terms of
NSE, shown in the top-left panel of Fig. 4, does not exhibit
a clear spatial pattern. However, the model seems to strug-
gle with some particular catchments. Interestingly, these are
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the very catchments where PREVAH clearly outperformed
LSTMyeg: (compare the Fig. 4 top-left-panel dark-blue val-
ues to its lower-left-panel dark-red values).

To understand how these spatial patterns are linked to
catchment properties, we performed an exploratory analysis.
First, we identified the tails of the distributions (inset his-
tograms in Fig. 4 and PREVAH performance — not shown)
using the 10th and 90th percentiles. We then compared prop-
erties of catchments in the tails to the “normal” group (be-
tween the 10th and 90th percentiles) using the two-sided,
nonparametric Mann—Whitney U test with a significance
level of ¢ = 0.1 (Mann and Whitney, 1947). The analysis
was restricted to a subset of catchment properties: mean and
variance of runoff, elevation, catchment area, and water body
fraction. Here, we report the most notable findings of this ad
hoc analysis.

For LSTMpes;, poor performance (NSE below 0.14) was
observed in catchments with a low mean and runoff vari-
ance, whereas good performance (NSE above 0.86) was
achieved in catchments with a high runoff variance. Simi-
larly, PREVAH struggled (NSE below 0.08) in catchments
with a low runoff mean and variance as well as under low-
elevation, lake-dominated conditions, but it performed well
(NSE above 0.84) in catchments with a high runoff mean,
a large catchment area, and minimal lake presence. As ex-
pected, the bias of LSTMpest was low in catchments with a
low runoff mean and variance, with variance error increasing
under high-runoff-variance conditions. The phase error for
LSTMyest was lowest in catchments with a low runoff mean
and variance and a large catchment area.

Significant differences in NSE performance were observed
between the two models in catchments with low runoff vari-
ance. PREVAH outperformed LSTMpeg (NSE improvement
above 0.28) in catchments with both low runoff mean and
variance. Conversely, LSTMpeg clearly outperformed PRE-
VAH (NSE improvement above 0.28) in low-elevation, lake-
dominated catchments that also had low runoff variance.

4.1.2 Annual variability and trends

For a reconstruction product, it is crucial to adequately rep-
resent yearly variability and long-term trends. We, therefore,
evaluate this aspect on annual runoff aggregates (Fig. 5). The
best-performing model, LSTMy.g, represented the interan-
nual variability (Fig. 5a), quantified as the Pearson correla-
tion coefficient between the annual values for each catch-
ment, well, with a median of »r =0.93 and 75% of the
catchments above r = 0.85. The bias averages close to zero,
and for 50 % of the catchments it was in the range —250-
250 mm yr_1 (Fig. 5b). On the interannual variability, PRE-
VAH showed a slightly lower correlation (Fig. 5a) across
the catchments, with a median of r = 0.91. In terms of bias,
PREVAH performed marginally better, with a median closer
to zero and a lower spread (Fig. 5b).
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Figure Sc illustrates how the models captured spatial pat-
terns of annual trends between January 1995 and December
2020 (Fig. 5¢). The agreement was calculated independently
by first computing the catchment-level linear trends for the
observations and simulations using PREVAH and LSTMpeg
with the robust Theil-Sen estimator (Sen, 1968). Then, we
fit a regression between the observed and estimated trend
slopes of the two models using robust regression with Hu-
ber weighting and the default tuning constant of ¢ = 1.345
(Huber and Ronchetti, 2009). This approach reduced the
impact of outliers by giving lower weight to large residu-
als. To quantify the alignment of the simulated trends, we
used the Spearman correlation (p), which is relatively robust
against outliers. While LSTMy, represented the spatial pat-
terns of the linear trend relatively well with a correlation of
p = 0.60, PREVAH achieved a correlation of p = 0.42. Both
models underestimated the strength of negative and positive
trends, with slopes of 0.52 (LSTMpeg) and 0.64 (PREVAH),
and they exhibited small negative biases of —3.73mmyr~!
(LSTMpesr) and —6.44mmyr~! (PREVAH).

4.2 Qualitative evaluation of selected catchments

To understand how the models represent different hydrolog-
ical regimes, we performed a qualitative comparison for a
selection of catchments. For this purpose we selected sin-
gle catchments that are dominated by (a) rainfall, (b) lakes,
(c) snow, or (d) glaciers (Fig. 6). These example catchments
serve as means for qualitative model comparison, and we do
not expect these insights to directly generalize across catch-
ments.

The rainfall-dominated catchment, the Murg at Frauenfeld
(ID 2386), is located in the northwest of Switzerland on the
Swiss Plateau, with an area of ~ 200 km? and an average el-
evation of ~600m. The maximum snow water equivalent
(SWE) has been below 80 mm in recent years (Hoge et al.,
2023) and was not considered to affect runoff for most days
of the year. The lake-dominated catchment, the Aabach at
Hitzkirch (ID 2416), is located in the central Pre-Alps, with
an area of ~70km? and an average elevation of ~ 600 m.
The gauging station is located just a few hundred meters
from the outflow of the ~ 5 km? Lake Baldegg, which damps
runoff peaks and also affects the low-flow regime. The snow-
dominated catchment, the Plessur at Chur (ID 2185), is lo-
cated in the eastern Swiss Alps, with an area of ~ 250 km?
and an average elevation of ~ 1900m (from ~ 500 to ~
3000 m). The maximum SWE varied in the past 25 years
between 200 and 500 mm. There are no large glaciers in
this area that could influence runoff. The glacier-dominated
catchment, the Simme at Oberried/Lenk (ID 2219), is located
in the western Swiss Alps, with an area of 35 km? and an
average elevation of ~ 2300 m (from ~ 1000 to ~ 3200 m).
More than 25 % of the area is covered by glaciers. The max-
imum SWE varied in the past 25 years between 400 and
1100 mm.
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Figure 4. Spatial catchment-level performance of our best-performing model (LSTMjpg) contrasted with the PREVAH model. The top row
shows the performance of LSTMyeg, with the NSE in the leftmost panel and the bias (epjss), Variance error (eyariance)> and phase error
(ephase) in the remaining panels. Note that, in the top row, yellowish colors indicate better performance; i.e., for NSE, a larger number is
better, and for the error components lower numbers are preferred. The bottom row shows the performance difference between LSTMy,e¢; and
PREVAH. Here, reddish colors indicate that PREVAH performs better than LSTMpeg, i.€., negative values for the NSE and positive values
for the error components. The inset histograms represent the distribution of the catchment metrics, and the white bar indicates the median of
the distribution per panel. The evaluation is performed on the test set, but all the catchments are in this set once in our cross-validation setup.
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Figure 5. Catchment-level evaluation at the annual scale. (a) The Pearson correlation () and (b) bias (mmyr_l) distribution across 98
training catchments evaluated on the test set. (¢) The simulated annual runoff trends compared to the observations. The points represent the
linear trend (found by the robust least-squares fit) of the individual catchments. Note that, for the trend calculation, the time range from 1995
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corresponding rank correlations.

For the rainfall-dominated catchment, PREVAH and
LSTMpyes: showed similar behavior (Fig. 6a), and both mod-
els were able to reproduce the runoff peaks and overall pat-
terns. For the lake-dominated catchment, LSTMpes outper-
formed the PREVAH model in terms of NSE (Fig. 6b). Vi-
sual inspection shows high peaks in PREVAH simulations,
which indicate missing buffering dynamics in lakes. This is
not surprising, as PREVAH does not represent lakes explic-
itly, while the LSTM model can learn the buffering implicitly
via the catchment properties, of which the fraction of water
bodies may be the most relevant. For the snow-dominated
catchment shown in Fig. 6¢, the PREVAH model managed
to represent the runoff processes better in 1998 and simi-

https://doi.org/10.5194/hess-29-1061-2025

larly in 2018. Here, LSTMpes; Overestimates runoff in gen-
eral, and it peaks particularly in summer. Snowmelt responds
strongly to radiation, which was not included as a driver of
the LSTM model. Further, snow-related processes are spa-
tially heterogeneous, depending on elevation and aspect. The
lumped LSTM model cannot resolve these processes at the
subcatchment level, while the PREVAH model operates on
a high-resolution grid. Although worse in terms of NSE, the
LSTM model managed to better represent the snowmelt in
2018, possibly because snow had already melted away in the
PREVAH simulation. In a glacier-dominated catchment, fi-
nally, LSTMy, represented the runoff patterns slightly bet-
ter than PREVAH.
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(a) Murg-Frauenfeld (ID: 2386), Rain dominated
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Figure 6. Daily runoff Q (mm d—1) for four selected catchments and 2 distinct years selected from the test periods. Observations (dashed
black line), PREVAH simulations (grey), and out-of-catchment predictions of the data-driven LSTMpg; (red) are shown. The catchments
were selected to represent different modeling challenges: (a) rainfall-, (b) lake-, (¢) snow-, and (d) glacier-dominated. The inset NSE values

represent the model performance for the selected year.

4.3 Runoff reconstruction

The reconstruction of daily runoff from 1962 to 2023,
referred to as CH-RUN, was conducted with the best-
performing model based on prior analysis. The final esti-
mate was calculated as the median across the eight ensemble
members from the cross-validation. Figure 7 shows the an-
nual runoff as quantiles relative to the reference period from
1971 to 2000. The quantiles were calculated per catchment
by comparing the annual values to the empirical distribu-
tion of the reference period. Turquoise colors indicate that,
for a given catchment, the yearly average runoff is rather
high compared to the reference, and brown colors signify dry
years.

The reconstruction suggests that dry years with similar in-
tensities compared to the conditions of the 21st century were
already present in the 1960s and 1970s (e.g., in 1964 and
1976). However, the frequency of dry years increased sig-
nificantly — and that of wet years decreased substantially —
according to the model estimates.
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Figure 8 shows the annual national runoff anomalies and
the corresponding trends for CH-RUN. According to the CH-
RUN reconstruction, the recent dry conditions are matched
by values in the 1960s and 1970s in terms of amplitude, while
the frequency of dry years increased and that of wet years de-
creased. Extremely dry years (exceeding the 0.1 quantile of
the reference period) were absent in the 1980s and 1990s,
while wet years (exceeding the 0.9 quantile of the reference
period) were more frequent during this period. The last ex-
tremely wet year was 1999, and the driest year was 2022.

In Fig. 9, the decadal mean values are disaggregated into
seasonal patterns. Here, the average annual sums across the
decades are shown, again relative to the reference period
from 1971 to 2000. The decadal means again hint at strong
trends towards less runoff on a yearly scale. In the winter
months December to February (DJF), we see a slight ten-
dency towards less runoff north of the Alps, while the 2020s
exhibit more runoff in the Pre-Alps. From March to May
(MAM), northern Switzerland, the Pre-Alps, and the can-
ton of Ticino show a clear trend towards drier conditions.
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Figure 7. Spatially contiguous reconstruction of runoff from 1962 to 2023 from the CH-RUN reconstruction. The maps represent the yearly
catchment-level runoff quantiles relative to the reference period (1971 to 2000) empirical distribution. The bottom bars show the decadal
deviation (mm yr_l) of the national-level runoff relative to the reference period (1971 to 2000).

Even more pronounced, the June—August (JJA) period re-
veals a tendency towards less runoff in the central Alps with
higher altitudes and the canton of Ticino. From September
to November (SON), the patterns are again less distinct, yet
there is a general trend towards drier conditions in most of
the catchments.
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5 Discussion
5.1 Neural network architectures and the role of data

The better performance of the LSTM model compared to the
TCN (Fig. 3) is somewhat surprising, as the latter has been
reported to perform well in time series prediction settings
(e.g., Zhao et al., 2019; Catling and Wolff, 2020; Yan et al.,
2020). The difference in performance can be traced back to
the two best-performing LSTM models (Fig. 3 and Tables A2
and A3) and hints at better capabilities of the LSTM model to
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Figure 9. Decadal evolution of the spatially contiguous reconstruction of runoff from 1962 to 2022 by season from the CH-RUN recon-
struction. The maps represent the decadal-average catchment-level runoff (mm yr_l) relative to the reference period (1971 to 2000). From
the top to bottom rows: year — full year; DJF — December to February; MAM — March to May; JJA — June to August; SON — September to
November.

represent interactions between meteorological and static fea- learning approaches to modeling time series exist, of which
tures under these data-limited conditions. It seems that the transformer-based architectures (Vaswani et al., 2017) have
LSTM model is more data-efficient than the TCN, which is become popular recently (Lim et al., 2021; Zhou et al., 2021;
also supported by the lower number of tunable parameters Xu et al., 2023). Due to the powerful and complex encoder—
used by the former (see Tables A2 and A3). It might, there- decoder structure, these models especially release their po-
fore, be possible for the TCN to compete with the LSTM tential in forecasting settings and with large amounts of train-
architecture if more training data are available. Other deep- ing data. Given the relatively low amounts of training data
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available for the study domain, we do not expect signifi-
cant improvement from using such architectures. Neverthe-
less, exploration of this architecture may hold potential for
improved reconstruction in the future.

In runoff modeling, integrating catchment properties
with meteorological features is a prevalent approach (e.g.,
Kratzert et al., 2019). We found that the most effective data
fusion method involved channeling static variables through
the LSTM model’s temporal layers while handling some non-
temporal interactions in an upstream encoding layer. Our
LSTM model successfully learned the complex interactions
between static and meteorological features, extending its ap-
plicability to untrained catchments and time ranges. Enhanc-
ing the model’s predictions was achieved by incorporating
a broader range of catchments and fully utilizing catch-
ment properties (Fig. Al), acknowledging that a wider in-
put feature space necessitates more data. This finding aligns
with our previous diagnosis of spatial information limita-
tions due to the relatively small number of training catch-
ments. Although the importance of data has been reported
well (Kratzert et al., 2018; Gauch et al., 2021b), these results
reaffirm the value of additional data in enhancing model per-
formance. Consequently, we recommend exploring methods
to incorporate more training data, such as transfer learning
from other tasks (Sadler et al., 2022) or other regions (Pan
and Yang, 2010; Yao et al., 2023; Xu et al., 2023), e.g., from
large-scale datasets (Kratzert et al., 2023; do Nascimento
et al., 2024), and considering alternative data sources like
bottom-up data mobilization efforts (Do et al., 2018; Gud-
mundsson et al., 2018; Nardi et al., 2022; Kebede Mengistie
et al., 2024) as promising avenues for future research.

It is encouraging to see that the LSTM model did manage
to implicitly learn complex runoff dynamics across hydro-
logical regimes (Fig. 6). The data-driven model has learned
buffering effects by lakes and, to a certain extent, runoff-
generating processes related to snow and, possibly, glaciers.
Similar behavior has been reported before. Kratzert et al.
(2019) and Lees et al. (2022), for example, reported that an
LSTM model was able to represent long-term snow dynam-
ics. We expect potential for improvement by better repre-
senting buffering processes via routing of the runoff (Bindas
et al., 2024) and by an improved representation of snow and
glacier processes. This can be achieved via the combina-
tion of physically based and data-driven modeling (Reich-
stein et al., 2019), e.g., by directly employing physical con-
straints in an end-to-end hybrid physics—machine learning
setup (Kraft et al., 2022, 2020; Hoge et al., 2022), by pe-
nalizing physically implausible simulations during training
(Daw et al., 2021), or by regularizing the model with auxil-
iary tasks (Sadler et al., 2022).

5.2 Comparison with the PREVAH model

Although some neural networks outperformed the PREVAH
model (Fig. 3), the differences in terms of NSE were small.

https://doi.org/10.5194/hess-29-1061-2025

1073

The marginally better representation of runoff mean and am-
plitude by PREVAH makes sense intuitively, as the data-
driven model has a very limited number of training catch-
ments to learn spatial features from. Equivalently, the bet-
ter representation of temporal patterns by the LSTM model
could be explained by the fact that it has access to long time
series to learn dynamics from. It is not surprising that ma-
chine learning can outperform physically based models in
runoff prediction, as this has been demonstrated in previous
studies (e.g., Kratzert et al., 2018; Lees et al., 2021; Gud-
mundsson and Seneviratne, 2015; Ghiggi et al., 2021). How-
ever, in this study, we used a limited number of meteorolog-
ical drivers compared to the needs of the PREVAH model.
Furthermore, PREVAH is an expert model that uses carefully
regionalized parameters for the study domain (Viviroli et al.,
2009c). As PREVAH provides the natural discharge within
the catchment domain, it is not able to capture the dampen-
ing effect provided by lakes (Fig. 6b). The LSTM model is
able to cope with such effects as part of its global calibration
result.

From the analysis of the spatial patterns of the model per-
formance (Fig. 4), we learned that LSTMpes; encountered
challenges with dry catchments that have both low runoff
mean and variance. This was not surprising due to the high
signal-to-noise ratio in runoff observations and the sensitiv-
ity to minor variability in the meteorological variables and
catchment properties in dry catchments. Similarly, PREVAH
struggled with dry conditions, but it still clearly performed
better under such conditions. In contrast, LSTMyeg repre-
sents lake-dominated catchments with low elevation signif-
icantly better. This was expected, as PREVAH does not rep-
resent lake processes, and therefore it cannot properly rep-
resent their dampening effect. The interaction with eleva-
tion could be explained by the fact that the largest lakes in
Switzerland are at medium to low elevations.

The PREVAH model is already used successfully for re-
construction (Otero et al., 2023) and future (Laghari et al.,
2018; Brunner et al., 2019b) climate scenarios. With the
objective of real-time monitoring, long-term reconstruction,
and potentially efficient simulation of climate scenarios in
mind, we consider the similar performance compared to the
benchmark to be sufficient. The similar ability to represent
interannual patterns by LSTMyeg and the slightly better fi-
delity of trends (Fig. 5) are, especially given the lowered data
requirements, encouraging. We want, however, to state here
upfront that a process-based hydrological model has advan-
tages over a data-driven model, such as interpretability and
physical consistency.

5.3 Plausibility of the runoff reconstruction product
The reconstruction of runoff back to the early 1960s for
Switzerland is a novelty enabled by the reduced data needs

of our deep-learning-based approach compared to the PRE-
VAH model. Here, we evaluate the plausibility of the simu-
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lated patterns based on Figs. 7-9 by contrasting them with
prior knowledge.

The overall trend towards drier conditions simulated by
our data-driven model aligns with independent studies. This
has been reported widely for Europe (Orth and Destouni,
2018; Hanel et al., 2018) and specifically for Switzerland
(Hohmann et al., 2018; Brunner et al., 2019b; Henne et al.,
2018). Interestingly, the results reveal that the runoff anoma-
lies of the 2022 drought (e.g., Toreti et al., 2022; Schu-
macher et al.,, 2024) were larger than those of the well-
documented 2003 drought (e.g., Ciais et al., 2005; Rebetez
et al., 2006; Seneviratne et al., 2012). The identified drying
trend in the summer season is consistent with a reported in-
crease in agroecological droughts in western and central Eu-
rope in the latest report of the Intergovernmental Panel on
Climate Change (IPCC; Arias et al., 2023) and may indicate
the presence of a drying trend in streamflow in this region,
which was assigned low confidence at the time of the [PCC
report (Seneviratne et al., 2021).

In the winter months, an increase in runoff in the Pre-Alps
may be linked to an earlier onset of snowmelt (Vorkauf et al.,
2021). In the same region and other mid-altitude areas such
as the Jura sub-Alpine mountain range, runoff decreases in
spring. This could be related to a combination of a trend
towards lower snowmelt due to less snowfall during winter
(Matiu et al., 2021) and an earlier onset of snowmelt due
to the previously mentioned warmer temperatures. The Alps
are, supposedly, similarly affected by those effects, yet the
onset of thawing is delayed due to higher altitudes, and hence
we see the main contribution to negative trends in the later
summer. In Ticino, a strong trend towards warmer tempera-
tures has been reported, although precipitation seems not to
show significant trends (Reinhard et al., 2005). The negative
trend in summer is likely caused by both a lack of snowmelt
and an increase in evapotranspiration via warmer air temper-
atures, which can have a significant impact on runoff (Teul-
ing et al., 2013; Goulden and Bales, 2014).

5.4 Potential applications

Other than catchment-level observations, the spatially and
temporally complete reconstruction provides a tool for study-
ing runoff beyond the observational horizon and for un-
gauged catchments. The focus on catchments with low hu-
man impacts during model training allows the investiga-
tion of physical processes in isolation. This is an advan-
tage for climate-focused studies, as it is challenging and of-
ten not possible to disentangle effects of human water use
from physical effects associated with human-induced climate
change. We encourage researchers to use the CH-RUN prod-
uct for trend analysis and to understand the drivers of simu-
lated patterns. We further see potential in using CH-RUN as
an independent benchmark dataset for hydrological models:
it is challenging to understand the different sources of un-
certainty during model development. Having a methodolog-
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ically independent benchmark dataset can help disentangle
methodological and data limitations.

With our data-driven approach, we achieve a speedup by a
factor of 600 compared to PREVAH, assuming PREVAH is
run parallelized across 100 central processing units (CPUs)
and CH-RUN is employed on a high-performance graph-
ics processing unit (GPU). The reconstruction for the entire
domain took approximately 20s for one ensemble member
on an NVIDIA A100 GPU. This speedup enables computa-
tionally cheap real-time monitoring of runoff on a national
scale. In addition, the model can be fed with meteorological
forecasts, which would enable early warning of floods and
droughts. A common use case for hydrological models is to
run scenarios, i.e., to simulate responses to a changing cli-
mate or to attribute runoff patterns to anthropogenic forcing.
However, running scenarios with physically based models is
computationally expensive, which limits the ensemble size
and forecast horizon. The speedup compared to a traditional
hydrological model allows thousands of scenarios to be run
with ease. The application in early warning and running sce-
narios must be examined carefully and may require further
calibration steps, but it holds potential for understanding and
mitigating climate change impacts in the near future.

5.5 Limitations

In the evaluation at the catchment level, it was observed
that the CH-RUN model, although effective in general, faces
challenges under certain conditions in accurately represent-
ing runoff, such as in catchments with a low runoff mean and
variance. The model’s performance was evaluated in catch-
ments with minimal human impact, such as dam operations
and surface irrigation, in order to reduce anthropogenic influ-
ences on the results. However, the model did not incorporate
detailed land use information beyond basic surface classifi-
cations, thereby not accounting for direct human alterations
in the hydrological system.

A limitation of our approach was the reliance on air tem-
perature and precipitation data only for long-term reconstruc-
tion, excluding other meteorological factors like sunshine
hours, which can only be implicitly approximated by the
model via the available input variables. The assumption of
static variables, such as land use and glacier coverage, be-
ing constant over time is a necessary simplification but intro-
duces potential inaccuracies. This is particularly critical as
land use can vary, and glacier areas are known to decrease
over time, potentially leading to biases, especially in the
early stages of the reconstruction, when observational data
are sparse.

Moreover, the dataset used for training the model and
the dataset for reconstruction are not entirely independent,
though they are not identical. The temporal overlap of the
training set within the reconstruction period was unavoid-
able due to data limitations. Efforts were made to mitigate the
risk of overfitting by employing a distinct validation set that
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was both spatially and temporally separated from the training
data.

In runoff modeling, the quality of meteorological drivers
has a high impact on model performance, and both mete-
orological products used here have known limitations. The
TabsD product of air temperature shows a clear relationship
between the error and number of stations used for the in-
terpolation, which results in larger errors in the 1960s and
1970s that are most pronounced in the winter months, partic-
ularly in the Alps and Ticino. The linear trend (1961-2010)
of interpolated air temperature shows relatively low agree-
ment with the observed trends (Frei, 2014). The RhiresD
precipitation product is affected by two primary sources of
uncertainty: the rain gauge measurements are prone to un-
dercatch, leading to underestimation of precipitation, partic-
ularly with heavy winds and snow in general (Neff, 1977).
This leads, in Switzerland, to underestimations of about 4 %
at low elevations and up to 40 % at high altitudes in winter
(Sevruk, 1985). From the interpolation, there is a tendency
to overestimate light precipitation and underestimate heavy
precipitation (MeteoSwiss, 2021b), although these inaccu-
racies are reduced for areal aggregates such as the catch-
ment averages deployed in the present study. Although no
information on the accuracy over time was found, it is ex-
pected that the sparser measurement network in the 1960s
and 1970s will lead to larger errors during this period, simi-
lar to the TabsD product. These uncertainties are expected to
affect the results substantially. We acknowledge that, for the
early reconstruction period (1960s and 1970s), where fewer
measurement stations were available, the reconstruction may
be less trustworthy. The low agreement of interpolated air
temperature trends with observations could explain why both
PREVAH and CH-RUN struggle to represent extreme runoff
trends. While we did not specifically investigate the repre-
sentation of extreme runoff events in this study, we expect
that the overestimation of weak precipitation events and the
underestimation of strong precipitation events will result in a
bias in runoff simulations.

Finally, our deep-learning model depends heavily on the
availability and diversity of data. Representing infrequent
occurrences or events, which are less common in the data
distribution, poses a significant challenge. Consequently, the
model’s ability to accurately depict rare and extreme hydro-
logical events, such as sudden heavy rains leading to flash
floods, is likely limited. This aspect is underscored by the
inherent difficulties in modeling the “long tail” of event dis-
tributions (Zhang et al., 2023).

6 Conclusions

In this study, we developed a data-driven daily runoff recon-
struction product for Switzerland, spanning the period from
1962 to 2023. Our model not only matched but also surpassed
the performance of an operational hydrological model at the
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catchment level. This achievement is particularly notewor-
thy considering the reduced data requirements, a limitation
necessary to achieving such an extensive reconstruction pe-
riod. Our model effectively captured daily runoff patterns and
interannual variability and represents long-term trends de-
cently, providing a comprehensive and satisfying depiction
of runoff dynamics.

The reconstruction product revealed interesting patterns in
long-term runoff trends that align with prior knowledge. The
additional reconstruction of the 1960s and 1970s suggests
that the negative decadal runoff trend is driven by an increase
in the frequency, rather than amplitude, of dry years, along
with a decrease in the frequency of wet years. We diagnosed
a trend towards lower runoff at the national scale that was
mainly linked to the summer months, where the spatial pat-
terns of runoff indicated increasingly dry conditions, partic-
ularly at mid to high altitudes. We encourage in-depth inves-
tigation of the identified patterns in subsequent studies.

One of the major strengths of our approach lies in its com-
putational efficiency, which opens up possibilities for con-
tiguous near-real-time monitoring and potential forecasting
of runoff. The reduced data demands of our model make it
an invaluable tool for scenario simulation and attribution of
trends to anthropogenic climate change, allowing for rapid
evaluation of thousands of scenarios that was not feasible
with traditional physically based models.

Looking ahead, we believe that the current approach could
be enhanced further by integrating additional data constraints
or incorporating physical knowledge. Specifically, for a more
accurate representation of large catchments, we see the inclu-
sion of routing processes as a vital next step.

Appendix A: Model training
Al Hyperparameter tuning

The hyperparameter space searched is shown in Table Al.
model_dim denotes the model dimensionality, i.e., the
size of the internal representations. enc_dropout refers
to the dropout (random deactivation of nodes with prob-
ability p during training) applied in the encoding layers,
and fusion_method refers to the method used for fu-
sion of the temporal and static variables. For the AdamW
optimizer, learning_rate denotes the step size and
weight_decay the L2 regularization. temp_layers
refers to the number of stacked temporal layers for both
the LSTM model and the TCN, and kernel_ size is
the dimensionality of the 1D kernel used for convolu-
tion in the time dimension for the latter. An optional
temporal_dropout is used for the TCN. The perfor-
mance of the models and the corresponding hyperparame-
ters is provided in Table A2 for the LSTM models and in
Table A3 for the TCNs.
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Table A1. The search space for hyperparameter tuning. The common hyperparameters were used for both architectures, and the other ones
are model-specific.

Name Search space

Common parameters

model_dim {64, 128, 256}

enc_dropout {0.0,0.2}

fusion_method { ‘pre_encoded’, ‘pre_repeated’, ‘post_repeated’ }
learning_rate {le-4, 1e-3, le-2}

weight_decay {le-1, 1e-2, 1e-3}

LSTM parameters

temp_layers {1,2}

TCN parameters

temp_layers {2,3,4}
kernel_size {8, 16}
temporal_dropout {0.0,0.2}

model_dim corresponds to the model dimensionality, which is shared among all feed-forward and
temporal neural networks. enc_dropout was used in the encoder layers prior to the temporal layer,
and fusion_method corresponds to the approaches described in Sect. 3.1. learning_rate and
weight_decay are parameters of the optimizer and control the weight update step size and
regularization, respectively. For the long short-term memory (LSTM) model and the temporal
convolutional network (TCN), temp_1layers defines the number of stacked temporal layers. For the
latter, kernel_size is the width of the 1D convolution kernel applied along the time dimension, and
temporal_dropout deactivates entire channels of input encoding instead of randomly dropping
activations.

Table A2. Hyperparameters found by tuning for the LSTM-based architectures. The rows are sorted by the catchment-level Nash—Sutclitfe
modeling efficiency (NSE) in descending order, and the rank column represents the overall rank among all the models. The columns
allbasins (using additional catchments for training or not), sqrttrans (transform runoff with a square root or not), and static
(use all static variables, a dimensionality-reduced version, or just the catchment area) refer to the factorial experiments described in Sect. 3.5.
Columns model_dim, enc_dropout, fusion_method, temp_layers, learning_rate, and weight_decay denote the hy-
perparameters of the model. Column num_params shows the number of tunable model weights.

Rank NSE allbasins sqrttrans  static model_dim enc_dropout fusion_method temp_layers learning rate weight _decay num_params

1 0.76  True True all 128 0.2  pre_encoded 1 0.001 0.1 169K
2 0.74  False True all 256 0.2 pre_encoded 2 0.001 0.01 1200K
3 0.72  False False dred 128 0.2 pre_encoded 2 0.001 0.1 298K
4 0.72  True False all 256 0.2 pre_encoded 1 0.001 0.01 666 K
7 0.71 False False all 128 0.2 pre_encoded 2 0.01 0.1 301K
8 0.71  True True dred 128 0.2 pre_encoded 2 0.001 0.1 208 K
10 0.70  False True area 128 0.0  post_repeated 2 0.001 0.1 330K
11 0.70  True True area 256 0.0 post_repeated 1 0.001 0.01 790K
13 0.69  True False area 256 0.2 pre_repeated 1 0.0001 0.01 659K
14 0.69 False True dred 256 0.2 pre_encoded 2 0.001 0.001 1200K
15 0.68 False False area 64 0.0  post_repeated 1 0.001 0.1 50K
18 0.66 True False dred 128 0.2 pre_encoded 2 0.01 0.1 208 K
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Table A3. Hyperparameters found by tuning for the TCN-based architectures. The rows are sorted by the catchment-level NSE in descend-
ing order, and the rank column represents the overall rank among all the models. The columns allbasins (use additional catchments
for training or not), sqrttrans (transform runoff with a square root or not), and static (use all static variables, a dimensionality-
reduced version, or just catchment area) refer to the factorial experiments described in Sect. 3.5. Columns model_dim, enc_dropout,
fusion_method,temp_layers,kernel size,learning_rate,and weight_decay denote the hyperparameters of the model.

Column num_params shows the number of tunable model weights.

Rank NSE allbasins sqrttrans  static model_dim enc_dropout fusion_method temp_layers kernel_size learning_rate  weight_decay num_params

5 0.72  True False dred 128 0.0  post_repeated 3 16 0.0001 0.001 1600 K
6 0.72  False True dred 128 0.0  post_repeated 4 16 0.0001 0.001 2200K
9 0.71  True True all 256 0.0 post_repeated 4 8 0.0001 0.1 4500K
12 0.70  True True dred 128 0.0  post_repeated 4 16 0.0001 0.001 2200 K
16 0.68  False True area 64 0.0  post_repeated 4 16 0.001 0.1 542K
17 0.68  True False area 128 0.2 pre_repeated 3 16 0.0001 0.1 1600 K
19 0.66  False False area 128 0.2 post_repeated 4 8 0.001 0.1 1100K
20 0.65 True True area 128 0.0  post_repeated 4 16 0.0001 0.001 2200K
21 0.65 False True all 256 0.2 post_repeated 4 16 0.0001 0.1 8700 K
22 0.64 False False all 256 0.2 post_repeated 4 8 0.001 0.01 4500 K
23 0.63  False False dred 64 0.0  pre_repeated 4 8 0.001 0.01 272K
24 0.62  True False all 256 0.2 pre_encoded 4 8 0.0001 0.1 4300K
From the fusion methods introduced in Sect. 3.1, pre- Trone ] g E
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Here, we evaluate the factorial experiment outlined in
Sect. 3.5. In Fig. Al, the diagonal shows how the model se-
tups impact the median NSE across the catchments, and the
offset triangle shows the interactions of the factors.

For the LSTM architecture, using all the training catch-
ments and all the static variables had a higher impact on the
outcome than the square root transform of the target variable,
which was negligible. The factors “training catchments” and
“static variables” interacted strongly, indicating that having
both more training data and more information on catchment
properties contributes more to the model performance than
using the factors independently. The interaction with the “tar-
get transform”, in contrast, was minimal for the LSTM archi-
tectures. For the TCNGs, the results look different. Using more
static variables as input seems to have improved the model
performance, while using additional training catchments did
so only marginally and the interactions of the training catch-
ments and static variables were less clear. Overall, the TCNs
show a lower range of performance across the setups than the
LSTM models.
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Figure Al. Model setup impact on performance and its interac-
tions based on the median catchment NSE, evaluated on the spa-
tially and temporally independent test set. The colors represent the
NSE relative to the respective model mean across the setups: red
represents worse performance, and blue represents better perfor-
mance. The background gradients have been calculated using linear
least-squares regression, with the model performance as the depen-
dent variable. The offset lower triangular panels show results for
the LSTM model, the offset upper triangular panels those for the
TCN (i.e., variable interactions), and the three panels on the diag-
onal the main effects, split to distinguish between the two models.
The x and y axes represent the setups tested in the factorial ex-
periment. “Training catchments” refers to the catchments used for
training: a subset of 98 catchments less impacted by anthropogenic
factors (Cog) or all the catchments (Cpg7). “Target transform” is
either Thone if the target variable was not transformed or Tyqrt for
square root transform. “Static variables” is Sy if all the static vari-
ables are used, Spcp if they are first transformed using PCA, or
Sarea if only the catchment area is used beyond the meteorological
variables.
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