Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Flore Rembert
CORRESPONDING AUTHOR
Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
Marie Léger
Géosciences Montpellier, Univ. Montpellier, CNRS, Univ. Antilles, Montpellier, France
Damien Jougnot
Sorbonne Université, CNRS, EPHE, METIS, F-75005 Paris, France
Linda Luquot
Géosciences Montpellier, Univ. Montpellier, CNRS, Univ. Antilles, Montpellier, France
Related authors
No articles found.
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci., 29, 2997–3018, https://doi.org/10.5194/hess-29-2997-2025, https://doi.org/10.5194/hess-29-2997-2025, 2025
Short summary
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
Orsolya Fülöp, Naoise Nunan, Mamadou Gueye, and Damien Jougnot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1730, https://doi.org/10.5194/egusphere-2025-1730, 2025
Short summary
Short summary
Soil microorganisms exist in a highly structured and variably connected environment, in which they play a critical role in organic matter dynamics. To investigate the relationship between soil respiration and the connectivity of the soil pore water phase, we analysed the use of electrical conductivity as a proxy for soil respiration. Our results show that there were non-linear relationships between the two variables, thereby opening up a new approach to better understand soil respiration.
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, and Stefan Lüth
Adv. Geosci., 58, 177–188, https://doi.org/10.5194/adgeo-58-177-2023, https://doi.org/10.5194/adgeo-58-177-2023, 2023
Short summary
Short summary
The overall objective of the CHENILLE project is to performed an in-situ experiment in the Underground Reaserch Laboratory of Tournemire (Southern France) consisting of hydraulic and thermal stimulation of a fault zone. This experiment is monitored with extensive geophysical means (passive seismic, active seismic, distributed fiber optics for temperature measurements) in order to unravel the physical processes taking place during the stimulation for a better charactization of fault zones.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Cited articles
Archie, G. E.: The electrical resistivity log as an aid in determining some
reservoir characteristics, Transactions of the AIME, 146, 54–62,
https://doi.org/10.2118/942054-G, 1942. a
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol.
J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005. a
Banavar, J. and Schwartz, L.: Magnetic resonance as a probe of permeability in porous media, Phys. Rev. Lett., 58, 1411–1414,
https://doi.org/10.1103/PhysRevLett.58.1411, 1987. a
Ben Moshe, S., Kessouri, P., Erlich, D., and Furman, A.: Geophysically based analysis of breakthrough curves and ion exchange processes in soil, Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021, 2021. a
Bennion, D. and Griffiths, J.: A stochastic model for predicting variations in
reservoir rock properties, Soc. Petrol. Eng. J., 6, 9–16, https://doi.org/10.2118/1187-PA, 1966. a
Binley, A. and Kemna, A.: DC resistivity and induced polarization methods,
Springer, edited by: Rubin, Y. and Hubbard, S. S., Hydrogeophysics, 11, 19–41, https://doi.org/10.1016/B978-0-444-53802-4.00188-3, 2005. a
Binley, A., Hubbard, A. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha,
K., and Slater, L. D.: The emergence of hydrogeophysics for improved
understanding of subsurface processes over multiple scales, Water Resour.
Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a
Bourbie, T., Coussy, O., Zinszner, B., and Junger, M. C.: Acoustics of Porous Media,
Houston, TX, gulf publishing company edn., J. Acoust. Soc. Am., 91, 3080, https://doi.org/10.1121/1.402899, 1987. a
Buckerfield, S. J., Quilliam, R. S., Bussiere, L., Waldron, S., Naylor, L. A.,
Li, S., and Oliver, D. M.: Chronic urban hotspots and agricultural drainage
drive microbial pollution of karst water resources in rural developing
regions, Sci. Total Environ., 744, 140898,
https://doi.org/10.1016/j.scitotenv.2020.140898, 2020. a
Burchette, T. P.: Carbonate rocks and petroleum reservoirs: a geological
perspective from the industry, Geological Society, London, Special
Publications, 370, 17–37, https://doi.org/10.1144/SP370.14, 2012. a
Carman, P. C.: Some physical aspects of water flow in porous media, Discuss. Faraday Soc., 3, 72, https://doi.org/10.1039/df9480300072, 1948. a
Carman, P. C.: Flow of gases through porous media, Butterworths Scientific Publications, London, 182 pp., 1956. a
Chalikakis, K., Guérin, R., Valois, R., and Bosch, F.: Contribution of
geophysical methods to karst-system exploration: an overview, Hydogeol.
J., 19, 1169–1180, https://doi.org/10.1007/s10040-011-0746-x, 2011. a
Chen, Z., Goldscheider, N., Auler, A. S., and Bakalowicz, M.: The World karst
aquifer mapping project: concept, mapping procedure and map of Europe,
Hydrogeol. J., 25, 771–785, https://doi.org/10.1007/s10040-016-1519-3, 2017. a
Cherubini, A., Garcia, B., Cerepi, A., and Revil, A.: Influence of CO2 on
the electrical conductivity and streaming potential of carbonate rocks,
J. Geophys. Res.-Sol. Ea., 124, 10056–10073,
https://doi.org/10.1029/2018JB017057, 2019. a, b, c
Choquette, P. W. and Pray, L. C.: Geologic nomenclature and classification of
porosity in sedimentary carbonates, AAPG Bulletin, 54, 207–250,
https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D, 1970. a
Clennell, B.: Tortuosity: a guide through the maze, Geological Society, London, Special Publications, 122, 299–344, https://doi.org/10.1144/GSL.SP.1997.122.01.18, 1997. a, b
Costa, A.: Permeability-porosity relationship: A reexamination of the
Kozeny-Carman equation based on a fractal pore-space geometry assumption,
Geophys. Res. Lett., 33, L02318, https://doi.org/10.1029/2005GL025134, 2006. a
Drew, D., Lamoreaux, P. E., Coxon, C., Wess, J. W., Slattery, L. D., Bosch,
A. P., and Hötzl, H.: Karst hydrogeology and human activities: impacts,
consequences and implications: IAH International Contributions To
Hydrogeology 20, 5th edn., 338,
https://doi.org/10.1201/9780203749692, 2017. a
Dullien, F. A. L.: 1 – Pore structure, in: Porous media (2nd edition), Academic Press, San Diego, 1992, 5–115,
https://doi.org/10.1016/B978-0-12-223651-8.50007-9, 1992. a
Fabricius, I. L., Baechle, G., Eberli, G. P., and Weger, R.: Estimating
permeability of carbonate rocks from porosity and vp/vs, Geophysics, 72,
E185–E191, https://doi.org/10.1190/1.2756081, 2007. a
Ford, D. and Williams, P. D.: Karst hydrogeology and geomorphology, John Wiley & Sons, 103–144, https://doi.org/10.1002/9781118684986, 2013. a
Garcia-Rios, M., Luquot, L., Soler, J. M., and Cama, J.: The role of mineral
heterogeneity on the hydrogeochemical response of two fractured reservoir
rocks in contact with dissolved CO2, Appl. Geochem., 84, 202–217,
https://doi.org/10.1016/j.apgeochem.2017.06.008, 2017. a
Garing, C., Luquot, L., Pezard, P., and Gouze, P.: Electrical and flow
properties of highly heterogeneous carbonate rocks, AAPG Bulletin, 98,
49–66, https://doi.org/10.1306/05221312134, 2014. a, b
Ghanbarian, B.: Applications of critical path analysis to uniform grain
packings with narrow conductance distributions: I. Single-phase permeability, Adv. Water Res., 137, 103529, https://doi.org/10.1016/j.advwatres.2020.103529, 2020. a
Glover, P. W. J.: Geophysical properties of the near surface Earth: electrical properties, Treatise on Geophysics, 11, 89–137, https://doi.org/10.1016/B978-0-444-53802-4.00189-5, 2015. a
Goldscheider, N., Meiman, J., Pronk, M., and Smart, C.: Tracer tests in karst
hydrogeology and speleology, Int. J. Speleol., 37, 27–40, https://doi.org/10.5038/1827-806X.37.1.3, 2008. a
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., and Quintard,
M.: On the ability of a Darcy-scale model to capture wormhole formation
during the dissolution of a porous medium, J. Fluid Mech., 457,
213–254, https://doi.org/10.1017/S0022112002007735, 2002. a
Guarracino, L., Rötting, T., and Carrera, J.: A fractal model to describe the
evolution of multiphase flow properties during mineral dissolution, Adv. Water Res., 67, 78–86, https://doi.org/10.1029/WR024i004p00566, 2014. a, b, c
Gueguen, Y. and Dienes, J.: Transport properties of rocks from statistics and
percolation, Math. Geol., 21, 1–13, https://doi.org/10.1007/BF00897237, 1989. a
Hubbard, S. S. and Linde, N.: 2.15 – Hydrogeophysics, in: Treatise on Water
Science, edited by: Wilderer, P., Elsevier, Oxford, 2, 401–434,
https://doi.org/10.1016/B978-0-444-53199-5.00043-9, 2011. a
Izumoto, S., Huisman, J. A., Wu, Y., and Vereecken, H.: Effect of solute
concentration on the spectral induced polarization response of calcite
precipitation, Geophys. J. Int., 220, 1187–1196,
https://doi.org/10.1093/gji/ggz515, 2020. a
Izumoto, S., Huisman, J. A., Zimmermann, E., Heyman, J., Gomez, F., Tabuteau,
H., Laniel, R., Vereecken, H., Méheust, Y., and Le Borgne, T.: Pore-scale
mechanisms for spectral induced polarization of calcite precipitation
inferred from geo-electrical millifluidics, Environ. Sci. Technol., 56, 4998–5008, https://doi.org/10.1021/acs.est.1c07742, 2022. a
Jackson, M. D.: Characterization of multiphase electrokinetic coupling using a
bundle of capillary tubes model, J. Geophys. Res.-Sol. Ea., 113, B04201, https://doi.org/10.1029/2007JB005490, 2008. a, b
Johnson, D., Koplik, J., and Schwartz, L.: New pore-size parameter
characterizing transport in porous media, Phys. Rev. Lett., 57,
2564–2567, 1986. a
Jougnot, D., Jiménez-Martínez, J., Legendre, R., Le Borgne, T., Méheust, Y.,
and Linde, N.: Impact of small-scale saline tracer heterogeneity on
electrical resistivity monitoring in fully and partially saturated porous
media: Insights from geoelectrical milli-fluidic experiments, Adv. Water Res., 113, 295–309, https://doi.org/10.1016/j.advwatres.2018.01.014, 2018. a
Kačaroǧlu, F.: Review of groundwater pollution and protection in karst areas, Water, Air, and Soil Pollution, 113, 337–356,
https://doi.org/10.1023/A:1005014532330, 1999. a
Kaufmann, G. and Romanov, D.: Structure and evolution of collapse sinkholes:
Combined interpretation from physico-chemical modelling and geophysical field work, J. Hydrol., 540, 688–698,
https://doi.org/10.1016/j.jhydrol.2016.06.050, 2016. a
Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater,
L., Williams, K. H., Orozco, A. F., Haegel, F.-H., Hördt, A., Kruschwitz,
S., Leroux, V., Titov, K., and Zimmermann, E.: An overview of the spectral
induced polarization method for near-surface applications, Near Surf.
Geophys., 10, 453–468, https://doi.org/10.3997/1873-0604.2012027, 2012. a
Koohbor, B., Deparis, J., Leroy, P., Ataie-Ashtiani, B., Davarzani, H., and
Colombano, S.: DNAPL flow and complex electrical resistivity evolution in
saturated porous media: A coupled numerical simulation, J. Contam. Hydrol., 248, 104003, https://doi.org/10.1016/j.jconhyd.2022.104003,
2022. a
Kozeny, J.: Über kapillare Leitung des Wassers im Boden-Aufstieg, Versickerung und Anwendung auf die Bewasserung, Sitzungsberichte der Akademie der Wissenschaften Wien, Mathematisch Naturwissenschaftliche Abteilung, 136, 271–306, http://www.zobodat.at/pdf/SBAWW_136_2a_0271-0306.pdf (last access: 16 January 2023), 1927. a, b, c
Leger, M. and Luquot, L.: Importance of microstructure in carbonate rocks:
laboratory and 3D-imaging petrophysical characterization, Appl. Sci.,
11, 3784, https://doi.org/10.3390/app11093784, 2021. a, b, c, d
Leger, M., Roubinet, D., Jamet, M., and Luquot, L.: Impact of hydro-chemical
conditions on structural and hydro-mechanical properties of chalk samples
during dissolution experiments, Chem. Geol., 594, 120763,
https://doi.org/10.1016/j.chemgeo.2022.120763, 2022b. a, b, c
Leroy, P., Li, S., Revil, A., and Wu, Y.: Modelling the evolution of complex
conductivity during calcite precipitation on glass beads, Geophys. J.
Int., 209, 123–140, https://doi.org/10.1093/gji/ggx001, 2017. a
Liñán Baena, C., Andreo, B., Mudry, J., and Carrasco Cantos, F.: Groundwater
temperature and electrical conductivity as tools to characterize flow
patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer,
southern Spain, Hydrogeol. J., 17, 843–853,
https://doi.org/10.1007/s10040-008-0395-x, 2009. a
Lønøy, A.: Making sense of carbonate pore systems, AAPG Bulletin, 90,
1381–1405, https://doi.org/10.1306/03130605104, 2006. a
Lucia, F.: Petrophysical parameters estimated from visual descriptions of
carbonate rocks: a field classification of carbonate pore space, J.
Petrol. Technol., 35, 629–637, https://doi.org/10.2118/10073-PA, 1983. a
Luquot, L. and Gouze, P.: Experimental determination of porosity and
permeability changes induced by injection of CO2 into carbonate rocks,
Chem. Geol., 265, 148–159, https://doi.org/10.1016/j.chemgeo.2009.03.028, 2009. a
Martys, N. S., Torquato, S., and Bentz, D. P.: Universal scaling of fluid
permeability for sphere packings, Physical Review E, 50, 403–408,
https://doi.org/10.1103/PhysRevE.50.403, 1994. a
Meyerhoff, S. B., Maxwell, R. M., Revil, A., Martin, J. B., Karaoulis, M., and
Graham, W. D.: Characterization of groundwater and surface water mixing in a
semi confined karst aquifer using time-lapse electrical resistivity
tomography, Water Resour. Res., 50, 2566–2585,
https://doi.org/10.1002/2013WR013991, 2014. a
Montanari, D., Minissale, A., Doveri, M., Gola, G., Trumpy, E., Santilano, A.,
and Manzella, A.: Geothermal resources within carbonate reservoirs in western
Sicily (Italy): A review, Earth-Sci. Rev., 169, 180–201,
https://doi.org/10.1016/j.earscirev.2017.04.016, 2017. a
Noiriel, C.: Resolving time-dependent evolution of pore-scale structure,
permeability and reactivity using X-ray microtomography, Rev.
Mineral. Geochem., 80, 247–285, https://doi.org/10.2138/rmg.2015.80.08,
2015. a
Noiriel, C., Gouze, P., and Bernard, D.: Investigation of porosity and
permeability effects from microstructure changes during limestone
dissolution, Geophys. Res. Lett., 31, L24603,
https://doi.org/10.1029/2004GL021572, 2004. a
Noiriel, C., Bernard, D., Gouze, P., and Thibault, X.: Hydraulic properties and
micro-geometry evolution accompanying limestone dissolution by acidic water,
Oil Gas Sci. Technol., 60, 177–192, https://doi.org/10.2516/ogst:2005011,
2005. a
Pape, H., Clauser, C., and Iffland, J.: Permeability prediction based on
fractal pore‐space geometry, Geophysics, 64, 1447–1460,
https://doi.org/10.1190/1.1444649, 1999. a
Paterson, M.: The equivalent channel model for permeability and resistivity in fluid-saturated rock – A re-appraisal, Mech. Mater., 2, 345–352, https://doi.org/10.1016/0167-6636(83)90025-X, 1983. a
Pereira Nunes, J., Blunt, M., and Bijeljic, B.: Pore-scale simulation of
carbonate dissolution in micro-CT images, J. Geophys. Res.-Sol. Ea., 121, 558–576, 2016. a
Rembert, F., Jougnot, D., Luquot, L., and Guérin, R.: Interpreting
Self-Potential Signal during Reactive Transport: Application to
Calcite Dissolution and Precipitation, Water, 14, 1632,
https://doi.org/10.3390/w14101632, 2022a. a
Rembert, F., Léger, M., Jougnot, D., and Luquot, L.: Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale, Zenodo [data set], https://doi.org/10.5281/zenodo.6908522, 2022b. a
Revil, A., Karaoulis, M., Johnson, T., and Kemna, A.: Some low-frequency
electrical methods for subsurface characterization and monitoring in
hydrogeology, Hydrogeol. J., 20, 617–658,
https://doi.org/10.1007/s10040-011-0819-x, 2012. a
Revil, A., Kessouri, P., and Torres-Verdin, C.: Electrical conductivity,
induced polarization, and permeability of the Fontainebleau sandstone,
Geophysics, 79, D301–D318, https://doi.org/10.1190/geo2014-0036.1, 2014. a
Rötting, T., Luquot, L., Carrera, J., and Casalinuovo, D. J.: Changes in
porosity, permeability, water retention curve and reactive surface area
during carbonate rock dissolution, Chem. Geol., 403, 86–98,
https://doi.org/10.1016/j.chemgeo.2015.03.008, 2015. a
Saneiyan, S., Ntarlagiannis, D., Ohan, J., Lee, J., Colwell, F., and Burns, S.:
Induced polarization as a monitoring tool for in-situ microbial induced
carbonate precipitation (MICP) processes, Ecol. Engin., 127,
36–47, https://doi.org/10.1016/j.ecoleng.2018.11.010, 2019. a
Saneiyan, S., Ntarlagiannis, D., and Colwell, F.: Complex conductivity
signatures of microbial induced calcite precipitation, field and laboratory
scales, Geophys. J. Int., 224, 1811–1824,
https://doi.org/10.1093/gji/ggaa510, 2021. a
Soldi, M., Guarracino, L., and Jougnot, D.: A simple hysteretic constitutive
model for unsaturated flow, Transport in Porous Media, 120, 271–285,
https://doi.org/10.1007/s11242-017-0920-2, 2017. a, b, c
Sun, Z., Mehmani, A., and Torres‐Verdín, C.: Pore‐scale investigation of
the electrical resistivity of saturated porous media: flow patterns and
porosity efficiency, J. Geophys. Res.-Sol. Ea., 126,
e2021JB022608, https://doi.org/10.1029/2021JB022608, 2021.
a
Thanh, L., Jougnot, D., Phan, V., and Nguyen, V.: A physically based model for
the electrical conductivity of water-saturated porous media, Geophys. J. Int., 219, 866–876, https://doi.org/10.1093/gji/ggz328, 2019. a, b
Thompson, A., Katz, A., and Krohn, C.: The microgeometry and transport
properties of sedimentary rock, Adv. Phys., 36, 625–694,
https://doi.org/10.1080/00018738700101062, 1987. a
Vialle, S., Contraires, S., Zinzsner, B., Clavaud, J. B., Mahiouz, K., Zuddas,
P., and Zamora, M.: Percolation of CO2‐rich fluids in a limestone sample:
Evolution of hydraulic, electrical, chemical, and structural properties,
J. Geophys. Res.-Sol. Ea., 119, 2828–2847,
https://doi.org/10.1002/2013JB010656, 2014. a, b, c
Vinogradov, J., Hill, R., and Jougnot, D.: Influence of pore size distribution
on the electrokinetic coupling coefficient in two-phase flow conditions,
Water, 13, 2316, https://doi.org/10.3390/w13172316, 2021. a, b, c
Walsh, J. B. and Brace, W. F.: The effect of pressure on porosity and the
transport properties of rock, J. Geophys. Res., 89, 9425,
https://doi.org/10.1029/JB089iB11p09425, 1984. a
Weger, R. J., Eberli, G. P., Baechle, G. T., Massaferro, J. L., and Sun, Y.-F.:
Quantification of pore structure and its effect on sonic velocity and
permeability in carbonates, AAPG Bulletin, 93, 1297–1317,
https://doi.org/10.1306/05270909001, 2009. a
Winsauer, W. O., Shearin, H. M., J., Masson, P. H., and Williams, M.:
Resistivity of brine-saturated sands in relation to pore geometry, AAPG
Bulletin, 36, 253–277, https://doi.org/10.1306/3D9343F4-16B1-11D7-8645000102C1865D,
1952. a
Wu, Y., Hubbard, S., Williams, K. H., and Ajo-Franklin, J.: On the complex
conductivity signatures of calcite precipitation, J. Geophys. Res., 115, G00G04, https://doi.org/10.1029/2009JG001129, 2010. a
Yu, B., Li, J., Li, Z., and Zou, M.: Permeabilities of unsaturated fractal
porous media, Int. J. Multiphas. Flow, 29, 1625–1642,
https://doi.org/10.1016/S0301-9322(03)00140-X, 2003. a
Zhang, C., Slater, L., Redden, G., Fujita, Y., Johnson, T., and Fox, D.:
Spectral induced polarization signatures of hydroxide adsorption and mineral
precipitation in porous media, Environ. Sci. Technol., 46,
4357–4364, https://doi.org/10.1021/es204404e, 2012. a
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution,...