Articles | Volume 27, issue 19
https://doi.org/10.5194/hess-27-3485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins
Dung Trung Vu
CORRESPONDING AUTHOR
Pillar of Engineering Systems and Design, Singapore University of Technology and Design, Singapore, Singapore
Thanh Duc Dang
Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA
Francesca Pianosi
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, UK
Stefano Galelli
Pillar of Engineering Systems and Design, Singapore University of Technology and Design, Singapore, Singapore
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
Related authors
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
Francesca Pianosi, Georgios Sarailidis, Kirsty Styles, Philip Oldham, Stephen Hutchings, Rob Lamb, and Thorsten Wagener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3310, https://doi.org/10.5194/egusphere-2025-3310, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flood risk models are essential to support risk management. As they simulate complex interactions between climate, the natural and the built environment, they unavoidably embed a range of simplifying assumptions. In this paper, we propose a more rigorous approach to analyse the impact of uncertain assumptions on modelling results. This is important to improve model transparency and set priorities for improving models.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data, 17, 2693–2712, https://doi.org/10.5194/essd-17-2693-2025, https://doi.org/10.5194/essd-17-2693-2025, 2025
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 186 large reservoirs across Mainland Southeast Asia from 1985 to 2023. It provides valuable insights into how reservoir storage grew by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645, https://doi.org/10.5194/egusphere-2025-1645, 2025
Short summary
Short summary
Groundwater is a highly-used water source, which drought management is complicated. We introduce a socio-hydrological water resource model (SHOWER) to aid drought management in groundwater-rich managed environments. Results show which and when drought management interventions influence surface water and groundwater storage, with integrated interventions having most effect on reducing droughts. This encourages further exploration to reduce water shortages and improve future drought resilience.
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
Short summary
In this paper we evaluate the potential use of seasonal weather forecasts to improve reservoir operation in a UK water supply system. We found that the use of seasonal forecasts can improve the efficiency of reservoir operation but only if the forecast uncertainty is explicitly considered. We also found the degree of efficiency improvement is strongly affected by the decision maker priorities and the hydrological conditions.
Elisa Bozzolan, Elizabeth Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 20, 3161–3177, https://doi.org/10.5194/nhess-20-3161-2020, https://doi.org/10.5194/nhess-20-3161-2020, 2020
Short summary
Short summary
We include informal housing in slope stability analysis, considering different slope properties and precipitation events (including climate change). The dominant failure processes are identified, and their relative role in slope failure is quantified. A new rainfall threshold is assessed for urbanised slopes. Instability
rulesare provided to recognise urbanised slopes most at risk. The methodology is suitable for regions with scarce field measurements and landslide inventories.
Cited articles
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT mission
and its capabilities for land hydrology, Springer International Publishing, 117–147, https://doi.org/10.1007/978-3-319-32449-4_6, 2016. a
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions,
Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015wr017173, 2015. a, b
Birkinshaw, S. J., O'Donnell, G. M., Moore, P., Kilsby, C. G., Fowler, H. J.,
and Berry, P. A. M.: Using satellite altimetry data to augment flow
estimation techniques on the Mekong River, Hydrol. Process., 24,
3811–3825, https://doi.org/10.1002/hyp.7811, 2010. a
Biswas, N. K., Hossain, F., Bonnema, M., Lee, H., and Chishtie, F.: Towards a
global Reservoir Assessment Tool for predicting hydrologic impacts and
operating patterns of existing and planned reservoirs, Environ. Model. Softw., 140, 105043, https://doi.org/10.1016/j.envsoft.2021.105043, 2021. a
Bonnema, M. and Hossain, F.: Inferring reservoir operating patterns across the Mekong Basin using only space observations, Water Resour. Res., 53,
3791–3810, https://doi.org/10.1002/2016wr019978, 2017. a, b
Bose, I., Jayasinghe, S., Meechaiya, C., Ahmad, S. K., Biswas, N., and Hossain, F.: Developing a baseline characterization of river bathymetry and
time-Varying height for Chindwin River in Myanmar using SRTM and
Landsat data, J. Hydrol. Eng., 26, 05021030,
https://doi.org/10.1061/(asce)he.1943-5584.0002126, 2021. a
Chow, V. T.: Open-channel hydraulic, McGraw-Hill Book Company, New York, ISBN 007085906X, ISBN 9780070859067, 1959. a
Chowdhury, A. K., Dang, T. D., Nguyen, H. T. T., Koh, R., and Galelli, S.: The Greater Mekong's climate-water-energy nexus: How ENSO-triggered
regional droughts affect power supply and CO2 emissions, Earth's Future,
9, e2020ef001814, https://doi.org/10.1029/2020ef001814, 2021. a
Chuphal, D. S. and Mishra, V.: Increased hydropower but with an elevated risk
of reservoir operations in India under the warming climate, iScience, 26, 105986, https://doi.org/10.1016/j.isci.2023.105986, 2023. a
Costa-Cabral, M. C., Richey, J. E., Goteti, G., Lettenmaier, D. P.,
Feldkötter, C., and Snidvongs, A.: Landscape structure and use, climate, and water movement in the Mekong River Basin, Hydrol. Process., 22,
1731–1746, https://doi.org/10.1002/hyp.6740, 2007. a
Critical-Infrastructure-Systems-Lab: VICRes, GitHub [code], https://github.com/Critical-Infrastructure-Systems-Lab/VICRes (last access: 29 September 2023), 2023. a
Dahiti: Database for Hydrological Time Series of Inland Waters (DAHITI), https://dahiti.dgfi.tum.de/ (last access: 29 September 2023), 2023. a
Dan, L., Ji, J., Xie, Z., Chen, F., Wen, G., and Richey, J. E.: Hydrological
projections of climate change scenarios over the 3H region of China: A
VIC model assessment, J. Geogr. Res., 117, D11102,
https://doi.org/10.1029/2011jd017131, 2012. a
Dang, T. D., Chowdhury, A. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models:
implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020a. a, b, c, d, e
Dang, T. D., Vu, D. T., Chowdhury, A. K., and Galelli, S.: A software package
for the representation and optimization of water reservoir operations in the
VIC hydrologic model, Environ. Model. Softw., 126, 104673,
https://doi.org/10.1016/j.envsoft.2020.104673, 2020b. a, b
Dawson, C. W., Abrahart, R. J., and See, L. M.: HydroTest: Further
development of a web resource for the standardised assessment of hydrological
models, Environ. Model. Softw., 25, 1481–1482, https://doi.org/10.1016/j.envsoft.2009.01.001, 2010. a
Döll, P., Berkhoff, K., Bormann, H., Fohrer, N., Gerten, D., Hagemann, S., and Krol, M.: Advances and visions in large-scale hydrological modelling:
findings from the 11th Workshop on large-scale hydrological modelling,
Adv. Geosci., 18, 51–56, https://doi.org/10.5194/adgeo-18-51-2008, 2008. a
dtvu2205: 210520, GitHub [code and data st], https://github.com/dtvu2205/210520 (last access: 29 September 2023), 2023. a
Du, T. L. T., Lee, H., Bui, D. D., Arheimer, B., Li, H.-Y., Olsson, J., Darby, S. E., Sheffield, J., Kim, D., and Hwang, E.: Streamflow prediction in
“geopolitically ungauged” basins using satellite observations and
regionalization at subcontinental scale, J. Hydrol., 588, 125016,
https://doi.org/10.1016/j.jhydrol.2020.125016, 2020. a
Durand, M., Gleason, C. J., Garambois, P. A., Bjerklie, D., Smith, L. C., Roux, H., Rodriguez, E., Bates, P. D., Pavelsky, T. M., Monnier, J., Chen, X., Baldassarre, G. D., Fiset, J.-M., Flipo, N., d. M. Frasson, R. P., Fulton, J., Goutal, N., Hossain, F., Humphries, E., Minear, J. T., Mukolwe, M. M., Neal, J. C., Ricci, S., Sanders, B. F., Schumann, G., Schubert, J. E., and Vilmin, L.: An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope, Water Resour. Res., 52, 4527–4549, https://doi.org/10.1002/2015wr018434, 2016. a
Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective
calibration approaches in hydrological modelling: A review, Hydrolog. Sci. J., 55, 58–78, https://doi.org/10.1080/02626660903526292, 2010. a
Egüen, M., Aguilar, C., Herrero, J., Millares, A., and Polo, M. J.: On the influence of cell size in physically-based distributed hydrological modelling to assess extreme values in water resource planning, Nat. Hazards Earth Syst. Sci., 12, 1573–1582, https://doi.org/10.5194/nhess-12-1573-2012, 2012. a
Engineering ToolBox: Manning's roughness coefficients,
https://www.engineeringtoolbox.com/mannings-roughness-d_799.html (last access: 22 December 2022), 2004. a
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall-runoff models, J. Hydrol., 122, 161–219, https://doi.org/10.1016/0022-1694(91)90178-k, 1991. a
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Rowland, G. H. J., Harrison, L., and Michaelsen, A. H. J.: The climate
hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015. a
Galelli, S., Dang, T. D., Ng, J. Y., Chowdhury, A. K., and Arias, M. E.:
Opportunities to curb hydrological alterations via dam re-operation in the
Mekong, Nat. Sustainabil., 5, 1058–1069, https://doi.org/10.1038/s41893-022-00971-z, 2022. a
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large
reservoir storage from satellite remote sensing, Water Resour. Res., 48, w09504, https://doi.org/10.1029/2012wr012063, 2012. a
Gleason, C. J. and Smith, L. C.: Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry, P. Natl. Acad. Sci. USA, 111, 4788–4791, https://doi.org/10.1073/pnas.1317606111, 2014. a
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H. E.,
Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E.,
Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry,
P., Liermann, C. R., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers, Nature, 59, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019. a
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic impacts on
continental surface water fluxes, Geophys. Res. Lett., 33, l08406,
https://doi.org/10.1029/2006gl026047, 2006. a
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Florke, M., Hanasaki, N.,
Konzmann, M., and Ludwig, F.: Global water resources affected by human
interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014. a
Hagemann, M. W., Gleason, C. J., and Durand, M. T.: BAM: Bayesian
AMHG-Manning inference of discharge using remotely sensed stream width,
slope, and height, Water Resour. Res., 53, 9692–9707, https://doi.org/10.1002/2017wr021626, 2017. a
Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., and Pimanh, T.:
Hydropower dams of the Mekong River Basin: A review of their
hydrological impactss, J. Hydrol., 568, 285–300, https://doi.org/10.1016/j.jhydrol.2018.10.045, 2019. a
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan,
M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U.,
Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,
R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A
decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013. a
Huang, Q., Long, D., Du, M., Han, Z., and Han, P.: Daily continuous river
discharge estimation for ungauged basins using a hydrologic model calibrated
by satellite altimetry: Implications for the SWOT mission, Water Resour. Res., 56, e2020wr027309, https://doi.org/10.1029/2020wr027309, 2020. a
International Rivers: The environmental and social impacts of Lancang dams,
https://archive.internationalrivers.org/sites/default/files/attached-files/ir_lancang_dams_researchbrief_final.pdf
(last access: 22 April 2023), 2014. a
Johnson, K.: China commits to share year-round water data with Mekong River Commission, Reuters,
https://www.reuters.com/article/us-mekong-river/china-commits-to-share-year-round-water-data-with-mekong
(last access: 22 December 2022), 2020. a
JPL: SWOT: Surface Water and Ocean Topography,
https://swot.jpl.nasa.gov/ (last access: 22 December 2022), 2022. a
Kabir, T., Pokhrel, Y., and Felfelani, F.: On the precipitation-induced
uncertainties in process-based hydrological modeling in the Mekong River
Basin, Water Resour. Res., 58, e2021wr030828, https://doi.org/10.1029/2021wr030828, 2022. a, b, c
Khan, S. I., Hong, Y., Vergara, H. J., Gourley, J. J., Brakenridge, G. R.,
Groeve, T. D., Flamig, Z. L., Policelli, F., and Yong, B.: Microwave satellite data for hydrologic modeling in ungauged basins, IEEE Geosci. Remote Sens. Lett., 9, 663–667, https://doi.org/10.1109/lgrs.2011.2177807, 2012. a
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94jd00483, 2014. a
Lima, F. N., Fernandes, W., and Nascimento, N.: Joint calibration of a
hydrological model and rating curve parameters for simulation of flash flood
in urban areas, Brazil. J. Water Resour., 24, https://doi.org/10.1590/2318-0331.241920180066, 2019. a, b
Liu, G., Schwartz, F. W., Tseng, K.-H., and Shum, C. K.: Discharge and
water-depth estimates for ungauged rivers: Combining hydrologic, hydraulic,
and inverse modeling with stage and water-area measurements from satellites,
Water Resour. Res., 51, 6017–6035, https://doi.org/10.1002/2015wr016971, 2015. a
Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal
routing model to be coupled to land surface parametrization schemes, Tellus A, 48, 708–721, https://doi.org/10.3402/tellusa.v48i5.12200, 1996. a
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale
hydrology: I. Formulation of the VIC-2L model coupled to a routing
model, Hydrolog. Sci. J., 43, 131–141, https://doi.org/10.1080/02626669809492107, 1998. a
MRC: The flow of the Mekong, Mekong River Commission Secretariat, Vientiane, https://www.mrcmekong.org/assets/Publications/report-management-develop/MRC-IM-No2-the-flow-of-the-mekong.pdf (last access: 22 December 2022), 2009. a
MRC – Mekong River Commission: Discharge Time-series, https://portal.mrcmekong.org/time-series/discharge/ (last access: 22 December 2022), 2022. a
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in
Earth system models – Part 1: Problem definition and representation of
water demand, Hydrol. Earth Syst. Sci., 19, 33–61, https://doi.org/10.5194/hess-19-33-2015, 2015a. a
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in
Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015b. a
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V., Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res., 117, c11021, https://doi.org/10.1029/2012jc008158, 2012. a
Park, D. and Markus, M.: Analysis of a changing hydrologic flood regime using
the Variable Infiltration Capacity model, J. Hydrol., 515, 627–280, https://doi.org/10.1016/j.jhydrol.2014.05.004, 2014. a
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Model. Softw., 79,
214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. a
Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., and Kollat, J. B.:
Evolutionary multiobjective optimization in water resources: The past,
present, and future, Adv. Water Resour., 51, 438–456, https://doi.org/10.1016/j.advwatres.2012.01.005, 2013. a, b
Ren-Jun, Z.: The Xinanjiang model applied in China, J. Hydrol., 135, 371–381, https://doi.org/10.1016/0022-1694(92)90096-e, 1992. a
Shin, S., Pokhrel, Y., Yamazaki, D., Huang, X., Torbick, N., Qi, J.,
Pattanakiat, S., Ngo-Duc, T., and Nguyen, T. D.: High resolution modeling of
river-floodplain-reservoir inundation dynamics in the Mekong River Basin, Water Resour. Res., 56, e2019wr026449, https://doi.org/10.1029/2019wr026449, 2020. a
Steyaert, J. C., Condon, L. E., Turner, S. W. D., and Voisin, N.: ResOpsUS, a dataset of historical reservoir operations in the contiguous United
States, Sci. Data, 9, 1–8, https://doi.org/10.1038/s41597-022-01134-7, 2022. a
Sun, W., Fan, J., Wang, G., Ishidaira, H., Bastola, S., Yu, J., Fu, Y. H.,
Kiem, A. S., Zuo, D., and Xu, Z.: Calibrating a hydrological model in a
regional river of the Qinghai–Tibet plateau using river water width
determined from high spatial resolution satellite images, Remote Sens. Environ., 214, 100–114, https://doi.org/10.1016/j.rse.2018.05.020, 2018. a
Tarpanelli, A., Paris, A., Sichangi, A. W., OLoughlin, F., and Papa, F.: Water resources in Africa: The role of earth observation data and hydrodynamic modeling to derive river discharge, Surv. Geophys., 44, 97–122,
https://doi.org/10.1007/s10712-022-09744-x, 2022. a
Tatsumi, K. and Yamashiki, Y.: Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters, Agr. Water Manage., 159, 92–106, https://doi.org/10.1016/j.agwat.2015.05.011, 2015. a
Todini, E.: The ARNO rainfall–runoff model, J. Hydrol., 175, 339–382, https://doi.org/10.1016/S0022-1694(96)80016-3, 1996. a
USGS – United States Geological Survey: Space Shuttle Radar Topography Mission (SRTM) DEM, https://earthexplorer.usgs.gov/ (last access: 22 December 2022), 2022. a
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation
system vulnerability and adaptation to changes in climate and water resources, Nat. Clim. Change, 6, 375–380, https://doi.org/10.1038/nclimate2903, 2016. a
Vegad, U. and Mishra, V.: Ensemble streamflow prediction considering the
influence of reservoirs in India, Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, 2022. a
Vu, D. T.: Codes and data of satellite observations reveal 13 years of
reservoir filling strategies, operating rules, and hydrological alterations
in the Upper Mekong River Basin, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6299041, 2022. a
Vu, D. T., Dang, T. D., Galelli, S., and Hossain, F.: Satellite observations
reveal 13 years of reservoir filling strategies, operating rules, and
hydrological alterations in the Upper Mekong River basin, Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, 2022. a, b, c, d, e, f
Wagener, T. and Pianosi, F.: What has Global Sensitivity Analysis ever
done for us? A systematic review to support scientific advancement and to
inform policy-making in earth system modelling, Earth-Sci. Rev., 194, 1–18, https://doi.org/10.1016/j.earscirev.2019.04.006, 2019. a
Wi, S., Ray, P., M.C.Demaria, E., Steinschneider, S., and Brown, C.: A
user-friendly software package for VIC hydrologic model development,
Environ. Model. Softw., 98, 35–53, https://doi.org/10.1016/j.envsoft.2017.09.006, 2017. a
WLE Mekong: Greater Mekong dam observatory,
https://wle-mekong.cgiar.org/changes/our-research/greater-mekong-dams-observatory/
(last access: 22 December 2022), 2022. a
Xiong, J., Guo, S., and Yin, J.: Discharge estimation using integrated
satellite data and hybrid model in the Midstream Yangtze River, Remote
Sens., 13, 2272, https://doi.org/10.3390/rs13122272, 2021. a
Xue, X., Zhang, K., Hong, Y., and Gourley, J. J.: New multisite cascading
calibration approach for hydrological models: Case study in the Red
River Basin using the VIC model, J. Hydrol. Eng., 21, 05015019, https://doi.org/10.5194/hess-23-3735-2019, 2015.
a
Yeste, P., Ojeda, M. G.-V., Gámiz-Fortis, S. R., Castro-Díez, Y., and
Esteban-Parra, M. J.: Integrated sensitivity analysis of a macroscale
hydrologic model in the north of the Iberian Peninsula, J. Hydrol., 590, 125230, https://doi.org/10.1016/j.jhydrol.2020.125230, 2020. a, b
Yun, X., Tang, Q., Wang, J., Liu, X., Zhang, Y., Lu, H., Wang, Y., Zhang, L.,
and Chen, D.: Impacts of climate change and reservoir operation on streamflow
and flood characteristics in the Lancang-Mekong River Basin, J. Hydrol., 590, 125472, https://doi.org/10.1016/j.jhydrol.2020.125472, 2020. a
Zhai, K., Wu, X., Qin, Y., and Du, P.: Comparison of surface water extraction
performances of different classic water indices using OLI and TM
imageries in different situations, Geospat. Inform. Sci., 18, 34–42, https://doi.org/10.1080/10095020.2015.1017911, 2015. a
Zhang, S., Gao, H., and Naz, B. S.: Monitoring reservoir storage in South
Asia from multisatellite remote sensing, Water Resour. Res., 50, 8927–8943, https://doi.org/10.1002/2014wr015829, 2014. a
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
The calibration of hydrological models over extensive spatial domains is often challenged by the...