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Abstract. Spatiotemporal modeling is an innovative way of
predicting soil moisture and has promising applications that
support sustainable forest operations. One such application is
the prediction of rutting, since rutting can cause severe dam-
age to forest soils and ecological functions.

In this work, we used ERA5-Land soil moisture retrievals
and several topographic indices to model variations in the in
situ soil water content by means of a random forest model.
We then correlated the predicted soil moisture with rut depth
from different trials.

Our spatiotemporal modeling approach successfully pre-
dicted soil moisture with Kendall’s rank correlation coeffi-
cient of 0.62 (R2 of 64 %). The final model included the spa-
tial depth-to-water index, topographic wetness index, stream
power index, as well as temporal components such as month
and season, and ERA5-Land soil moisture retrievals. These
retrievals were shown to be the most important predictor in
the model, indicating a large temporal variation. The predic-
tion of rut depth was also successful, resulting in Kendall’s
correlation coefficient of 0.61.

Our results demonstrate that by using data from several
sources, we can accurately predict soil moisture and use this
information to predict rut depth. This has practical applica-
tions in reducing the impact of heavy machinery on forest
soils and avoiding wet areas during forest operations.

1 Introduction

For decades, forestry research has sought solutions to accu-
rately predict the trafficability of forest soils (Mattila and
Tokola, 2019; White et al., 2012; Murphy et al., 2007). In
order to further sustainable forest management, efficient pro-
tection of forest soils is mandatory (Vega-Nieva et al., 2009;
Picchio et al., 2020; Uusitalo et al., 2019). Heavy harvest-
ing and forwarding machines have been frequently associ-
ated with severe soil damage, particularly when operating on
soils with low bearing capacity (Horn et al., 2007; Allman et
al., 2017). Soil compaction is a common consequence of har-
vesting operations (Ampoorter et al., 2010; Eliasson, 2005;
DeArmond et al., 2021) and has been shown to be detri-
mental to a number of ecological functions, including soil
biota (Beylich et al., 2010), hydrological patterns, and nutri-
ent supply, with potential drawbacks on plant growth and site
productivity (Curzon et al., 2022). In addition to soil com-
paction, machine traffic can also result in deep ruts (Horn
et al., 2007; Ala-Ilomäki et al., 2021; Poltorak et al., 2018),
which affect site hydrology and increase anaerobic condi-
tions at the rut’s base, where air-filled porosity is reduced,
leading to minimized soil aeration (Hansson et al., 2019).

The risk of causing high degrees of soil compaction and
rutting is mainly attributed to soil properties such as initial
soil bulk density and texture, as well as the current soil wa-
ter content (Cambi et al., 2015; Crawford et al., 2021). Moist
soils show a higher susceptibility to damage since the inter-
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nal friction is decreased through water embracing soil par-
ticles (Hillel, 1998), reducing the soil bearing capacity and
the ability for elastic responses to machine-induced impacts
(McNabb et al., 2001).

To support forestry management and machine operators,
accurate cartographic information on soils with low bearing
capacity is essential (Jones and Arp, 2017; Sirén et al., 2019;
Campbell et al., 2013). However, existing models that rely
on detailed soil maps to retrieve soil mechanical parameters
(e.g., Grüll, 2011; Heubaum, 2015) require a high level of in-
put data, and high-resolution soil maps are only available for
selected areas, hindering their large-scale application (Vega-
Nieva et al., 2009; Kristensen et al., 2019). Therefore, re-
searchers have turned to topographic modeling as a more
promising approach (Lidberg et al., 2020; White et al., 2012),
as it requires only digital elevation models (DEMs), which
are increasingly available for most parts of Europe (Hoff-
mann et al., 2022; Guo et al., 2017). One topographic in-
dex that has been extensively studied is the “depth-to-water”
(DTW) concept, originally developed and tested at the Uni-
versity of New Brunswick by Meng, Ogilvie, and Arp, as
described by Murphy et al. (2007, 2009). The DTW concept
calculates flow lines across areas of interest by determining
a flow accumulation and selecting lines that originate at a set
threshold of accumulated upstream contributing areas. Us-
ing a cost function that considers the cell-to-cell slopes, the
vertical distances from each cell within a raster to the nearest
simulated flow line are ascertained. DTW is well documented
(e.g., White et al., 2012; Vega-Nieva et al., 2009; Murphy et
al., 2011).

Previous research has shown that the DTW index per-
forms relatively well in predicting wet areas in forested for-
merly glaciated landscapes compared to other indices (Ågren
et al., 2014; Larson et al., 2022). Recent studies have ex-
plored further developments in moisture prediction by uti-
lizing machine learning algorithms applied to a variety of
freely available data and diverse retrieved information, in-
cluding different topographic indices calculated on DEMs.
Ågren et al. (2021) used 28 topographic predictor variables
in the XGBoost (eXtreme Gradient Boosting) model (Chen
et al., 2021) to predict soil moisture across the entire Swedish
forest landscape at high resolution (2× 2 m). Although topo-
graphic modeling approaches are widely used, they often fail
to adjust for seasonal changes in soil water regimes. Static
maps may not adequately represent temporal occurrences of
flow lines, wet fields, or water-saturated soils. Earlier, the
DTW concept was designed to offer a potential solution by
enabling the calculation of different scenarios ranging from
“very dry” or “frozen” to “wet” soil conditions. However,
selecting the most accurate DTW scenario requires high ex-
pertise (Leach et al., 2017: p. 5434; Lidberg et al., 2020), and
mistakes can lead to reduced accuracy and result in potential
soil damages that could be avoided.

Therefore, we believe that the next crucial step in soil
moisture modeling is to incorporate a temporal component

that enables the prediction of rasters for any given time and
area. One approach to achieve this was designed by Schö-
nauer et al. (2022), who developed a spatiotemporal predic-
tion model. Dynamic satellite-based retrievals of soil mois-
ture with coarse spatial resolution (Soil Moisture Active Pas-
sive mission) were combined with high-resolution but static
topographic maps. This resulted in improved performance
in predicting moisture values across time series conducted
on sites in Finland, Germany, and Poland. The incorporation
of a dynamic component into the prediction model enabled
reflection of the current overall moisture conditions on the
study sites. This allowed us to calculate daily prediction grids
that could support forestry practice and enable the guidance
of machine operators on sites to avoid traffic on wet areas
susceptible to damages. However, a validation of predicting
rut depth by models of this kind has not been facilitated yet.

The effectiveness of soil moisture modeling, whether
based on static or dynamic independent variables, is ulti-
mately constrained by the quality of the dependent vari-
able, which in this case is in situ soil moisture. Manual
measurements of soil moisture have been conducted in nu-
merous studies using different devices, such as handheld
time domain reflectometry sensors (Kemppinen et al., 2018;
Uusitalo et al., 2019) or impedance measuring techniques
(e.g., Schönauer et al., 2021b). Despite the potential inaccu-
racies associated with these techniques (Walker et al., 2004;
Francesca et al., 2010), they offer significant advantages in
terms of flexibility, scalability, low investment costs, and
minimal maintenance. Another option is the use of continu-
ously measuring sensor networks (e.g., Oliveira et al., 2021),
which can provide relatively reliable measurements but with
limited spatial coverage due to the high costs of installation
and maintenance.

In this study, we built upon the approach developed by
Schönauer et al. (2022) by incorporating additional data
sources, including additional topographic indices, soil maps,
and soil moisture retrievals from ERA5-Land for two soil
depths. The study also used two types of data sources for
soil moisture measurements: manual measurements using a
handheld moisture meter and data from two continuously
measuring sensor networks. We argue that manual measure-
ments are simpler and can be applied to larger areas, while
sensor networks are more expensive and limited to chosen
locations.

The study had two main objectives: (1) to train soil mois-
ture models using the two individual data sets (manual mea-
surements and sensor networks) and evaluate their prediction
performance and (2) to select the best combination of predic-
tor variables (e.g., topographic indices and ERA5-Land val-
ues) using a repeated cross-validation approach and compare
the best models with rut depth data obtained during four trials
using a forwarder.
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2 Material and methods

To model soil water content (SWC), random forest models
were trained using two separate data sets: manual in situ mea-
surements using an impedance measuring technique (IMT)
and continuously measuring soil sensor networks (SSNs). To
both data sets we added predictor variables derived from to-
pographic indices (e.g., depth-to-water and topographic wet-
ness index), soil maps, SWC estimates from the ERA5-Land
campaign (SWCERA), and numerical values for date (month
and season). We performed cross-validation and reduced fea-
tures stepwise to choose the best-performing model. Subse-
quently, the two final models (for IMT and SSNs) were used
to predict SWC for the positions and dates of different field
trials with a forwarder. During these field trials, rut depth data
were captured and compared to the predictions from the final
SWC models (Fig. 1).

2.1 Study sites

The data acquisition of volumetric SWC [%] and the trials
with a forwarder were conducted in two forest stands located
near the city of Arnsberg in North Rhine-Westphalia, Ger-
many (Fig. 2). The forest stands were situated at an altitude
of approximately 250 m on common soil types such as Cam-
bisol and Stagnosol on claystone and sandstone from the De-
vonian and the Carboniferous period (Table 1).

2.2 Soil moisture models

2.2.1 In situ soil moisture

Two sets of in situ data of soil moisture were used: (1) man-
ual measurements of SWC were performed using a HH2
Moisture Meter (Delta-T Devices Ltd, England), which ap-
plies an impedance measuring technique (i.e., IMT) (Ei-
jkelkamp Agrisearch Equipment, 2013), and (2) data from
a continuously measuring soil sensor network (i.e., SSN).

The IMT data used for this study were previously used for
the validation by Schönauer et al. (2022) and consisted of
12 measuring transects. The transects were placed in vari-
ous positions in broadleaved forests, known to be temporar-
ily wet or sensitive for machine traffic, with each transect
having a length of 40 m. SWC was measured with a spac-
ing of 2 m along the transects. To measure SWC, measur-
ing rods of 60 mm length were vertically inserted into the
soil after removing the humus layer. The measurements were
taken almost monthly between September 2019 and Octo-
ber 2020 (Fig. 3b). The IMT data consisted of 2184 obser-
vations. Overall, this data set offers a relatively high level of
spatial granularity with 252 measuring positions. However,
the temporal resolution of the data is relatively low with only
monthly measuring campaigns conducted.

The SSN was launched in December 2019 and the data
were obtained from continuously measuring SMT100 sen-
sors (TRUEBNER GmbH, Germany), placed on two sites,

each having nine positions with a spacing of 50× 50 m. At
each position, two sensors were placed at a depth of 10 cm
in the mineral soil and with a temporal resolution of 15 min.
The data from these sensors were averaged for each posi-
tion and each of the 1116 d captured (data until 31 December
2022 were included), resulting in a total of 16 351 observa-
tions after omitting all missing values. While this data set
provides a high level of temporal granularity, it suffers from
a low level of spatial granularity due to the limited number
of positions sampled.

To enable the incorporation of seasonal effects in the mod-
eling approaches, we transformed the date of each measure-
ment into numeric vectors, resulting in the variables of the
month and season. The coding used for the seasons was as
follows: 1 for March, April, and May; 2 for June, July, and
August; 3 for September, October, and November; and 4 for
December, January, and February.

To enable the creation of spatiotemporal data, the posi-
tions of all measuring locations were captured using post-
processed signals from a GNSS (global navigation satel-
lite system) device (Trimble R2 RTK rover, Trimble, Col-
orado, USA). These data were then fused with a range of
topographic indices. To achieve this, values of several topo-
graphic indices were extracted at each measuring position of
IMT and SSN.

2.2.2 Topographic indices

For calculating topographic indices, we used a freely avail-
able digital elevation model (DEM), as provided by the
Bezirksregierung Köln (2020). The resolution of this model
was 1× 1 m with a vertical accuracy of ±0.2 m. Using the
free programming language R (version 4.0.2; R Core Team,
2023) and RStudio (version 2022.07.2; Posit Software, PBC
(formerly RStudio), Massachusetts, USA), along with the
package “rgrass” (Bivand et al., 2023) to utilize GRASS GIS
(Awaida and Westervelt, 2020) commands in the R interface,
the command “r.hydrodem” was used to “remove all sinks”
(flags −a) from the DEM. Thereafter, we calculated depth-
to-water (DTW) maps. To generate these maps, we followed
the script by Schönauer and Maack (2021) and used flow ini-
tiation areas (FIA) of the sizes 0.25 ha (DTW025), 1.00 ha
(DTW1), and 4.00 ha (DTW4), which account for different
overall soil moisture conditions. A smaller FIA results in a
DTW map of wetter conditions as the network of simulated
flow lines expands, while a larger FIA represents drier condi-
tions. For further details, refer to Murphy et al. (2009, 2011).

The topographic wetness index (TWI) represents the ten-
dency for water to accumulate at any point in the catch-
ment (Quinn et al., 1991), while the stream power index
(SPI) represents the power of water flow at any point in
the catchment and the gravitational forces that move wa-
ter downslope (Moore et al., 1991). To compute TWI, we
used the “r.watershed” command in GRASS GIS, as con-
ceived by Sørensen and Seibert (2007). TWI was calculated
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Figure 1. Soil water content (SWC; [%]) was predicted using models trained on two data sets: in situ measurements (IMT) and soil sensor
networks (SSNs). Input variables included topographic indices, soil type data, SWC estimates from ERA5-Land (SWCERA), and date val-
ues. Through cross-validation, we selected the final models used to predict SWCPRED for various positions and dates during trials with a
forwarder. Model estimates were compared with in situ SWCCORE and rut depth (RD; [cm]).

Table 1. Characteristics of the study sites where soil water content was captured and field trials with a forwarder were performed.

Site Coordinates in WGS84 Dominant soil types Humus form Slope Canopy

x y [%]

A 8.039 51.406 Cambisol–Stagnosol Mesomull 15–30 Fagus sylvatica, Quercus spp., Pinus sylvestris
B 8.024 51.473 Stagnosol Mull 1–7 Fagus sylvatica

as ln(α/tan(β)), where α is the cumulative upslope area
draining through a point per unit contour length, and tan(β) is
the local slope angle. SPI was calculated as α · tan(β) (Moore
et al., 1991). Flow accumulation, representing the absolute
amount of overland flow passing through each cell, was also
included as a variable. TWI, SPI, and flow accumulation
were calculated on an aggregated DEM with a spatial resolu-
tion of 15× 15 m. This resolution has been shown to exhibit
a stronger correlation with SWC, as observed in prior work
where resolutions ranging from 1 to 20 m were tested (data
not shown), and can be assumed to be more robust (Ågren
et al., 2014). In addition, we calculated the variable slope [°]
using the R package “raster” (Hijmans, 2020).

2.2.3 Soil maps

Soil maps of North Rhine-Westphalia were originally gener-
ated at a scale of 1 : 5000 from forest site surveys. We in-
cluded soil type information (Soil05) for the analysis. While

these maps are not available across the entire region of North
Rhine-Westphalia, they were provided for the study sites by
the Geological Survey of North Rhine-Westphalia. By con-
trast, soil maps with a scale of 1 : 50000 are available for the
entirety of North Rhine-Westphalia (Soil50).

2.2.4 Temporal soil water content from ERA5-Land

ERA5-Land is a global reanalysis data set providing hourly
estimates of meteorological variables at a spatial resolution
of 9× 9 km, including soil moisture [m3 m−3] at the top soil
layer (0–7 cm (“layer 1”, L1) and at a depth of 7–28 cm
(“layer 2”, L2). ERA5-Land data are retrieved by assimilat-
ing satellite and atmospheric forcing (Muñoz-Sabater et al.,
2021).

We opted for ERA5-Land retrievals to address the tem-
poral component of SWC, as this data set offers a depend-
able representation of soil moisture values and their varia-
tions across global regions, rendering it suitable for various
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Figure 2. The map indicates the locations of two experimental ar-
eas on a hill-shaded digital elevation model with 10 m contour lines.
Site A (A; coordinates x, y in WGS84 at 8.039, 51.406) and Site B
(B; coordinates 8.024, 51.473) were used for collecting time se-
ries data on soil water content (SWC). SWC was measured using
a handheld soil moisture meter (impedance measuring technique,
IMT) along transects (red lines), each containing 21 measuring po-
sitions (2 m spacing). In addition, a soil sensor network (SSN) was
used to continuously capture SWC at 18 positions (white rhombus).
The map also indicates the locations of 40 transects (in crop-outs)
used for measuring rut depth (RD) during relatively wet conditions
(TrialWET; blue lines) and drier conditions (TrialDRY; orange lines).

geophysical applications (Lal et al., 2022). Additionally, this
decision is grounded on two key assumptions: (1) the spa-
tial variability in the SWC is relatively low compared to its
temporal variability. (2) The spatial extent of our measure-
ment locations is small and cannot be adequately captured
by satellite-based Earth observation data. Even Sentinel-1,
a mission within the Copernicus Programme by the Euro-
pean Space Agency renowned for supporting high-resolution
(1× 1 km) surface soil moisture product generation (Peng et
al., 2021), would have limited utility in providing spatial in-
formation for our study sites. For instance, the maximum dis-
tance between rut depth transects (Sect. 2.3.2) was 200 m.
Furthermore, since Sentinel-1 focuses on surface soil mois-
ture using the C band, we assume that ERA5-Land’s soil
moisture estimates for deeper layers might offer a better fit
for our data, as suggested by similar findings presented by
Fjeld et al. (2024).

We utilized the API provided by Climate Data Store (CDS)
(Copernicus Climate Change Service, 2019) and the R pack-
age “ecmwfr” (Hufkens et al., 2019) to download daily grids
(at 14:00 UTC) of layers 1 and 2. The downloaded data cov-
ered both the whole time span of our data and the two mea-
suring sites. Both sites were situated in one 9× 9 km raster
cell of ERA5-Land. The land cover for this cell was derived
from Bezirksregierung Köln (2023), showing that open land
(e.g., grassland and crops) dominated with 52 % of the total
cover, whereas forests occurred on approximately 31 % of

the cell size, followed by 12 % coverage from infrastructure,
3 % loose material, and 2 % waterbodies.

After downloading the data, we stacked the daily grids and
extracted the corresponding values at each measuring posi-
tion, giving SWCERAL1 and SWCERAL2.

All data, the topographic information, soil types, numer-
ical values of date and the dynamic variables from ERA5-
Land were merged with in situ data, either IMT or SSN.

2.2.5 Modeling

The modeling approach described here was applied sepa-
rately for both data sets of IMT and SSN (and for both data
sets combined).

Initially, we fitted a linear model with SWC as the depen-
dent variable and SWCERAL1, SWCERAL2, month, season,
DTW025, DTW1, DTW2, DTW4, slope, TWI, SPI, accumu-
lation, Soil05, and Soil50 as the independent variables. We
then used this linear model to check the data for autocorrela-
tions and subsequently eliminated variables with a variance
inflation factor > 10 through an iterative process, reducing
one variable at a time. Also, the feature selection according
to the Boruta algorithm (package “Boruta”; Kursa and Rud-
nicki, 2010) was applied.

We then trained random forest models (Breiman, 2001),
repeatedly reported as efficient in predicting complex data
(Cavalli et al., 2023; Carranza et al., 2021; Kemppinen et
al., 2018), using the “ranger” package (Wright and Ziegler,
2017) with a 10-fold cross-validation with five repetitions.
For each of the 50 models in the validation of one con-
figuration, we noted the mean of Kendall’s coefficient of
correlation τ (since different sample sizes occurred) of the
random forests and the representative standard deviation. In
addition, the least important variable according to impurity
and its frequency within the 50 validation sets were traced.
The variable noted most frequently as least important was
then removed, and a new cross-validation was performed on
SWC∼ (n− 1) variables, with n being the number of pre-
dictors in the model trained previously. This process was re-
peated until only one predictor variable remained.

To avoid temporal autocorrelations at the measuring posi-
tions, position IDs were used to select the folds of the cross-
validations.

2.2.6 Selection of the final model

To select the final random forest model for each data parti-
tion, we examined the maximum τ values obtained and mul-
tiplied them by 0.99 (according to Hauglin et al., 2021). This
was done to penalize the use of an unnecessarily high num-
ber of predictor variables. We selected the model with the
least number of predictor variables within this 1 % range as
the final model. The final models (built on IMT and SSN
data) were then used to predict rasters of SWCPRED, which
were visually evaluated. Subsequently, the outputs of the fi-
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nal models were compared to rut depths and in situ SWC at
the machine-operating trails.

2.3 Data from field trials with a forwarder

2.3.1 Rut depth (RD)

During the field trials conducted in two forest stands at two
seasons, a fully loaded forwarder (John Deere 1210G, eight-
wheel model, total mass of 28 Mg (18 Mg machine weight
+ 10 Mg loading)) was used. The first trial was conducted on
section 1 of an existing machine-operating trail on 11 March
2021 during generally wet conditions (TrialWET). The sec-
ond trial was conducted on subsequent section 2 of the same
machine trail on 11 October 2022 during drier conditions
(TrialDRY) (Fig. 2; Site B) or in close proximity of section 1
(Site A), as the machine trail there was not long enough for
both sections.

The four trials were positioned near the sensors of the SSN
(Fig. 2) and, in the case of Site A, near the IMT measuring
transects. On Site B, the IMT transects were located at a dis-
tance of 530 to 1300 m. Moreover, there is a temporal lag
between the IMT measuring campaigns and the field trials
(Fig. 3). This discrepancy stems from the IMT data being
collected as part of a separate research project.

The eight-wheel machine trafficked sections 1 and 2 of
both machine-operating trails and made four passes. Before
the first machine pass, the initial surface was captured along
10 perpendicular transects on each of the four sections. These
4 m wide transects were placed and marked permanently with
inserted wooden pegs. The same pegs were used to position
the beam which served as the reference height to measure
profiles along each transect. Metric scales were inserted into
this beam with a spacing of 10 cm in between to note the
distance between the surface and the beam to the nearest
centimeter. These measured distances (D0; [cm]) describe
the surface along the transect on already existing machine-
operating trails prior to the trial conducted in this study. The
same procedure was repeated after the fourth consecutive
machine pass, giving D4 [cm].

Next, the differences between D0 and D4 were calcu-
lated at each of the 41 measurements (10 cm spacing over
4 m) along a transect. The maximum value of these differ-
ences, measured at the left or right machine track, was used
to determine rut depth (RD; [cm]). We used average values
of both tracks to prevent pseudo-replicates, since the intra-
class correlation coefficient was high (0.83) when the left and
right tracks were integrated separately. Moreover, mean and
maximum values of rut depth were highly correlated (adj.
R2
= 0.96).

In total, 4 of the 40 transects for measuring RD were not
ascertainable as the forwarder destroyed the wooden pegs
that positioned the reference beam. In TrialWET, conducted
in March 2021, SWCERAL1 and SWCERAL2 showed a soil
moisture level of 39 %. At Site A, the measured RD was

10.3± 1.9 cm, while at Site B, the RD was 12.7± 5.5 cm,
with the highest value of RD recorded after four passes
reaching a depth of 21.5 cm. In TrialDRY, conducted in Octo-
ber 2022, the soil water content from ERA5-Land was 32 %.
At Site A, the measured RD was 3.5± 1.7 cm, and at Site
B, the RD was 4.3± 1.2 cm. Comparisons of RD with DTW
and TWI are given in Fig. C1.

2.3.2 Soil water content at the rut depth transects
(SWCCORE)

Volumetric soil moisture content was captured outside the
1st, 4th, 7th, and 10th transect of each section, with a distance
of 1 m to the left and right track at a depth of 10–15 cm. This
water content was determined using 100 cm3 cores taken
with an undisturbed core sampler with three replicates at
each measurement. SWCCORE was calculated according to
Eq. (1):

SWCCORE[%] =
M2−M1

M1
· 100, (1)

with M2 being the fresh mass of the soil taken with undis-
turbed cores, and M1 being the mass after drying the samples
in oven at 105 °C until mass constancy was reached.

Measurements of RD and SWCCORE were georeferenced
using the GNSS device and complemented with all the pre-
dictor variables as described above.

2.4 Comparisons between model predictions and RD
or SWCCORE

For the “testing on rut depth data” (Fig. 1), values of
SWCPRED were compared to RD or SWCCORE. The predic-
tor variables from the rut depth data set were used to predict
SWCPRED by means of the final random forest models cre-
ated in the soil moisture modeling. Since the goodness of fit
between in situ values of RD or SWCCORE and SWCPRED
was to some degree sensitive to the seed set during model-
ing, we repeated the predictions 10 times and used average
values to receive robust estimates of SWCPRED. To test the
correlations between paired samples of SWCCORE or RD and
SWCPRED, Kendall’s rank correlation was used. We illus-
trated the corresponding p values with asterisks as follows:
“∗∗∗” for p < 0.001, “∗∗” for 0.001–0.01, “∗” for 0.01–0.05,
“(∗)” for 0.05–0.10, and “ns” for p values higher than 0.10.
The root mean squared error (RMSE) and mean squared er-
ror (MSE) were calculated according to Hamner and Frasco
(2018). Values are given as mean± standard deviation.
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Figure 3. Time series of soil water content (SWC) measured using a soil sensor network SSN (a) with 18 measuring positions on two sites
and manual measurements, using the impedance measuring technique IMT, (b) conducted on 252 positions (black lines/points show daily
mean values; grey shading/bars show the standard deviation for each day). SWC retrievals from ERA5-Land are shown as a blue line/point
(0–7 cm vertical resolution; as available from Copernicus Climate Change Service, 2019) and a green line/point (7–28 cm vertical resolution).
The goodness of fit between daily means of measured SWC and ERA5-Land retrievals is reported using Kendall’s rank correlation coefficient
(τ ). Vertical lines indicate the dates of the trials when a forwarder conducted four passes at existing machine-operating trails.

3 Results

3.1 Soil water content

The mean value of SWC, measured using a handheld mois-
ture meter (IMT), varied between 13.0± 10.0 % in August
2020 and 43.2± 5.95 % in February 2020 (Fig. 3). Daily
mean values obtained from soil sensor networks (SSNs)
were similar to those obtained from IMT, ranging from
13.8± 2.90 % in September 2020 to 39.1± 6.66 % in March
2020, in the period that corresponds to the one covered by
IMT. The driest conditions were observed in September 2022
with a daily mean SWC of 12.7± 2.55 %. Overall, the results
suggest that IMT and SSN provide comparable estimates of
SWC, with the latter providing higher temporal resolution at
a low spatial granularity.

3.2 Soil moisture models

The position IDs were used to select the 10 folds for cross-
validation. However, the data set SSN had only 18 measur-
ing positions (where SWC was measured on 1116 d), result-
ing in relatively high deviations of Kendall’s τ of the ran-
dom forests. The most important feature for this data set
was given by DTW025, although the resulting quality was
low with τ of 0.363± 0.198. By adding the temporal com-
ponent month, the τ improved to 0.637± 0.065, which had
the lowest standard deviation for the repeated folds. The fi-
nal model for this data set included the temporal variable
month and SWCERAL2, as well as the topographic predic-
tor variables TWI and DTW025 (Fig. 4). The resulting τ

was 0.710± 0.095, which was revealed through the cross-
validation.

For the IMT partition, which had a low temporal but high
spatial resolution, the most important feature was the tempo-
ral information SWCERAL2, leading to τ of 0.569± 0.036.
The final model had τ of 0.620± 0.016, including the predic-
tor variables of SWCERAL2, month, season, DTW025, TWI,
SPI, and DTW4.

The main outputs when both data sets were combined can
be seen in Appendix A.

3.2.1 Comparisons of SWCCORE with SWCPRED

The final random forest models of both the IMT and SSN
data set were used to calculate SWCPRED on the predic-
tor variables of the rut depth data. The comparison between
SWCCORE and SWCPRED values predicted by the final ran-
dom forest models of both data sets (SSN and IMT) revealed
a significant association (Fig. 5).

3.3 Comparisons of RD with SWCCORE and SWCPRED

RD was positively correlated with SWCCORE when both tri-
als with different moisture conditions were included in test-
ing (Fig. 6a). However, when each trial was tested separately,
no correlation between RD and SWCCORE was observed.
Compared to the correlation between RD and SWCCORE,
modeling outputs SWCPRED proved to be a better predic-
tor of rut depth, particularly for TrialWET. The final models
that were selected for both data sets produced Kendall’s τ of
0.61 (for IMT in Fig. 6b and SSN in Fig. 6c) when compar-
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Figure 4. Soil water content (SWC) was modeled by random forests (RFs) and evaluated by a repeated 10-fold cross-validation (CV). Mean
values and the standard deviation of the resulting values of the Kendall rank correlation coefficient τ during the CV are shown. A stepwise
elimination of the least important variable was performed, and the frequency of this variable over all models is provided (“feature reduction”).
The vertical lines indicate the maximum value of τ (black) and the 99 % value of the maximum (grey) used to select final models (squares).
Variables used are described in Sect. 2.

Figure 5. Soil water content was measured during two trials with a forwarder along a machine-operating trail (n= 14), using 100 cm3

undisturbed cores (SWCCORE), and compared to values predicted (SWCPRED) by a model trained data from a continuously measuring soil
sensor network (SSN; a) or manual measurements with a handheld moisture meter (IMT; b). Correlations were evaluated using Kendall’s τ
and significance levels are indicated by asterisks, with ∗∗∗ for p < 0.001, ∗∗ for 0.001–0.01, ∗ for 0.01–0.05, (∗) for 0.05–0.10, and “ns” for
p > 0.10.

ing RD of the four trials with the corresponding SWCPRED.
Although the R2 values for these models were in a similar
range (0.620 for IMT and 0.549 for SSN), we chose to use
Kendall’s τ since different sample sizes were involved in the
analysis. This was particularly relevant for comparing RD
with SWCPRED for each trial separately. While no correla-
tion could be found for TrialDRY, correlations were found

for TrialWET, with Kendall’s τ of 0.344 (p = 0.037) and
0.281 (p = 0.090), and for the final models trained on IMT
and SSN, respectively (Fig. 6b, c). Yet, these correlations
seem fragile as a difference of a few percent of predicted
SWCPRED (IMT) is associated with the range of RD between
6.5 and 21.5 cm. Moreover, when analyzing the sites sepa-
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rately, a vague trend between SWCPRED and RD could be ob-
served but without showing significant correlations (Fig. B1).

Since the final model trained on IMT data performed
slightly better in TrialWET compared to the model trained on
SSN data (Fig. 6), we chose the IMT model for the genera-
tion of prediction rasters for the days of interest (Fig. 6B1,
B2).

4 Discussion

4.1 Importance of predictive systems

Wet soils are prone to soil disturbances like the formation of
deep ruts (Poltorak et al., 2018; McNabb et al., 2001), since
water implies a reduction in the particle-to-particle bonding
within the soil (Hillel, 1998), decreasing the resistance to ex-
ternal forces. Consequently, accurate predictions of soil wa-
ter content (SWC) and soil trafficability are essential for sus-
tainable forest management and cost-effective, environmen-
tally friendly harvesting operations (Vega-Nieva et al., 2009;
Mattila and Tokola, 2019; Picchio et al., 2020; White et al.,
2012; Murphy et al., 2007; Mohtashami et al., 2017; Uusitalo
et al., 2020). Topographic modeling requires minimal input,
and the temporal variables used in the final model presented
here are freely available (Copernicus Climate Change Ser-
vice, 2019). A spatiotemporal model predicting SWC could
improve the guidance for machine operators in forest sites
during harvesting operations, for example, by the effective
positioning of brush mats (Labelle et al., 2019; Labelle and
Jaeger, 2018). Practical use of static topographic maps has
already been observed in Canada and Scandinavian coun-
tries (Ring et al., 2022). By incorporating a temporal aspect,
the accuracy of these tools could be further improved. This
has the potential to enhance sustainable forest management
by protecting soil and mitigating harmful sediment transport
(Ågren et al., 2015; Lidberg et al., 2020; Kuglerová et al.,
2017; White et al., 2012).

4.2 Comparison to previous work on predictions of
SWC

Since soil moisture predictions are crucial for a variety of
forestry aspects, several publications have focused on this
topic before. For example, Lidberg et al. (2020) predicted
soil moisture classes using spatial models built on topo-
graphic indices, correctly classifying 73 % of wet areas in
a Swedish case study. Ågren et al. (2014) reported accu-
rate predictions for 87 %–92 % of observations by compar-
ing soil moisture classes to DTW maps. Larson et al. (2022)
used data from the Krycklan catchment and found an accu-
racy of 84 % when comparing moisture classes to the re-
cently developed “SLU soil moisture map” (Ågren et al.,
2021). However, these validations were based on static to-
pographic maps. One attempt to make such static maps dy-
namic was realized within the DTW concept which can be

customized to calculate various scenarios to adjust to gen-
eral moisture conditions (e.g., flow initiation areas of 0.25, 1,
and 4 ha for wet, moist, and dry conditions, respectively), but
selecting the most appropriate scenario during practical use
can be a challenging task that requires significant expertise
(White et al., 2012; Lidberg et al., 2020; Leach et al., 2017).
To overcome this challenge, we aimed for the improvement
of soil moisture prediction and refined the spatiotemporal
approach conceived by Schönauer et al. (2022). During the
cross-validation of IMT data from sites in Finland, Poland,
and parts of the data used in this work, they reported an R2

of 0.80. The models for the present study showed an R2 of
0.759± 0.136 (SSN) or 0.636± 0.040 (IMT), corresponding
to Kendall’s τ of 0.710± 0.095 or 0.620± 0.016, respec-
tively. Although this may not seem like an improvement, it
should be noted that the data from German sites had less ex-
planatory power for the topography when predicting SWC.
For example, DTW4 alone explained SWC to a very limited
extent (R2

= 0.037∗∗∗).

4.3 Prediction of rutting

Besides the comparisons of SWC with DTW maps, various
studies have also investigated the capability of topographic
indices to predict rutting – with conflicting outcomes. For
example, Vega-Nieva et al. (2009) found that 65 % of ruts
deeper than 25 cm were located in areas with a DTW value
smaller than 1 m, and 93 % of these ruts occurred in areas
with DTW values smaller than 10 m. Similarly, Heppelmann
et al. (2022) observed a high frequency of severe rut depth in
areas with DTW values smaller than 1 m in Norway. How-
ever, Mohtashami et al. (2017) did not find evidence of such
patterns in a field trial where the inclusion of DTW values
did not improve the accuracy of a linear model to describe
the extents and degrees of rut depth on machine-operating
trails. In agreement, Schönauer et al. (2021a) found no evi-
dence that DTW or TWI could predict rut depth in a field trial
conducted in a temperate broadleaved stand. In this study,
we found a significant correlation between RD and DTW025
with Kendall’s correlation coefficient (τ) of −0.52∗∗∗. Yet,
this correlation has to be viewed with caution. It is mainly
driven by differing ranges of RD between the two trials, as
can be seen in Fig. C1a. We observed that the temporal ad-
justments of the model based on current moisture conditions
improved predictions of rutting by up-to-date SWC predic-
tions, leading to τ of 0.61∗∗∗ (Fig. 6b, c). While a strong
association between RD and predicted values of SWC was
observed, the influence of the differences between the trials
is evident. However, the ranges of RD for each trial were
consistent with the SWC predictions. In TrialWET, a signif-
icant correlation between RD and SWCPRED was observed
(Fig. 6b). We hypothesize that the wetter conditions during
this trial, which lead to soil destabilization (Hillel, 1998; Mc-
Nabb et al., 2001), enhanced the predictive power of topo-
graphic indices representing soil water distributions. For in-
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Figure 6. Rut depth (RD) was determined after four passes of a forwarder driving on two sites during two conditions (WET and DRY). RD
was compared to SWC values determined for undisturbed soil cores (a) and SWC values predicted by a random forest model trained on
manually obtained IMT measurements (b; see Fig. 1) and predicted by a model trained on data from a continuously measuring soil sensor
network (SSN; c). Correlations were evaluated using Kendall’s τ . The correlation of all values is given in black; blue and yellow show the
trials during wet and dry conditions. Significance levels are indicated by asterisks, with ∗∗∗ for p < 0.001, ∗∗ for 0.001–0.01, ∗ for 0.01–0.05,
(∗) for 0.05–0.10, and “ns” for p > 0.10. The model based on IMT data (b) was used to calculate prediction rasters for the days of the field
trials (B1 and B2).

stance, DTW025 overlapped with surface water in depres-
sions, as observed in the field campaigns for TrialWET.

In contrast, during TrialDRY, no correlation was found be-
tween RD and SWCPRED. SWC along the measuring sec-
tions was likely below the threshold for soils to become sus-
ceptible to deformation. For example, Poltorak et al. (2018)
stated that ruts only occurred on soils with SWC above 50 %,
whereas SWCCORE at TrialDRY was below 30 % (Fig. 5).

4.4 Description of the model

The best-performing model for predicting RD incorporated
temporal information from SWCERAL2, month, and season,
as well as spatial information from DTW025, TWI, SPI, and
DTW4 and was based on data from the manual measure-
ments (IMT). The IMT data were collected in close prox-
imity to the rut depth measurements at Site A (Fig. 2) or
with a distance of up to 1.3 km at Site B. However, the spa-
tial distance between the IMT training data and the rut depth
data did not seem to be crucial for the accuracy of predict-
ing rut depth (Fig. B1), since Kendall’s τ between RD and
SWCPRED was similar for both sites. Surprisingly, in situ
SWCCORE, sampled directly at the machine-operating trails,
showed a lower explanatory power in predicting RD than
SWCPRED. Although an overall association was confirmed,

no correlation could be found when trials were analyzed in-
dividually.

4.4.1 Temporal variation was more important than
spatial variation

The lacking association between RD and SWCCORE on in-
dividual trials indicates that the temporal variability in soil
moisture between the trials was more important in this study
than the spatial variability within the relatively small areas
where each trial was conducted. The spatial distribution of
the rut depth measurements might have been limiting in the
present work. The semivariogram indicates the spatial co-
variation of rut depth and SWC (Fig. 7). While the covari-
ation of RD in Site A is indicated to be high within a range
of 10 m (RD transects were at this distance), on Site B, dur-
ing wet conditions, the sill of the semivariogram reaches al-
most 40 m, which covered a high number of transects. Sim-
ilarly, excluding soil information in the initial stages of fea-
ture reduction suggests homogeneous soil properties in the
relatively small study area.

Therefore, we have to admit that the study design was not
ideal for assessing the ability to predict rutting with a spa-
tiotemporal model of SWC, and the results have to be con-
sidered with caution.
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Figure 7. Semivariogram illustrating spatial autocorrelation of (a) rut depth (cm) and (b) soil water content (SWC) across the study area. Rut
depth was measured during two moisture conditions at four machine-operating trail sections allocated on two sites. The measuring transects
had a spacing of 10 m. SWC was measured with handled measuring techniques (IMT) or a soil sensor network (SSN) (Fig. 2).

The spatiotemporal model (IMT), also supports the con-
clusion that spatial variations were either underrepresented
by the study design or very low compared to temporal vari-
ation by nature, as the temporal feature SWCERAL2 was se-
lected as the most important variable, and the difference be-
tween the model with one predictor variable vs. the final
model was small (Fig. 4).

Still, this slight increase in the models’ quality allowed the
integration of spatial patterns and resulted in the significant
but vague prediction of RD in TrialWET (τ = 0.344∗; Fig. 6).
Another indication of the integration of spatial patterns can
be interpreted from the segregation of the temporal range of
the IMT data (2019–2020) and the actual trials (March 2021
and October 2022; Fig. 3) which indicate a generalization of
spatial and temporal patterns.

4.4.2 Most important variables

In the final model (IMT), SWCERAL2 has been identified as
the most important variable, followed by the month and sea-
son. It is noteworthy that in the data with broader spatial cov-
erage (i.e., IMT), in contrast to the SSN data, dynamic vari-
ables took precedence over predictor variables. Surprisingly,
when modeling SSN data characterized by a high temporal
resolution and low spatial resolution, DTW025 remained the
most influential variable. One might have anticipated the op-
posite, expecting a topographic index to play a central role in
modeling IMT data and dynamic SWCERA variables to dom-
inate the modeling of SSN data.

We presume that the low spatial variations in the SWC in
comparison to temporal variations, inadequately represented
by the provided topographic information, may have con-
tributed to this unexpected outcome. Furthermore, the wider
spatial coverage in the IMT data likely resulted in more ro-
bust averages of SWC, leading to a stronger correlation with

the coarse spatial data of ERA5-Land (9× 9 km). On the
contrary, the spatial distribution of the SSN data, originating
from areas with a size of 100× 100 m and known for their
temporal wetness, could explain the heightened importance
of DTW025. Some sensors might have measured constant
water saturation, thereby inflating the explanatory power of
topographic information. These assumptions are speculative,
and further research in this direction is warranted.

In the feature reductions in the IMT and SSN data
(Fig. 4), SWCERAL2 (7–28 cm soil depth) dominated over
SWCERAL1 (0–7 cm). This aligns with in situ measurements
of SWC by the SSNs conducted at soil depths of approxi-
mately 10 cm (Fig. 3a). Even for the IMT data, where SWC
was measured in the top 6 cm of soil, SWCERAL2 yielded
a better goodness of fit compared to SWCERAL1 (Fig. 3b).
We hypothesize that the prevalence of open lands as the
dominant land cover form in the ERA5-Land raster cell
(Sect. 2.2.4) contributed to the superior fit of SWCERAL2.
Grasslands typically exhibit higher temporal heterogeneity of
soil moisture compared to forests (James et al., 2003). This
temporal heterogeneity tends to decrease with deeper soil
layers (Tromp-van Meerveld and McDonnell, 2006). There-
fore, the stronger correlation between SWCERAL2 and SWC,
as well as its higher importance within the random forests,
seems reasonable. The disparity between SWCERA and in
situ SWC can be attributed to the high transpiration rates in
forests as opposed to grasslands (Kelliher et al., 1993).

4.5 Further developments

The terrain data were derived from a digital elevation model,
which is increasingly available for the entire Europe (Hoff-
mann et al., 2022), while the dynamic variables are based on
date and retrievals from ERA5-Land, which are freely avail-
able up to a few days ago. These inputs would allow auto-
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mated mapping of current soil water content, which could
be made accessible to forestry stakeholders. Recent develop-
ments also show a pathway to integrate medium- and long-
range weather forecasts into trafficability predictions, as con-
ceived by the Finnish Meteorological Institute (2023). Both
recent and forecasting predictions can lead to improved soil
protection, higher efficiency of timber harvesting (Suvinen
and Saarilahti, 2006), and a new stage of sustainable forest
management (Campbell et al., 2013; D’Acqui et al., 2020;
Uusitalo et al., 2019; Jones and Arp, 2019). However, it
should be noted that the in situ data of SWC originated from
manual measurements, and it was relatively labor-intensive
to gather this amount of data. There is the potential to reach
appropriate accuracy, even with a reduced data set; further
investigation would be necessary to determine the essential
input data criteria. The alternative to manual measurements
is given by sensor networks which led to comparable re-
sults but are expensive to establish and maintain. Nonethe-
less, initiatives for installing sensors are emerging, and addi-
tional manual measurements could be conducted. In the fu-
ture, forestry stakeholders who require accurate raster pre-
dictions could potentially facilitate manual measurements or
install sensors and provide the captured data to scientific or-
ganizations which could deliver spatiotemporal soil moisture
predictions in return. The captured data could be made avail-
able for creating spatiotemporal models of SWC, allowing
additional training data and daily raster predictions for new
areas of interest and with various scientific insights and prac-
tical applications.

5 Conclusion

In this study, we developed a spatiotemporal model that used
multiple topographic indices, temporal variables, soil mois-
ture retrievals from ERA5-Land, and data from manual mea-
surements to predict soil water content (SWC). Predicted val-
ues of SWC were compared to rut depth data collected dur-
ing four forwarder trials. Overall, the model performed well
in predicting rut depth, with Kendall’s τ of 0.61 for all tri-
als. Yet, this result has to be considered with caution, since
spatial covariation was detected in parts. We hope that this
experience helps for future research in which more attention
to spatial covariation on soils should be paid. Still, we be-
lieve that a dynamic prediction of SWC will help forest man-
agers and machine operators avoid wet areas, leading to more
sustainable forest operations. Using freely available tempo-
ral information is a significant improvement, as it enables
more accurate and up-to-date predictions which allow us to
make more informed decisions and avoid potential hazards.
Future work should focus on developing automated pathways
for generating daily raster predictions of SWC and on gen-
erating reliable and comprehensive in situ data. There is a
need for more data on rutting and SWC that are measured
with a sufficient spatial coverage, whether by manual mea-

surements, the establishment of additional sensor networks,
or by automatic ways of capturing rut depth data through ma-
chines driving off-road to cover more areas and different sites
and regions.

Appendix A

To model the data set consisting of both IMT and SSN data,
the procedure described in Sect. 2 was followed. The IMT
data set was merged with a subsample of the SSN data set,
where the sample size of the SSN part was twice that of the
IMT data set. This was done to prevent the overweighting of
the SSN data set. The resulting combination of IMT and SSN
data was called the “Mix” data set.

The final model using the Mix data set included the input
variables SWCERAL2, month, TWI, SWCERAL1, DTW025,
season, DTW1 and DTW4, and achieved τ of 0.655± 0.081
(which corresponded to R2 values of 0.639± 0.108). Fig-
ure A1 shows that the correlation between the model outputs
(SWCPRED) and rut depth (RD) was significant.

Figure A1. Rut depth (RD) was determined after four passes of
a forwarder, driving on two Sites (A and B), during two seasons
(TrialWET and TrialDRY). RD was compared to SWC values pre-
dicted by a random forest model trained on data from manual mea-
surements or captured through a continuously measuring soil sen-
sor network (“Mix”). Correlations were evaluated using Kendall’s
τ , and significance levels are indicated by asterisks, with ∗∗∗ for
p < 0.001, ∗∗ for 0.001–0.01, ∗ for 0.01–0.05, (∗) for 0.05–0.10,
and “ns” for p > 0.10.

Since the models trained on the Mix data set did not per-
form better than those trained on the IMT or SSN data sets,
we did not investigate the fused data partition any further, as
one research question addressed the use of different data ori-
gins. For future work, however, the fused data would provide
additional information compared to the individual data sets.
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Appendix B

Figure B1. Rut depth (RD) was determined after four passes of a forwarder driving on two Sites (A and B; Fig. 2) during two seasons
(TrialWET and TrialDRY; conducted under different moisture conditions). RD was compared to SWC values determined for undisturbed soil
cores (a) and SWC values predicted by a random forest model trained on manually obtained IMT measurements (b; see Fig. 1) and predicted
by a model trained data from a continuously measuring soil sensor network (SSN; c). Correlations were evaluated using Kendall’s τ . The
correlation of all values is given in black; blue and yellow show the trials during wet and dry conditions. Significance levels are indicated by
asterisks, with ∗∗∗ for p < 0.001, ∗∗ for 0.001–0.01, ∗ for 0.01–0.05, (∗) for 0.05–0.10, and “ns” for p > 0.10.

Appendix C

Considering the significance of the topographic indices DTW
and TWI in the development of the SWC models (Fig. 4), we
aimed to compare RD with both indices. Notably, RD exhib-
ited a clear correlation with DTW025, the most conservative
DTW scenario (Fig. C1). TWI also demonstrated a correla-
tion with RD.

Figure C1. Rut depth (RD) was determined after four passes of a forwarder driving on two Sites (A and B) during two conditions (TrialWET
and TrialDRY). RD was compared to the topographic indices depth-to-water (DTW), calculated with different flow initiation areas (0.25–
4.00 ha), and the topographic wetness index. Correlations were evaluated using Kendall’s τ , and significance levels are indicated by asterisks,
with ∗∗∗ for p < 0.001, ∗∗ for 0.001–0.01, ∗ for 0.01–0.05, (∗) for 0.05–0.10, and “ns” for p > 0.10.

While showing significant correlations, the nature of these
static maps does not allow for the representation of current
moisture conditions. This limitation was overcome when us-
ing the predicted (or observed) values of SWC.

https://doi.org/10.5194/hess-28-2617-2024 Hydrol. Earth Syst. Sci., 28, 2617–2633, 2024



2630 M. Schönauer et al.: Soil moisture modeling with ERA5-Land retrievals

Data availability. The data used in this work are available on
Zenodo at https://doi.org/10.5281/zenodo.11032138 (Schönauer,
2024).

Author contributions. MS and DJ designed the experiments, and
MS and FH carried them out. MS developed the model code and
performed the simulations. MS prepared the paper with contribu-
tions from all co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the financial support from
the Eva Mayr-Stihl Stiftung for this work. We extend our gratitude
to the Geological Survey of North Rhine-Westphalia (Landesbetrieb
NRW) for conducting the soil mapping on the experimental sites
and for their contributions to the field trial analysis. In particular, we
would like to thank Heinz Peter Schrey, Dirk Elhaus, Thilo Simon,
and Rainer Janssen. We also extend our appreciation to the Forest
Education Centre, Forstliches Bildungszentrum, Zentrum für Wald
und Holzwirtschaft, Landesbetrieb Wald und Holz NRW, Arnsberg,
Germany, for their valuable support during the fieldwork. We ex-
tend our special thanks to Thilo Wagner and Thomas Späthe for
their efforts in organizing the field trials and to Michael Schulte
for operating the forwarder. We acknowledge support by the Open
Access Publication Funds of the Göttingen University. ChatGPT
(OpenAI, San Francisco, CA, USA) provided assistance with the
sentence editing on an earlier version of the paper; all content was
generated solely by the authors.

Financial support. This work has been supported by the co-
operation project “BefahrGut” funded by the State of North
Rhine-Westphalia, Germany, through its Forest Education
Centre (Forstliches Bildungszentrum, Zentrum für Wald und
Holzwirtschaft, Landesbetrieb Wald und Holz NRW), Arnsberg,
Germany, and by the Bio-based Industries Joint Undertaking
under the European Union’s Horizon 2020 research and innovation
program of TECH4EFFECT Knowledge and Technologies for
Effective Wood Procurement project (grant no. 720757).

Review statement. This paper was edited by Yongping Wei and re-
viewed by two anonymous referees.

References

Ågren, A., Lidberg, W., and Ring, E.: Mapping Tempo-
ral Dynamics in a Forest Stream Network – Implications
for Riparian Forest Management, Forests, 6, 2982–3001,
https://doi.org/10.3390/f6092982, 2015.

Ågren, A., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use
of multiple LIDAR-derived digital terrain indices and machine
learning for high-resolution national-scale soil moisture map-
ping of the Swedish forest landscape, Geoderma, 404, 115280,
https://doi.org/10.1016/j.geoderma.2021.115280, 2021.

Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P.
A.: Evaluating digital terrain indices for soil wetness mapping –
a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634,
https://doi.org/10.5194/hess-18-3623-2014, 2014.

Ala-Ilomäki, J., Lindeman, H., Mola-Yudego, B., Prinz, R.,
Väätäinen, K., Talbot, B., and Routa, J.: The effect of bo-
gie track and forwarder design on rut formation in a peat-
land, International Journal of Forest Engineering, 45, 1–8,
https://doi.org/10.1080/14942119.2021.1935167, 2021.

Allman, M., Jankovský, M., Messingerová, V., and Allmanová,
Z.: Soil moisture content as a predictor of soil distur-
bance caused by wheeled forest harvesting machines on soils
of the Western Carpathians, J. Forestry Res., 28, 283–289,
https://doi.org/10.1007/s11676-016-0326-y, 2017.

Ampoorter, E., van Nevel, L., de Vos, B., Hermy, M., and
Verheyen, K.: Assessing the effects of initial soil char-
acteristics, machine mass and traffic intensity on forest
soil compaction, Forest Ecol. Manag., 260, 1664–1676,
https://doi.org/10.1016/j.foreco.2010.08.002, 2010.

Awaida, A. and Westervelt, J.: Geographic Resources Analysis
Support System (GRASS GIS), Geographic Resources Analy-
sis Support System (GRASS GIS) Software, USA, https://grass.
osgeo.org (last access: 22 August 2023), 2020.

Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., and Wilke,
B.-M.: Evaluation of soil compaction effects on soil biota and
soil biological processes in soils, Soil and Tillage Research, 109,
133–143, https://doi.org/10.1016/j.still.2010.05.010, 2010.

Bezirksregierung Köln: Digitales Geländemodell DGM1
[Digital elevation model], https://www.bezreg-koeln.nrw.
de/geobasis-nrw/produkte-und-dienste/hoehenmodelle/
digitale-gelaendemodelle/digitales-gelaendemodell (last ac-
cess: 8 November 2021), 2020.

Bezirksregierung Köln: Landbedeckung NRW, https://www.
bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/
luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-3
(last access: 16 November 2023), 2023.

Bivand, R., Krug, R., Lovelace, R., Neteler, M., Jeworutzki, S.,
and Vanderhaeghe, F.: rgrass: Interface Between “GRASS” Geo-
graphical Information System and “R”: version 0.3.9, 10 Septem-
ber, https://CRAN.R-project.org/package=rgrass (last access: 31
May 2024), 2023.

Breiman, L.: Random forests, Machine Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Cambi, M., Certini, G., Neri, F., and Marchi, E.: The impact of
heavy traffic on forest soils: A review, Forest Ecol. Manag., 338,
124–138, https://doi.org/10.1016/j.foreco.2014.11.022, 2015.

Campbell, D. M. H., White, B., and Arp, P.: Modeling and map-
ping soil resistance to penetration and rutting using LiDAR-

Hydrol. Earth Syst. Sci., 28, 2617–2633, 2024 https://doi.org/10.5194/hess-28-2617-2024

https://doi.org/10.5281/zenodo.11032138
https://doi.org/10.3390/f6092982
https://doi.org/10.1016/j.geoderma.2021.115280
https://doi.org/10.5194/hess-18-3623-2014
https://doi.org/10.1080/14942119.2021.1935167
https://doi.org/10.1007/s11676-016-0326-y
https://doi.org/10.1016/j.foreco.2010.08.002
https://grass.osgeo.org
https://grass.osgeo.org
https://doi.org/10.1016/j.still.2010.05.010
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/hoehenmodelle/digitale-gelaendemodelle/digitales-gelaendemodell
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/hoehenmodelle/digitale-gelaendemodelle/digitales-gelaendemodell
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/hoehenmodelle/digitale-gelaendemodelle/digitales-gelaendemodell
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-3
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-3
https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-3
https://CRAN.R-project.org/package=rgrass
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.foreco.2014.11.022


M. Schönauer et al.: Soil moisture modeling with ERA5-Land retrievals 2631

derived digital elevation data, J. Soil Water Conserv., 68, 460–
473, https://doi.org/10.2489/jswc.68.6.460, 2013.

Carranza, C., Nolet, C., Pezij, M., and van der Ploeg, M.: Root zone
soil moisture estimation with Random Forest, J. Hydrol., 593,
125840, https://doi.org/10.1016/j.jhydrol.2020.125840, 2021.

Cavalli, A., Francini, S., McRoberts, R. E., Falanga, V., Congedo,
L., Fioravante, P. de, Maesano, M., Munafò, M., Chirici, G.,
and Scarascia Mugnozza, G.: Estimating Afforestation Area Us-
ing Landsat Time Series and Photointerpreted Datasets, Remote
Sens., 15, 923, https://doi.org/10.3390/rs15040923, 2023.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,
Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin,
M., Geng, Y., and Li, Y.: xgboost: Extreme Gradient Boost-
ing, https://CRAN.R-project.org/package=xgboost (last access:
9 November 2021), 2021.

Copernicus Climate Change Service: ERA5-Land
hourly data from 2001 to present, ECMWF,
https://doi.org/10.24381/cds.e2161bac, 2019.

Crawford, L. J., Heinse, R., Kimsey, M. J., and Page-Dumroese, D.
S.: Soil Sustainability and Harvest Operations, General Technical
Report RMRS, https://doi.org/10.2737/RMRS-GTR-421, 2021.

Curzon, M. T., Slesak, R. A., Palik, B. J., and Schwager, J.
K.: Harvest impacts to stand development and soil proper-
ties across soil textures: 25-year response of the aspen Lake
States LTSP installations, Forest Ecol. Manag., 504, 119809,
https://doi.org/10.1016/j.foreco.2021.119809, 2022.

D’Acqui, L. P., Certini, G., Cambi, M., and Marchi, E.: Machin-
ery’s impact on forest soil porosity, J. Terramechanics, 91, 65–
71, https://doi.org/10.1016/j.jterra.2020.05.002, 2020.

DeArmond, D., Ferraz, J., Higuchi, N., and Ferraz, J. B. S.: Natural
Recovery of Skid Trails. A Review, Can. J. Forest Res., 51, 948–
961, https://doi.org/10.1139/cjfr-2020-0419, 2021.

Eijkelkamp Agrisearch Equipment: User Manual for the Mois-
ture Meter type HH2, https://www.royaleijkelkamp.com/media/
nrwjyah3/m-0615sae-penetrologger.pdf (last access: 7 August
2020), 2013.

Eliasson, L.: Effects of forwarder tyre pressure on rut for-
mation and soil compaction, Silva Fenn., 39, 549–557,
https://doi.org/10.14214/sf.366, 2005.

Finnish Meteorological Institute: Harvester Seasons, https:
//harvesterseasons.com/HarvesterSeasons_Description2pager_
v2.pdf (last access: 8 November 2023), 2023.

Fjeld, D., Persson, M., Fransson, J. E. S., Bjerketvedt,
J., and Bråthen, M.: Modelling forest road trafficabil-
ity with satellite-based soil moisture variables, Inter-
national Journal of Forest Engineering, 35, 93–104,
https://doi.org/10.1080/14942119.2023.2276628, 2024.

Francesca, V., Osvaldo, F., Stefano, P., and Paola, R. P.:
Soil Moisture Measurements: Comparison of Instru-
mentation Performances, J. Irrig. Drain E., 136, 81–89,
https://doi.org/10.1061/(ASCE)0733-9437(2010)136:2(81),
2010.

Grüll, M.: Den Waldboden schonen – Vorsorgender Bodenschutz
beim Einsatz von Holzerntetechnik [Soil protection in forest
operations], Eberswalder Forstliche Schriftenreihe, 47, 37–44,
https://www.waldwissen.net/assets/technik/holzernte/boden/lfe_
bodenschutz/download/lfe_bodenschutz_originalbeitrag.pdf.pdf
(last access: 31 May 2024), 2011.

Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L.: A Re-
view of Wetland Remote Sensing, Sensors, 17, 777,
https://doi.org/10.3390/s17040777, 2017.

Hamner, B. and Frasco, M.: Metrics: Evaluation Metrics for Ma-
chine Learning, https://CRAN.R-project.org/package=Metrics,
2018.
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