Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2617-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2617-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
Marian Schönauer
CORRESPONDING AUTHOR
Department of Forest Work Science and Engineering, University of Göttingen, Göttingen, Germany
Anneli M. Ågren
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Klaus Katzensteiner
Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
Florian Hartsch
Department of Forest Work Science and Engineering, University of Göttingen, Göttingen, Germany
Paul Arp
Forestry and Environmental Management, University of New Brunswick, New Brunswick, Canada
Simon Drollinger
Department of Physical Geography, University of Göttingen, Göttingen, Germany
Dirk Jaeger
Department of Forest Work Science and Engineering, University of Göttingen, Göttingen, Germany
Related authors
No articles found.
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
Hydrol. Earth Syst. Sci., 29, 5493–5513, https://doi.org/10.5194/hess-29-5493-2025, https://doi.org/10.5194/hess-29-5493-2025, 2025
Short summary
Short summary
We investigated the factors influencing spatial and temporal variations in soil moisture across a boreal forest catchment in northern Sweden. We found that soil moisture is shaped by topography, soil properties, vegetation characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022, https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary
Short summary
Historically, many peatlands in the boreal region have been drained for timber production. Given the prospects of a drier future due to climate change, wetland restorations are now increasing. Better maps hold the key to insights into restoration targets and land-use management policies, and maps are often the number one decision-support tool. We use an AI-developed soil moisture map based on laser scanning data to illustrate how the mapping of peatlands can be improved across an entire nation.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Cited articles
Ågren, A., Lidberg, W., and Ring, E.: Mapping Temporal Dynamics in a Forest Stream Network – Implications for Riparian Forest Management, Forests, 6, 2982–3001, https://doi.org/10.3390/f6092982, 2015.
Ågren, A., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 404, 115280, https://doi.org/10.1016/j.geoderma.2021.115280, 2021.
Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014.
Ala-Ilomäki, J., Lindeman, H., Mola-Yudego, B., Prinz, R., Väätäinen, K., Talbot, B., and Routa, J.: The effect of bogie track and forwarder design on rut formation in a peatland, International Journal of Forest Engineering, 45, 1–8, https://doi.org/10.1080/14942119.2021.1935167, 2021.
Allman, M., Jankovský, M., Messingerová, V., and Allmanová, Z.: Soil moisture content as a predictor of soil disturbance caused by wheeled forest harvesting machines on soils of the Western Carpathians, J. Forestry Res., 28, 283–289, https://doi.org/10.1007/s11676-016-0326-y, 2017.
Ampoorter, E., van Nevel, L., de Vos, B., Hermy, M., and Verheyen, K.: Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction, Forest Ecol. Manag., 260, 1664–1676, https://doi.org/10.1016/j.foreco.2010.08.002, 2010.
Awaida, A. and Westervelt, J.: Geographic Resources Analysis Support System (GRASS GIS), Geographic Resources Analysis Support System (GRASS GIS) Software, USA, https://grass.osgeo.org (last access: 22 August 2023), 2020.
Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., and Wilke, B.-M.: Evaluation of soil compaction effects on soil biota and soil biological processes in soils, Soil and Tillage Research, 109, 133–143, https://doi.org/10.1016/j.still.2010.05.010, 2010.
Bezirksregierung Köln: Digitales Geländemodell DGM1 [Digital elevation model], https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/hoehenmodelle/digitale-gelaendemodelle/digitales-gelaendemodell (last access: 8 November 2021), 2020.
Bezirksregierung Köln: Landbedeckung NRW, https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-3 (last access: 16 November 2023), 2023.
Bivand, R., Krug, R., Lovelace, R., Neteler, M., Jeworutzki, S., and Vanderhaeghe, F.: rgrass: Interface Between “GRASS” Geographical Information System and “R”: version 0.3.9, 10 September, https://CRAN.R-project.org/package=rgrass (last access: 31 May 2024), 2023.
Breiman, L.: Random forests, Machine Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Cambi, M., Certini, G., Neri, F., and Marchi, E.: The impact of heavy traffic on forest soils: A review, Forest Ecol. Manag., 338, 124–138, https://doi.org/10.1016/j.foreco.2014.11.022, 2015.
Campbell, D. M. H., White, B., and Arp, P.: Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data, J. Soil Water Conserv., 68, 460–473, https://doi.org/10.2489/jswc.68.6.460, 2013.
Carranza, C., Nolet, C., Pezij, M., and van der Ploeg, M.: Root zone soil moisture estimation with Random Forest, J. Hydrol., 593, 125840, https://doi.org/10.1016/j.jhydrol.2020.125840, 2021.
Cavalli, A., Francini, S., McRoberts, R. E., Falanga, V., Congedo, L., Fioravante, P. de, Maesano, M., Munafò, M., Chirici, G., and Scarascia Mugnozza, G.: Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets, Remote Sens., 15, 923, https://doi.org/10.3390/rs15040923, 2023.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li, Y.: xgboost: Extreme Gradient Boosting, https://CRAN.R-project.org/package=xgboost (last access: 9 November 2021), 2021.
Copernicus Climate Change Service: ERA5-Land hourly data from 2001 to present, ECMWF, https://doi.org/10.24381/cds.e2161bac, 2019.
Crawford, L. J., Heinse, R., Kimsey, M. J., and Page-Dumroese, D. S.: Soil Sustainability and Harvest Operations, General Technical Report RMRS, https://doi.org/10.2737/RMRS-GTR-421, 2021.
Curzon, M. T., Slesak, R. A., Palik, B. J., and Schwager, J. K.: Harvest impacts to stand development and soil properties across soil textures: 25-year response of the aspen Lake States LTSP installations, Forest Ecol. Manag., 504, 119809, https://doi.org/10.1016/j.foreco.2021.119809, 2022.
D'Acqui, L. P., Certini, G., Cambi, M., and Marchi, E.: Machinery's impact on forest soil porosity, J. Terramechanics, 91, 65–71, https://doi.org/10.1016/j.jterra.2020.05.002, 2020.
DeArmond, D., Ferraz, J., Higuchi, N., and Ferraz, J. B. S.: Natural Recovery of Skid Trails. A Review, Can. J. Forest Res., 51, 948–961, https://doi.org/10.1139/cjfr-2020-0419, 2021.
Eijkelkamp Agrisearch Equipment: User Manual for the Moisture Meter type HH2, https://www.royaleijkelkamp.com/media/nrwjyah3/m-0615sae-penetrologger.pdf (last access: 7 August 2020), 2013.
Eliasson, L.: Effects of forwarder tyre pressure on rut formation and soil compaction, Silva Fenn., 39, 549–557, https://doi.org/10.14214/sf.366, 2005.
Finnish Meteorological Institute: Harvester Seasons, https://harvesterseasons.com/HarvesterSeasons_Description2pager_v2.pdf (last access: 8 November 2023), 2023.
Fjeld, D., Persson, M., Fransson, J. E. S., Bjerketvedt, J., and Bråthen, M.: Modelling forest road trafficability with satellite-based soil moisture variables, International Journal of Forest Engineering, 35, 93–104, https://doi.org/10.1080/14942119.2023.2276628, 2024.
Francesca, V., Osvaldo, F., Stefano, P., and Paola, R. P.: Soil Moisture Measurements: Comparison of Instrumentation Performances, J. Irrig. Drain E., 136, 81–89, https://doi.org/10.1061/(ASCE)0733-9437(2010)136:2(81), 2010.
Grüll, M.: Den Waldboden schonen – Vorsorgender Bodenschutz beim Einsatz von Holzerntetechnik [Soil protection in forest operations], Eberswalder Forstliche Schriftenreihe, 47, 37–44, https://www.waldwissen.net/assets/technik/holzernte/boden/lfe_bodenschutz/download/lfe_bodenschutz_originalbeitrag.pdf.pdf (last access: 31 May 2024), 2011.
Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L.: A Review of Wetland Remote Sensing, Sensors, 17, 777, https://doi.org/10.3390/s17040777, 2017.
Hamner, B. and Frasco, M.: Metrics: Evaluation Metrics for Machine Learning, https://CRAN.R-project.org/package=Metrics, 2018.
Hansson, L., Šimůnek, J., Ring, E., Bishop, K., and Gärdenäs, A. I.: Soil Compaction Effects on Root-Zone Hydrology and Vegetation in Boreal Forest Clearcuts, Soil Sci. Soc. Am. J., 83, 239, https://doi.org/10.2136/sssaj2018.08.0302, 2019.
Hauglin, M., Rahlf, J., Schumacher, J., Astrup, R., and Breidenbach, J.: Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data, Forest Ecosystems, 8, 65, https://doi.org/10.1186/s40663-021-00338-4, 2021.
Heppelmann, J. B., Talbot, B., Antón Fernández, C., and Astrup, R.: Depth-to-water maps as predictors of rut severity in fully mechanized harvesting operations, International Journal of Forest Engineering, 33, 108–118, https://doi.org/10.1080/14942119.2022.2044724, 2022.
Heubaum, F.: Bodenschutz im Staatsbetrieb Sachsenforst [Soil protection]: Projekte zur Technologieerprobung, Staatsbetrieb Sachsenforest, https://www.sbs.sachsen.de/download/Bodenschutz_Projekte_2015_09_30.pdf (last access: 5 November 2021), 2015.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, https://CRAN.R-project.org/package=raster (last access: 31 May 2024), 2020.
Hillel, D.: Environmental soil physics: Fundamentals, applications, and environmental considerations, Elsevier, San Diego, California, ISBN 0080544150, 1998.
Hoffmann, S., Schönauer, M., Heppelmann, J., Asikainen, A., Cacot, E., Eberhard, B., Hasenauer, H., Ivanovs, J., Jaeger, D., Lazdins, A., Mohtashami, S., Moskalik, T., Nordfjell, T., Stereńczak, K., Talbot, B., Uusitalo, J., Vuillermoz, M., and Astrup, R.: Trafficability Prediction Using Depth-to-Water Maps: the Status of Application in Northern and Central European Forestry, Curr. Forestry Rep., 338, 124, https://doi.org/10.1007/s40725-021-00153-8, 2022.
Horn, R., Vossbrink, J., Peth, S., and Becker, S.: Impact of modern forest vehicles on soil physical properties, Forest Ecol. Manag., 248, 56–63, https://doi.org/10.1016/j.foreco.2007.02.037, 2007.
James, S. E., Pärtel, M., Wilson, S. D., and Peltzer, D. A.: Temporal heterogeneity of soil moisture in grassland and forest, J. Ecol., 91, 234–239, 2003.
Jones, M.-F. and Arp, P.: Relating Cone Penetration and Rutting Resistance to Variations in Forest Soil Properties and Daily Moisture Fluctuations, Open Journal of Soil Science, 07, 149–171, https://doi.org/10.4236/ojss.2017.77012, 2017.
Jones, M.-F. and Arp, P.: Soil Trafficability Forecasting, Open Journal of Forestry, 9, 296–322, https://doi.org/10.4236/ojf.2019.94017, 2019.
Kelliher, F. M., Leuning, R., and Schulze, E. D.: Evaporation and canopy characteristics of coniferous forests and grasslands, Oecologia, 95, 153–163, https://doi.org/10.1007/BF00323485, 1993.
Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling soil moisture in a high-latitude landscape using LiDAR and soil data, Earth Surf. Proc. Land., 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018.
Hufkens, K., Stauffer, R., and Campitelli, E.: khufkens/ecmwfr: ecmwfr, Zenodo [code], https://doi.org/10.5281/zenodo.2647541, 2019.
Kristensen, J. A., Balstrøm, T., Jones, R. J. A., Jones, A., Montanarella, L., Panagos, P., and Breuning-Madsen, H.: Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management, SOIL, 5, 289–301, https://doi.org/10.5194/soil-5-289-2019, 2019.
Kuglerová, L., Hasselquist, E. M., Richardson, J. S., Sponseller, R. A., Kreutzweiser, D. P., and Laudon, H.: Management perspectives on Aqua incognita Connectivity and cumulative effects of small natural and artificial streams in boreal forests, Hydrol. Process., 31, 4238–4244, https://doi.org/10.1002/hyp.11281, 2017.
Kursa, M. B. and Rudnicki, W. R.: Feature Selection with the Boruta Package, J. Stat. Softw., 36, 11, https://doi.org/10.18637/jss.v036.i11, 2010.
Labelle, E. R. and Jaeger, D.: Management Implications of Using Brush Mats for Soil Protection on Machine Operating Trails during Mechanized Cut-to-Length Forest Operations, Forests, 10, 19, https://doi.org/10.3390/f10010019, 2018.
Labelle, E. R., Poltorak, B. J., and Jaeger, D.: The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance, Can. J. Forest Res., 49, 164–178, https://doi.org/10.1139/cjfr-2018-0324, 2019.
Lal, P., Singh, G., Das, N. N., Colliander, A., and Entekhabi, D.: Assessment of ERA5-Land Volumetric Soil Water Layer Product Using In Situ and SMAP Soil Moisture Observations, IEEE Geosci. Remote S., 19, 1–5, https://doi.org/10.1109/LGRS.2022.3223985, 2022.
Larson, J., Lidberg, W., Ågren, A. M., and Laudon, H.: Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices, Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, 2022.
Leach, J. A., Lidberg, W., Kuglerová, L., Peralta-Tapia, A., Ågren, A., and Laudon, H.: Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system, Water Resour. Res., 53, 5420–5437, https://doi.org/10.1002/2016WR019804, 2017.
Lidberg, W., Nilsson, M., and Ågren, A.: Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape, Ambio, 49, 475–486, https://doi.org/10.1007/s13280-019-01196-9, 2020.
Mattila, U. and Tokola, T.: Terrain mobility estimation using TWI and airborne gamma-ray data, J. Environ. Manage., 232, 531–536, https://doi.org/10.1016/j.jenvman.2018.11.081, 2019.
McNabb, D. H., Startsev, A. D., and Nguyen, H.: Soil Wetness and Traffic Level Effects on Bulk Density and Air-Filled Porosity of Compacted Boreal Forest Soils, Soil Sci. Soc. Am. J., 65, 1238–1247, https://doi.org/10.2136/sssaj2001.6541238x, 2001.
Mohtashami, S., Eliasson, L., Jansson, G., and Sonesson, J.: Influence of soil type, cartographic depth-to-water, road reinforcement and traffic intensity on rut formation in logging operations: a survey study in Sweden, Silva Fenn., 51, 5, https://doi.org/10.14214/sf.2018, 2017.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling: A review of hydrological, geomorphological, and biological applications, Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Murphy, P. N. C., Ogilvie, J., Connor, K., and Arp, P.: Mapping wetlands: A comparison of two different approaches for New Brunswick, Canada, Wetlands, 27, 846–854, https://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2, 2007.
Murphy, P. N. C., Ogilvie, J., and Arp, P.: Topographic modelling of soil moisture conditions: A comparison and verification of two models, Eur. J. Soil Sci., 60, 94–109, https://doi.org/10.1111/j.1365-2389.2008.01094.x, 2009.
Murphy, P. N. C., Ogilvie, J., Meng, F.-R., White, B., Bhatti, J. S., and Arp, P.: Modelling and mapping topographic variations in forest soils at high resolution: A case study, Ecol. Model., 222, 2314–2332, https://doi.org/10.1016/j.ecolmodel.2011.01.003, 2011.
Oliveira, V. A., Rodrigues, A. F., Morais, M. A. V., Terra, M. D. C. N. S., Guo, L., and Mello, C. R.: Spatiotemporal modelling of soil moisture in an A tlantic forest through machine learning algorithms, Eur. J. Soil Sci., 72, 1969–1987, https://doi.org/10.1111/ejss.13123, 2021.
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., Mattia, F., Musial, J. P., Preuschmann, S., Reichle, R. H., Satalino, G., Silgram, M., van Bodegom, P. M., Verhoest, N. E. C., Wagner, W., Walker, J. P., Wegmüller, U., and Loew, A.: A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements, Remote Sens. Environ., 252, 112162, https://doi.org/10.1016/j.rse.2020.112162, 2021.
Picchio, R., Latterini, F., Mederski, P. S., Tocci, D., Venanzi, R., Stefanoni, W., and Pari, L.: Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy, Sustainability, 12, 5716, https://doi.org/10.3390/su12145716, 2020.
Poltorak, B. J., Labelle, E. R., and Jaeger, D.: Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats, Soil and Tillage Research, 179, 96–104, https://doi.org/10.1016/j.still.2018.02.005, 2018.
Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrol. Process., 5, 59–79, https://doi.org/10.1002/hyp.3360050106, 1991.
R Core Team: R: A Language and Environment for Statistical Computing, The R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 31 March 2024), 2023.
Ring, E., Ågren, A., Bergkvist, I., Finér, L., Johansson, F., and Högbom, L.: A guide to using wet area maps in forestry: En guide för hur man kan använda markfuktighetskartor i skogsbruket, Arbetsrapport 1051-2020, Uppsala, Sweden, https://www.skogforsk.se/cd_20200618101746/contentassets/2b 2c62c4a4934838a1460cbb7b327d20/arbetsrapport-1051-2020-2.pdf (last access: 31 May 2024), 2022.
Schönauer, M.: Data: Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts, Zenodo [data set], https://doi.org/10.5281/zenodo.11032138, 2024.
Schönauer, M. and Maack, J.: R-code for calculating depth-to-water (DTW) maps using GRASS GIS (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.5638518, 2021.
Schönauer, M., Hoffmann, S., Maack, J., Jansen, M., and Jaeger, D.: Comparison of Selected Terramechanical Test Procedures and Cartographic Indices to Predict Rutting Caused by Machine Traffic during a Cut-to-Length Thinning Operation, Forests, 12, 113, https://doi.org/10.3390/f12020113, 2021a.
Schönauer, M., Väätäinen, K., Prinz, R., Lindeman, H., Pszenny, D., Jansen, M., Maack, J., Talbot, B., Astrup, R., and Jaeger, D.: Spatio-temporal prediction of soil moisture and soil strength by depth-to-water maps, Int. J. Appl. Earth Obs., 105, 102614, https://doi.org/10.1016/j.jag.2021.102614, 2021b.
Schönauer, M., Prinz, R., Väätäinen, K., Astrup, R., Pszenny, D., Lindeman, H., and Jaeger, D.: Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals, Int. J. Appl. Earth Obs., 108, 102730, https://doi.org/10.1016/j.jag.2022.102730, 2022.
Sirén, M., Salmivaara, A., Ala-Ilomäki, J., Launiainen, S., Lindeman, H., Uusitalo, J., Sutinen, R., and Hänninen, P.: Predicting forwarder rut formation on fine-grained mineral soils, Scand. J. Forest Res., 34, 145–154, https://doi.org/10.1080/02827581.2018.1562567, 2019.
Sørensen, R. and Seibert, J.: Effects of DEM resolution on the calculation of topographical indices: TWI and its components, J. Hydrol., 347, 79–89, https://doi.org/10.1016/j.jhydrol.2007.09.001, 2007.
Suvinen, A. and Saarilahti, M.: Measuring the mobility parameters of forwarders using GPS and CAN bus techniques, J. Terramechanics, 43, 237–252, https://doi.org/10.1016/j.jterra.2005.12.005, 2006.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293–310, https://doi.org/10.1016/j.advwatres.2005.02.016, 2006.
Uusitalo, J., Ala-Ilomäki, J., Lindeman, H., Toivio, J., and Sirén, M.: Modelling soil moisture – soil strength relationship of fine-grained upland forest soils, Silva Fenn., 53, 10050, https://doi.org/10.14214/sf.10050, 2019.
Uusitalo, J., Ala-Ilomäki, J., Lindeman, H., Toivio, J., and Sirén, M.: Predicting rut depth induced by an 8-wheeled forwarder in fine-grained boreal forest soils, Ann. For. Sci., 77, https://doi.org/10.1007/s13595-020-00948-y, 2020.
Vega-Nieva, D. J., Murphy, P. N. C., Castonguay, M., Ogilvie, J., and Arp, P.: A modular terrain model for daily variations in machine-specific forest soil trafficability, Can. J. Soil Sci., 89, 93–109, https://doi.org/10.4141/CJSS06033, 2009.
Walker, J. P., Willgoose, G. R., and Kalma, J. D.: In situ measurement of soil moisture: a comparison of techniques, J. Hydrol., 293, 85–99, https://doi.org/10.1016/j.jhydrol.2004.01.008, 2004.
White, B., Ogilvie, J., Campbell, D. M. H., Hiltz, D., Gauthier, B., Chisholm, H. K., Wen, H. K., Murphy, P. N. C., and Arp, P.: Using the Cartographic Depth-to-Water Index to Locate Small Streams and Associated Wet Areas across Landscapes, Can. Water Resour. J., 37, 333–347, https://doi.org/10.4296/cwrj2011-909, 2012.
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests for High Dimensional Data in C and R, J. Stat. Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017.
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications...