Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2617-2024
https://doi.org/10.5194/hess-28-2617-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts

Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger

Related authors

Controls on spatial and temporal variability of soil moisture across a heterogeneous boreal forest landscape
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
Hydrol. Earth Syst. Sci., 29, 5493–5513, https://doi.org/10.5194/hess-29-5493-2025,https://doi.org/10.5194/hess-29-5493-2025, 2025
Short summary
Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022,https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary

Cited articles

Ågren, A., Lidberg, W., and Ring, E.: Mapping Temporal Dynamics in a Forest Stream Network – Implications for Riparian Forest Management, Forests, 6, 2982–3001, https://doi.org/10.3390/f6092982, 2015. 
Ågren, A., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 404, 115280, https://doi.org/10.1016/j.geoderma.2021.115280, 2021. 
Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014. 
Ala-Ilomäki, J., Lindeman, H., Mola-Yudego, B., Prinz, R., Väätäinen, K., Talbot, B., and Routa, J.: The effect of bogie track and forwarder design on rut formation in a peatland, International Journal of Forest Engineering, 45, 1–8, https://doi.org/10.1080/14942119.2021.1935167, 2021. 
Allman, M., Jankovský, M., Messingerová, V., and Allmanová, Z.: Soil moisture content as a predictor of soil disturbance caused by wheeled forest harvesting machines on soils of the Western Carpathians, J. Forestry Res., 28, 283–289, https://doi.org/10.1007/s11676-016-0326-y, 2017. 
Download
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Share