Articles | Volume 28, issue 10
https://doi.org/10.5194/hess-28-2329-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2329-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Levee system transformation in coevolution between humans and water systems along the Kiso River, Japan
Shinichiro Nakamura
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Nagoya University, Nagoya, 464-8603, Japan
Fuko Nakai
Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
Yuichiro Ito
Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
Ginga Okada
Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
Taikan Oki
Department of Civil Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
Related authors
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Qing He, Naota Hanasaki, Akiko Matsumura, Edwin H. Sutanudjaja, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2952, https://doi.org/10.5194/egusphere-2025-2952, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work presents a global groundwater modeling framework at 5-arcminute resolution, developed through an offline coupling of the H08 water resource model and MODFLOW6. The model includes a single-layer aquifer and is designed to capture long-term mean groundwater dynamics under varying climate types. The manuscript describes the model structure, input datasets, and evaluation against available observations.
Xin Huang, Qing He, Naota Hanasaki, Rolf H. Reichle, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2004, https://doi.org/10.5194/egusphere-2025-2004, 2025
Preprint archived
Short summary
Short summary
This study demonstrates a new method using SMAP soil moisture products to identify irrigation effects, tested to be valid in an example region in California's Central Valley and showed great potential for application in arid/ semi-arid regions. The approach offers a simple, straightforward approach to monitoring irrigation signals without additional in-situ data or model tuning, providing a useful tool to extract irrigation water use data in observation-scarce regions.
Yuheng Li, Kanon Kino, Alexandre Cauquoin, and Taikan Oki
Clim. Past, 19, 1891–1904, https://doi.org/10.5194/cp-19-1891-2023, https://doi.org/10.5194/cp-19-1891-2023, 2023
Short summary
Short summary
Our study using the isotope-enabled climate model MIROC5-iso model shows that lakes may have contributed to the Green Sahara during the mid-Holocene period (6000 years ago). The lakes induced cyclonic circulation response, enhancing the near-surface monsoon westerly flow and potentially humidifying the northwestern Sahara with the stronger West African Monsoon moving northward. Our findings provide valuable insights into understanding the presence of the Green Sahara during this period.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Cited articles
Ando, M. (Ed.): Wajyu-its Evolution and Structure, Kokon-Shoin, Tokyo, JP, 1975.
Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S., and Blöschl, G.: The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model, Water Resour. Res., 55, 1312–1336, 2019.
Braga, G. and Gervasoni, S.: Evolution of the Po River: an example of the application of historic maps, in: Historical Change of Large Alluvial Rivers: Western Europe, edited by: Petts, G. E., Moller, H., and Roux, A. L., Wiley, Chichester, UK, 113–126, ISBN 0471921637, 1989.
Bravard, J.-P., Amoros, C., and Pautou, G.: Impact of civil engineering works on the successions of communities in a fluvial system: a methodological and predictive approach applied to a section of the Upper Rhône River, France, Oikos, 47, 92–111, 1986.
Burton, C. and Cutter, S. L.: Levee Failures and Social Vulnerability in the Sacramento-San Joaquin Delta Area, California, Nat. Hazards Rev., 9, 136–149, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:3(136), 2008.
Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di Baldassarre, G.: Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems, Hydrolog. Sci. J., 62, 880–891, 2017.
Conrad, S.: What Is Global History?, Princeton University Press, Princeton, United States, 299 pp., ISBN 97806911781962016, 2017.
Daito, K.: Current state of measures for land subsidence and groundwater control in the Nobi Plain, J. Groundwater Hydrol., 57, 9–17, 2015.
Dekker, S. W. A. and Woods, D. D.: Chapter 5 – The High Reliability Organization Perspective, in: Human Factors in Aviation, 2nd Edn., edited by: Salas, E. and Maurino, D., Academic Press, San Diego, 123–143, ISBN 9780123745187, 2010.
Di Baldassarre, G., Castellarin, A., and Brath, A.: Analyse des effets de la surélévation des levées sur la propagation des crues: Exemple du Fleuve Pô, Italie, Hydrolog. Sci. J., 54, 1007–1017, 2009.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013a.
Di Baldassarre, G., Kooy, M., Kemerink, J. S., and Brandimarte, L.: Towards understanding the dynamic behaviour of floodplains as human-water systems, Hydrol. Earth Syst. Sci., 17, 3235–3244, https://doi.org/10.5194/hess-17-3235-2013, 2013b.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., and Blöschl, G.: Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, 2015.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A. F.: Water shortages worsened by reservoir effects, Nature Sustainability, 1, 617–622, 2018.
Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S., Sanderson, M. R., Tian, F., Viglione, A., Wei, J., Wei, Y., Yu, D. J., Srinivasan, V., and Blöschl, G.: Socio-hydrology: Scientific Challenges in Addressing a Societal Grand Challenge, Water Resour. Res., 55, 6327–6355, https://doi.org/10.1029/2018WR023901, 2019.
Ferdous, M. R., Wesselink, A., Brandimarte, L., Slager, K., Zwarteveen, M., and Di Baldassarre, G.: Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh, Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, 2018.
Gluck, C.: Japan's Modern Myths: Ideology in the Late Meiji Period, Princeton University Press, 407 pp., ISBN 0691008124, 1985.
Godinez Madrigal, J., Van Cauwenbergh, N., Hoogesteger, J., Claure Gutierrez, P., and van der Zaag, P.: The limits to large-scale supply augmentation: exploring the crossroads of conflicting urban water system development pathways, Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, 2022.
Goh, K.: Urban waterscapes: The hydro-politics of flooding in a sinking city, Int. J. Urban Reg. Res., 43, 250–272, 2019.
Haidvogl, G., Winiwarter, V., Dressel, G., Gierlinger, S., Hauer, F., Hohensinner, S., Pollack, G., Spitzbart-Glasl, C., and Raith, E.: Urban Waters and the Development of Vienna between 1683 and 1910, Environ. Hist. Durh. N.C., 23, 721–747, 2018.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nature Publishing Group, 3, 816–821, 2013.
Hohensinner, S., Lager, B., Sonnlechner, C., Haidvogl, G., Gierlinger, S., Schmid, M., Krausmann, F., and Winiwarter, V.: Changes in water and land: the reconstructed Viennese riverscape from 1500 to the present, Water Hist., 5, 145–172, 2013.
Ito, Y.: The Wajyū area and its awareness of disaster prevention: Focusing on changes in awareness after the 9.12 disaster, Chiiki Keizai, 2, 87–107, 1980.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river and coastal flooding: Long term trends and changes, Global Environ. Change, 22, 823–835, 2012.
Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, A., Vigneswaran, S., and Sivapalan, M.: Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia, Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, 2014.
Kim, H., Foster, E., and Chang, H.: Transition of water quality policies in Oregon, USA and South Korea: a historical socio-hydrological approach, Hydrolog. Sci. J., 66, 2117–2131, https://doi.org/10.1080/02626667.2021.1986628, 2021.
Kiso River Lower Reaches Works Office, Chubu Regional Development Bureau, and Ministry of Construction: De Rijke and his accomplishments, Kiso River Lower River Works Office, Chubu Regional Development Bureau, Ministry of Construction, Kuwana, Japan, 233 pp., 1987.
Kiso River Upper Reaches Works Office, Chubu Regional Development Bureau, and Ministry of Land Infrastructure, Transport and Tourism: https://www.cbr.mlit.go.jp/kisojyo/gousaigai_40th/data/pdf/photo_ga.pdf (last access: 23 November 2023), 2023.
Knighton, J., Hondula, K., Sharkus, C., Guzman, C., and Elliott, R.: Flood risk behaviors of United States riverine metropolitan areas are driven by local hydrology and shaped by race, P. Natl. Acad. Sci. USA, 118, e2016839118, https://doi.org/10.1073/pnas.201683911, 2021.
Koide, H.: Japanase River-The history of Natura and Society, University of Tokyo Press, Tokyo, JP, ISBN 978-4-13-061053-7, 1970.
Luu, T., Verhallen, M., Tran, D. D., Sea, W. B., Nguyen, T. B., and Nguyen, H. Q.: Statistically examining the connection between dike development and human perceptions in the floodplains' socio-hydrology system of Vietnamese Mekong Delta, Sci. Total Environ., 810, 152207, https://doi.org/10.1016/j.scitotenv.2021.152207, 2022.
Mazzoleni, M., Odongo, V., Mondino, E., and Di Baldassarre, G.: Water management, hydrological extremes, and society: modeling interactions and phenomena, Ecol. Soc., 26, 4, https://doi.org/10.5751/ES-12643-260404, 2021.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Climate change. Stationarity is dead: whither water management?, Science, 319, 573–574, 2008.
Ministry of Health, Labor and Welfare: Labor Economics Analysis, 2013 Edn., Ministry of Health, Labor and Welfare, Tokyo, Japan, 269 pp., https://www.mhlw.go.jp/wp/hakusyo/roudou/13/13-1.html (last access: 23 November 2023), 2013.
Morita, A.: Infrastructuring Amphibious Space: The Interplay of Aquatic and Terrestrial Infrastructures in the Chao Phraya Delta in Thailand, Sci. Cult., 25, 117–140, 2016.
Mortimore and Adams: Farmer adaptation, change and crisis in the Sahel, Global Environ. Change, 11, 49–57, 2001.
Nakamura, S. and Oki, T.: Paradigm Shifts on Flood Risk Management in Japan: Detecting Triggers of Design Flood Revisions in the Modern Era, Water Resour. Res., 54, 5504–5515, https://doi.org/10.1029/2017WR022509, 2018.
Nishikawa, T.: History of long term flood prevention plan, Suiri-kagaku-kenkyu-jo, Tokyo, JP, 1969.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of challenges and opportunities, WIREs Water, 4, e1193, https://doi.org/10.1002/wat2.1193, 2016.
Perera, C. and Nakamura, S.: Conceptualizing the effectiveness of flood risk information with a socio-hydrological model: A case study in Lower Kelani River Basin, Sri Lanka, Front. Water, 5, 1131997, https://doi.org/10.3389/frwa.2023.1131997, 2023.
Petts, G. E., Möller, H., and Roux, A. L.: Historical analysis of fluvial hydrosystems, in: Historical change of large alluvial rivers: Western Europe, edited by: Petts, G. E., Möller, H., and Roux, A. L., Wiley, Chichester, 1–18, ISBN 9780123745187, 1989.
Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., Biesbroek, R., and Birkmann, J.: Climate change 2022: Impacts, adaptation and vulnerability, IPCC Sixth, https://doi.org/10.1017/9781009325844.001, 2022.
River Bureau, Ministry of Land, Infrastructure, Transport and Tourism: The fundamental river management policy of the Kiso River basin, River Bureau, Ministry of Land, Infrastructure, Transport and Tourism, Tokyo, Japan, 23 pp., https://www.cbr.mlit.go.jp/kisokaryu/kisosansen-plan/houshin/houshin.pdf (last access: 23 November 2023), 2007.
Sarmento Buarque, A. C., Bhattacharya-Mis, N., Fava, M. C., de Souza, F. A. A., and Mendiondo, E. M.: Using historical source data to understand urban flood risk: a socio-hydrological modelling application at Gregório Creek, Brazil, Hydrolog. Sci. J., 65, 1075–1083, 2020.
Savenije, H. H. G., Hoekstra, A. Y., and van der Zaag, P.: Evolving water science in the Anthropocene, Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, 2014.
Schoppa, L., Barendrecht, M., Sieg, T., Sairam, N., and Kreibich, H.: Augmenting a socio-hydrological flood risk model for companies with process-oriented loss estimation, Hydrolog. Sci. J., 67, 1623–1639, 2022.
Shaw, R., Takeuchi, Y., Uy, N., and Sharma, A.: Indigenous knowledge: Disaster risk reduction, policy note, UNISDR Asia and the Pacific, Thailand, 16 pp., https://www.preventionweb.net/files/8853_IKPolicyNote.pdf (last access: 23 November 2023), 2009.
Shibata, N., Nakai, F., Otsuyama, K., and Nakamura, S.: Socio-hydrological modeling and its issues in Japan: a case study in Naganuma District, Nagano City, Hydrolog. Res. Lett., 16, 32–39, 2022.
Sivapalan, M. and Blöschl, G.: Time scale interactions and the coevolution of humans and water, Water Resour. Res., 51, 6988–7022, 2015.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, 2012.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L., and Rodríguez-Iturbe, I.: Socio-hydrology: Use-inspired water sustainability science for the Anthropocene, Earth's Future, 2, 225–230, 2014.
Sullivan, J. A., Friedrich, H. K., Tellman, B., Saunders, A., and Belury, L.: Five key needs for addressing flood injustice, Eos, 105, https://doi.org/10.1029/2024EO240068, 2024.
Takahashi, Y.: River engineering, University of Tokyo Press, Tokyo, JP, ISBN 4130621270, 1990.
Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood vulnerability in the last 50 years, Sci. Rep., 6, 1–9, 2016.
Thanh, V. Q., Roelvink, D., van der Wegen, M., Reyns, J., Kernkamp, H., Van Vinh, G., and Linh, V. T. P.: Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics, Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, 2020.
Tobin, G. A.: The levee love affair: a stormy relationship?, J. Am. Water Resour. Assoc., 31, 359–367, https://doi.org/10.1111/j.1752-1688.1995.tb04025.x, 1995.
Vanelli, F. M., Kobiyama, M., and de Brito, M. M.: To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research, Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, 2022.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science for a changing world, Water Resour. Res., 46, 1–10, 2010.
Water and Disaster Management Bureau: The River Data Book 2022, Water and Disaster Management Bureau, 740 pp., https://www.mlit.go.jp/river/toukei_chousa/kasen_db/pdf/2022/0-1all.pdf (last access: 23 November 2023), 2022.
Wei, J., Wei, Y., and Western, A.: Evolution of the societal value of water resources for economic development versus environmental sustainability in Australia from 1843 to 2011, Global Environ. Change, 42, 82–92, 2017.
Wesselink, A.: Trends in flood risk management in deltas around the world: Are we going “soft”?, Int. J. Water Govern., 4, 25–46, 2016.
White, G. F.: Human adjustment to floods: a geographical approach to the flood problem in the United States, PhD thesis, The University of Chicago, Chicago, 225 pp., https://biotech.law.lsu.edu/climate/docs/Human_Adj_Floods_White.pdf (last access: 23 November 2023), 1942.
Yaeger, M. A., Sivapalan, M., McIsaac, G. F., and Cai, X.: Comparative analysis of hydrologic signatures in two agricultural watersheds in east-central Illinois: legacies of the past to inform the future, Hydrol. Earth Syst. Sci., 17, 4607–4623, https://doi.org/10.5194/hess-17-4607-2013, 2013.
Yamamoto, K.: Engineering history of river channel planning, Sankaido, Tokyo, JP, ISBN 4381011600, 1999.
Yasuda, T.: Structure and Status quo of Flood Defence System in Japan, Water Sci., 12, 67–78, 1968.
Yu, D. J., Haeffner, M., Jeong, H., Pande, S., Dame, J., Di Baldassarre, G., Garcia-Santos, G., Hermans, L., Muneepeerakul, R., Nardi, F., Sanderson, M. R., Tian, F., Wei, Y., Wessels, J., and Sivapalan, M.: On capturing human agency and methodological interdisciplinarity in socio-hydrology research, Hydrolog. Sci. J., 67, 1905–1916, 2022.
Zhu, Z., Vuik, V., Visser, P. J., Soens, T., van Wesenbeeck, B., van de Koppel, J., Jonkman, S. N., Temmerman, S., and Bouma, T. J.: Historic storms and the hidden value of coastal wetlands for nature-based flood defence, Nat. Sustainabil., 3, 853–862, 2020.
Zlinszky, A. and Timár, G.: Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary, Hydrol. Earth Syst. Sci., 17, 4589–4606, https://doi.org/10.5194/hess-17-4589-2013, 2013.
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
The formation of levee systems is an important factor in determining whether a society fights or...