Articles | Volume 27, issue 4
https://doi.org/10.5194/hess-27-933-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-27-933-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Shuhong Wang
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing 210098, People's Republic of China
College of Hydrology and Water Resources, Hohai University, Nanjing
210098, People's Republic of China
British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge CB3 0ET, UK
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing 210098, People's Republic of China
College of Hydrology and Water Resources, Hohai University, Nanjing
210098, People's Republic of China
Hamish D. Pritchard
British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge CB3 0ET, UK
Linghong Ke
College of Hydrology and Water Resources, Hohai University, Nanjing
210098, People's Republic of China
Xiao Qiao
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing 210098, People's Republic of China
College of Hydrology and Water Resources, Hohai University, Nanjing
210098, People's Republic of China
Jie Zhang
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing 210098, People's Republic of China
College of Hydrology and Water Resources, Hohai University, Nanjing
210098, People's Republic of China
Weihua Xiao
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, People's Republic of China
Yuyan Zhou
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, People's Republic of China
Related authors
No articles found.
Titouan Biget, Fanny Brun, Walter Immerzeel, Leo Martin, Hamish Pritchard, Emily Colier, Yanbin Lei, and Tandong Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-863, https://doi.org/10.5194/egusphere-2025-863, 2025
Short summary
Short summary
This study explore the precipitation in the southern Tibetan plateau using the water pressure of an high altitude lake and meteorological models and shows that snowfall could be much stronger on the Plateau than what is predicted by the models.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Chunqiao Song, Chenyu Fan, Jingying Zhu, Jida Wang, Yongwei Sheng, Kai Liu, Tan Chen, Pengfei Zhan, Shuangxiao Luo, Chunyu Yuan, and Linghong Ke
Earth Syst. Sci. Data, 14, 4017–4034, https://doi.org/10.5194/essd-14-4017-2022, https://doi.org/10.5194/essd-14-4017-2022, 2022
Short summary
Short summary
Over the last century, many dams/reservoirs have been built globally to meet various needs. The official statistics reported more than 98 000 dams/reservoirs in China. Despite the availability of several global-scale dam/reservoir databases, these databases have insufficient coverage in China. Therefore, we present the China Reservoir Dataset (CRD), which contains 97 435 reservoir polygons. The CRD reservoirs have a total area of 50 085.21 km2 and total storage of about 979.62 Gt.
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Short summary
The accelerated climate warming in the Tibetan Plateau after 1997 has strong consequences for hydrology, geography, and social wellbeing. In hydrology, the change in streamflow as a result of changes in dynamic water storage originating from glacier melt and permafrost thawing in a warming climate directly affects the available water resources for societies of some of the most populated nations in the world.
Cited articles
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of
glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362,
https://doi.org/10.1029/97JB01696, 1997.
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling
of glaciers, Rev. Geophys., 53, 95–140,
https://doi.org/10.1002/2014RG000470, 2015.
Banerjee, A.: Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate, The Cryosphere, 11, 133–138, https://doi.org/10.5194/tc-11-133-2017, 2017.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.: A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances,
2000–2016, Nat. Geosci., 10, 668–673,
https://doi.org/10.1038/s41561-018-0171-z, 2018a.
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya, The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, 2018b.
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., and
Kraaijenbrink, P. D. A.: Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia, J. Geophys. Res.-Sol. Ea., 124, 1331–1345, https://doi.org/10.1029/2018JF004838, 2019.
Brun, F., Treichler, D., Shean, D., and Immerzeel, W. W.: Limited contribution of
glacier mass loss to the recent increase in Tibetan plateau Lake volume,
Front. Earth Sci., 8, 582060, https://doi.org/10.3389/feart.2020.582060,
2020.
Duan, A. and Xiao, Z.: Does the climate warming hiatus exist over the
Tibetan Plateau?, Sci. Rep.-UK, 5, 13711, https://doi.org/10.1038/srep13711,
2015.
Frauenfelder, R. and Kääb, A.: Glacier mapping from multi-temporal optical remote sensing data within the Brahmaputra river basin, in: Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, Tucson, Arizona, 4–8 May 2009, Paper 299, International Center of Remote Sensing of Environment, 4 pp., 2009.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., and Yao, X., Wei, J., Bao, W., Yu, P., Liu, Q., and Jiang, Z.: The second chinese glacier inventory: data, methods and results, J. Glaciol., 61, 357–372, https://doi.org/10.3189/2015JoG14J209, 2015.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.: Long-term variations in actual evapotranspiration over the Tibetan Plateau, Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, 2021.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., and Chen, Y., and Li, X.: The
first high-resolution meteorological forcing dataset for land process studies over China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498,
https://doi.org/10.1038/nature11324, 2012.
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of
glaciers to water availability in different climate regimes, P. Natl.
Acad. Sci. USA, 107, 20223–20227, https://doi.org/10.1073/pnas.1008162107,
2010.
Ke, L., Song, C., Yong, B., Lei, Y., and Ding, X.: Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale
assessment in southeastern Tibetan Plateau, Remote Sens. Environ., 242, 111777, https://doi.org/10.1016/j.rse.2020.111777, 2020.
Ke, L., Song, C., Wang, J., Sheng, Y., Ding, X., Yong, B., Ma, R., Liu, K., Zhan, P., and Luo, S.: Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century, Remote Sens. Environ., 268, 112779, https://doi.org/10.1016/j.rse.2021.112779, 2022.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris
covers by primary dispersal from transverse englacial ebris bands, Earth
Surf. Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416,
2013.
Lau, W., Kim, M. K., Kim, K. M., and Lee, W. S.: Enhanced surface warming
and accelerated snow melt in the Himalayas and Tibetan Plateau induced by
absorbing aerosols, Environ. Res. Lett., 5, 025204,
https://doi.org/10.1088/1748-9326/5/2/025204, 2010.
Lei, Y., Yao, T., Bird, B. W., Yang, K., Zhai, J., and Sheng, Y.: Coherent
Lake growth on the central Tibetan Plateau since the 1970s: Characterization
and attribution, J. Hydrol., 483, 61–67,
https://doi.org/10.1016/j.jhydrol.2013.01.003, 2013.
Li, G. and Lin, H.: Recent decadal glacier mass balances over the Western
Nyainqentanglha Mountains and the increase in their melting contribution to
Nam Co Lake measured by differential bistatic SAR interferometry, Global
Planet. Change, 149, 177–190,
https://doi.org/10.1016/j.gloplacha.2016.12.018, 2017.
Li, Y. J., Ding, Y. J., Shangguan, D. H., and Wang, R. J.: Regional
differences in global glacier retreat from 1980 to 2015 – sciencedirect,
Adv. Clim. Chang. Res., 10, 203–213,
https://doi.org/10.1016/j.accre.2020.03.003, 2020.
Lin, L., Gao, M., Liu, J., Wang, J., Wang, S., Chen, X., and Liu, H.: Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River, Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, 2020.
Linsbauer, A., Paul, F., and Haeberli, W.: Modeling glacier thickness
distribution and bed topography over entire mountain ranges with GlabTop:
Application of a fast and robust approach, J. Geophys. Res.-Earth, 117, F03007, https://doi.org/10.1029/2011JF002313, 2012.
Luo, W., Zhang, G., Chen, W., and Xu, F.: Response of glacial lakes to
glacier and climate changes in the western Nyainqentanglha range, Sci. Total
Environ., 735, 139607, https://doi.org/10.1016/j.scitotenv.2020.139607, 2020.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592,
https://doi.org/10.1038/nclimate2237, 2014.
MADAS: ASTER products handled by the satellite data retrieval system MADAS, MADAS [data set], https://gbank.gsj.jp/madas/map/index.html, last access: 5 January 2021.
Maurer, J. and Rupper, S.: Tapping into the Hexagon spy imagery database:
A new automated pipeline for geomorphic change detection, ISPRS J.
Photogramm., 108, 113–127, https://doi.org/10.1016/j.isprsjprs.2015.06.008,
2015.
Maurer, J. M., Rupper, S. B., and Schaefer, J. M.: Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery, The Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016, 2016.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5,
aav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
McCarthy, M., Pritchard, H., Willis, I. A. N., and King, E.:
Ground-penetrating radar measurements of debris thickness on Lirung Glacier,
Nepal, J. Glaciol., 63, 543–555, https://doi.org/10.1017/jog.2017.18,
2017.
Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon record based on a shallow Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8, 1343–1352, https://doi.org/10.5194/acp-8-1343-2008, 2008.
Neckel, N., Kropá,J., Bolch, T., and Hochschild, V.: Glacier mass
changes on the Tibetan Plateau 2003–2009 derived from ICESat laser
altimetry measurements, Environ. Res. Lett., 9, 468–475,
https://doi.org/10.1088/1748-9326/9/1/014009, 2014.
Nicholson, L. and Benn, D.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S., Nepal, S., Denis, S., kenneth, H., and Chen, X.: Glacial change and hydrological implications in the Himalaya and Karakoram, Nat. Rev. Earth Environ., 2, 91–106, https://doi.org/10.1038/s43017-020-00124-w, 2021.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Oerlemans, J. and Fortuin, J.: Sensitivity of Glaciers and Small Ice Caps
to Greenhouse Warming, Science, 258, 115–117,
https://doi.org/10.1126/science.258.5079.115, 1992.
Pandey, P., Ali, S. N., Ramanathan, A. L., Champati ray, P. K., and
Venkataraman, G.: Regional representation of glaciers in Chandra Basin
region, western Himalaya, India, Geosci. Front. 8, 841–850,
https://doi.org/10.1016/j.gsf.2016.06.006, 2017.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654,
https://doi.org/10.1038/s41586-019-1240-1, 2019.
Qiao, X., Liu, J., Wang, S., Wang, J., Ji, H., Chen, X., Liu, H. R., and Lu, F.: Lead-lag correlations between snow cover and meteorological factors at multi-time scales in the Tibetan Plateau under climate warming, Theor. Appl. Climatol., 146, 1459–1477, https://doi.org/10.1007/s00704-021-03802-x, 2021.
Qu, B., Ming, J., Kang, S.-C., Zhang, G.-S., Li, Y.-W., Li, C.-D., Zhao, S.-Y., Ji, Z.-M., and Cao, J.-J.: The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities, Atmos. Chem. Phys., 14, 11117–11128, https://doi.org/10.5194/acp-14-11117-2014, 2014.
Reid, T. D., Carenzo, M., Pellicciotti, F., and Brock, B. W.: Including debris cover effects in a distributed model of glacier ablation, J. Geophys.
Res.-Atmos., 117, D18105, https://doi.org/10.1029/2012JD017795, 2012.
Ren, S., Menenti, M., Jia, L., Zhang, J., and Li, X.: Glacier Mass Balance
in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from
ZiYuan-3 Stereo Images and the SRTM DEM, Remote Sens., 12, 864,
https://doi.org/10.3390/rs12050864, 2020.
RGI Consortium.: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0, July, 1–27, https://ci.nii.ac.jp/naid/40021243259/ (last access: 10 May 2021), 2017.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable
response of himalayan glaciers to climate change affected by debris cover,
Nat. Geosci., 4, 156–159, https://doi.org/10.1038/ngeo1068, 2011.
Shangguan, D. H., Liu, S. Y., Ding, L. F., Zhang, S. Q., Gang, L. I., and
Zhang, Y.: Variation of Glaciers inthe Western Nyainqêntanglha Range of Tibetan Plateauduring 1970-2000, J. Glaciol. Geocryol., 30, 206–210, 2008 (in Chinese).
Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., and
Shahgedanova, M.: Recent glacier retreat in the Caucasus Mountains, Russia,
and associated increase in supraglacial debris cover and supra-/proglacial
lake development, Ann. Glaciol., 46, 195–203,
https://doi.org/10.3189/172756407782871468, 2007.
Su, F., Zhang, L., Ou, T., Chen, D., Yao, T., and Tong, K.: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau, Global Planet. Change, 136, 82–95, https://doi.org/10.1016/j.gloplacha.2015.10.012, 2016.
Surazakov, A. and Aizen, V.: Positional accuracy evaluation of
declassified hexagon KH-9 mapping camera imagery, Photogramm. Eng. Rem. S.,
76, 603–608, https://doi.org/10.14358/PERS.76.5.603, 2010.
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020.
Thompson, S. S., Benn, D. I., Dennis, K., and Luckman, A.: A rapidly
growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal,
Geomorphology, 145–146, 1–11,
https://doi.org/10.1016/j.geomorph.2011.08.015, 2012.
USGS: Landsat MSS (Collection 2 Landsat 1–5 MSS Digital Object Identifier), USGS [data set], https://doi.org/10.5066/P9AF14YV, 2021a.
USGS: Landsat ETM+ (Collection 2 Landsat 7 ETM+ Digital Object Identifier), USGS [data set], https://doi.org/10.5066/P9TU80IG, 2021b.
USGS: Landsat OLI (Collection 2 Landsat 8–9 OLI/TIRS Digital Object), USGS [data set], https://doi.org/10.5066/P975CC9B, 2021c.
USGS: KH-9 Hexagon products (Declassified Satellite Imagery – 2 Digital Object Identifier), USGS [data set], https://doi.org/10.5066/F74X5684, 2021d.
USGS: SRTM version 3 (Shuttle Radar Topography Mission 1 Arc-Second Global Digital Object Identifier), USGS [data set], https://doi.org/10.5066/F7PR7TFT, 2021e.
Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., and Sherpa, S. F.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, 2016.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R.: Mountains of the world, – water towers for humanity: Typology, mapping,
and global significance, Water Resour Res., 43, w07447,
https://doi.org/10.1029/2006WR005653, 2007.
Wang, J. R., Chen, X., Liu, J. T., and Qi, H.: Changes of Precipitation–Runoff Relationship Induced by Climate Variation in a Large
Glaciated Basin of the Tibetan Plateau, J. Geophys. Res.-Atmos, 126, e2020JD034367, https://doi.org/10.1029/2020JD034367, 2021.
Wang, Q., Yi, S., and Sun, W.: Continuous Estimates of Glacier Mass Balance
in High Mountain Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data,
Geophys. Res. Lett., 48, e2020GL090954, https://doi.org/10.1029/2020GL090954, 2021.
Wang, X., Zhou, A. G., Siegert, F., Zhang, Z., and Chen, K. L.: Glacier
temporal-spatial change characteristics in western Nyainqentanglha Range,
Tibetan Plateau 1977–2010, Earth Science – Journal of China University of
Geosciences, 37, 1082–1092, 2012 (in Chinese).
Wu, G., Duan, A., Liu, Y., Mao, J., Ren, R., and Bao, Q., He, B., Liu, B., and Hu, W.: Tibetan Plateau climate dynamics: Recent research progress and outlook, Natl. Sci. Rev., 2, 100–116, https://doi.org/10.1093/nsr/nwu045, 2015.
Wu, K., Liu, S., Jiang, Z., Xu, J., Wei, J., and Guo, W.: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories, The Cryosphere, 12, 103–121, https://doi.org/10.5194/tc-12-103-2018, 2018.
Wu, K. P., Liu, S., Jiang, Z., Xu, J. L., and Wei, J.: Glacier mass balance
over the central Nyainqentanglha Range during recent decades derived from
remote-sensing data, J. Glaciol., 65, 422–439,
https://doi.org/10.1017/jog.2019.20, 2019.
Wu, K. Q., Liu, S. Y., Guo, W. Q., Wei, J. F., Xu, J. L., Bao, W. J., and Yao, X. J.: Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970–2014, J. Mt. Sci.-Engl., 13, 1358–1374, https://doi.org/10.1007/s11629-016-3997-0, 2016.
Wu, Y. and Zhu, L.: The response of lake-glacier variations to climate
change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000, J.
Geogr. Sci., 18, 177–189, https://doi.org/10.1007/s11442-008-0177-3, 2008.
Xie, Z., Haritashya, U. K., Asari, V. K., Young, B. W., Bishop, M. P., and
Kargel, J. S.: GlacierNet: A deep-learning approach for debris-covered
glacier mapping, IEEE Access, 8, 83495–83510, https://doi.org/10.1109/ACCESS.2020.2991187, 2020.
Yang, K., He, J., Tang, W., Qin, J., and Cheng, C.: On downward shortwave
and longwave radiations over high altitude regions: Observation and modeling
in the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46,
https://doi.org/10.1016/j.agrformet.2009.08.004, 2010.
Yang, K., He, J., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.:
China meteorological forcing dataset (1979–2018), National Tibetan Plateau, Third Pole Environment Data Center [data set], https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yao, T. D., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat
and its impact on hydrological processes on the tibetan Plateau, China, and
surrounding regions, Arct. Antarct. Alp. Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007.
Yao, T. D., Li, Z. G., Yang, W., Guo, X. J., Zhu, L. P., Kang, S. C., Wu, Y. H., and Yu, W. S.: Glacial distribution and mass balance in the Yarlung Zangbo river and its influence on lakes, Chinese Sci. Bull., 55, 2072–2078,
https://doi.org/10.1007/s11434-010-3213-5, 2010.
Yao, T. D., Thompson, L., Yang, W., Yu, W., Gao, Y., and Joswiak, D.:
Different glacier status with atmospheric circulations in tibetan plateau
and surroundings, Nat. Clim. Change, 2, 663–667,
https://doi.org/10.1038/NCLIMATE1580, 2012.
Ye, Q., Zong, J., Tian, L., Cogley, J. G., Song, C., and Guo, W.: Glacier
changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s –
2000–13, J. Glaciol., 63, 273–287, https://doi.org/10.1017/jog.2016.137,
2017.
Yu, W., Yao, T., Kang, S., Pu, J., Yang, W., and Gao, T., Zhao, H., Zhou, H., Li, S., Wang, W., and Ma, L.: Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau), J. Hydrol., 495, 64–73, https://doi.org/10.1016/j.jhydrol.2013.04.034, 2013.
Zhang, B., Wu, Y., Zhu, L., Wang, J., Li, J., and Chen, D.: Estimation and
trend detection of water storage at Nam Co Lake, central Tibetan Plateau, J.
Hydrol., 405, 161–170, https://doi.org/10.1016/j.jhydrol.2011.05.018,
2011.
Zhang, G., Yao, T., Shum, C. K., Yi, S., Yang, K., and Yu, J., Xie, H., Feng, W., Bolch, T., Wang, L., Behrangi, A., Zhang, H., Wang, W., Xiang, Y., and Yu, J.: Lake volume and groundwater storage variations in tibetan plateau's endorheic basin, Geophys. Res. Lett., 44, 5550–5560, https://doi.org/10.1002/2017GL073773, 2017.
Zhang, Q. and Zhang, G.: Glacier elevation changes in the western
nyainqentanglha range of the Tibetan Plateau as observed by
TerraSAR-X/TanDEM-X images, Remote Sens. Lett., 8, 1143–1152,
https://doi.org/10.1080/2150704X.2017.1362123, 2017.
Zhang, S. Q., Gao, X., Ye, B. S., Zhang, X. W., and Stefan, H.: A modified monthly
degree-day model for evaluating glacier runoff changes in China part II:
application, Hydrol. Process., 26, 1697–1706,
https://doi.org/10.1002/hyp.8291, 2011.
Zhao, Q., Ding, Y., Wang, J., Gao, H., Zhang, S., and Zhao, C., Xu, J., Han, H., and Shangguan, D.: Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow, J. Hydrol., 573, 60–81,
https://doi.org/10.1016/j.jhydrol.2019.03.043, 2019.
Zhou, S., Kang, S., Feng, C., and Joswiak, D. R.: Water balance
observations reveal significant subsurface water seepage from Lake Nam Co,
south-central Tibetan Plateau, J. Hydrol., 491, 89–99,
https://doi.org/10.1016/j.jhydrol.2013.03.030, 2013.
Zhou, Y., Hu, J., Li, Z., Li, J., Zhao, R., and Ding, X.: Quantifying
glacier mass change and its contribution to lake growths in central Kunlun
during 2000–2015 from multi-source remote sensing data, J. Hydrol., 570,
38–50, https://doi.org/10.1016/j.jhydrol.2019.01.007, 2019.
Zhu, L., Xie, M., and Wu, Y.: Quantitative analysis of lake area variations
and the influence factors from 1971 to 2004 in the Nam Co basin of the
Tibetan Plateau, Chinese Sci. Bull., 55, 1294–1303,
https://doi.org/10.1007/s11434-010-0015-8, 2010.
Short summary
We assessed and compared the glacier areal retreat rate and surface thinning rate and the effects of topography, debris cover and proglacial lakes in the west Nyainqentanglha Range (WNT) during 1976–2000 and 2000–2020. Our study will help us to better understand the glacier change characteristics in the WNT on a long timescale and will serve as a reference for glacier changes in other regions on the Tibetan Plateau.
We assessed and compared the glacier areal retreat rate and surface thinning rate and the...