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Abstract. The calibration of macroscale hydrological mod-
els is often challenged by the lack of adequate observations
of river discharge and infrastructure operations. This model-
ing backdrop creates a number of potential pitfalls for model
calibration, potentially affecting the reliability of hydrologi-
cal models. Here, we introduce a novel numerical framework
conceived to explore and overcome these pitfalls. Our frame-
work consists of VIC-Res (a macroscale model setup for the
Upper Mekong Basin), which is a novel variant of the Vari-
able Infiltration Capacity (VIC) model that includes a module
for representing reservoir operations, and a hydraulic model
used to infer discharge time series from satellite data. Using
these two models and global sensitivity analysis, we show the
existence of a strong relationship between the parameteriza-
tion of the hydraulic model and the performance of VIC-Res
– a codependence that emerges for a variety of performance
metrics that we considered. Using the results provided by
the sensitivity analysis, we propose an approach for break-
ing this codependence and informing the hydrological model
calibration, which we finally carry out with the aid of a multi-
objective optimization algorithm. The approach used in this
study could integrate multiple remotely sensed observations
and is transferable to other poorly gauged and heavily regu-
lated river basins.

1 Introduction

The past few years have witnessed an increase in the im-
plementation of hydrological models to extensive domains,

from large basins to a continental or even global scale (Döll
et al., 2008; Haddeland et al., 2014; Nazemi and Wheater,
2015a, b; Bierkens, 2015), for a variety of downstream ap-
plications, such as quantifying the potential impact of cli-
mate change on water resources (van Vliet et al., 2016); char-
acterizing the relationship between climate, water, and en-
ergy (Chowdhury et al., 2021); or predicting extreme events
over multiple timescales (Vegad and Mishra, 2022). Such
macroscale hydrological models are rarely calibrated and,
when they are, calibration is typically limited to a portion of
the modeled domain (Bierkens, 2015). This is due to the high
computational cost of calibration at large scales but also, and
more importantly, to the lack of long and reliable time se-
ries of in situ river discharge observations in many regions of
the world (Hrachowitz et al., 2013). In poorly gauged basins,
model calibration is sometimes carried out by leveraging the
few discharge data that are available (e.g., Shin et al., 2020;
Galelli et al., 2022; Chuphal and Mishra, 2023). Naturally,
doing so potentially leads to inadequate model calibration
for the ungauged regions of the domain. An additional prob-
lem is the lack of information and data on the operations
of hydraulic infrastructures: a matter that we have only re-
cently started to address (Vu et al., 2022; Steyaert et al.,
2022). This is important because hydraulic infrastructures,
such as dams, are ubiquitous and heavily affect hydrologi-
cal processes (Haddeland et al., 2006; Grill et al., 2019) and,
therefore, if not properly accounted for, the results of model
calibration. For instance, Dang et al. (2020a) showed that
a macroscale hydrological model ignoring the presence of
dams can be calibrated to attain the same level of fit to data
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as a model that explicitly represent dams; however, such per-
formance is attained through “optimally calibrated” soil pa-
rameters that are unrealistic and are selected to compensate
for the structural error of neglecting dams, ultimately biasing
the representation of both natural and human-impacted hy-
drological processes. Importantly, both problems highlighted
here are exacerbated in transboundary river basins, where ac-
cess to data is particularly difficult.

Some studies have explicitly dealt with the lack of in situ
discharge time series by inferring discharge from satellite
data. As shown in Fig. 1, these studies can be categorized into
two groups. One approach (Fig. 1a) first develops a hydraulic
model for estimating river discharge from remotely sensed
water level and/or river width, and it then uses these estimates
to carry out the calibration of the hydrological model (Khan
et al., 2012; Tarpanelli et al., 2022). This approach still par-
tially relies on in situ data. For example, Xiong et al. (2021)
converted the remotely sensed water level to river discharge
via a rating curve – the relationship between river discharge
and water level – for calibrating their GR6J hydrological
model. The rating curve was developed based on Manning’s
equation, using surveyed river cross-sections and a few pairs
of in situ discharge and remotely sensed water level data for
validation. When these data are not available, another pos-
sible approach (Fig. 1b) is to calibrate both models concur-
rently (e.g., Liu et al., 2015; Sun et al., 2018; Huang et al.,
2020). Here, a potential pitfall is the fact that estimation er-
rors in the hydraulic model (discharge estimation) may be
compensated for by introducing parameter biases in the hy-
drological model, and vice versa (Lima et al., 2019). In other
words, simultaneous calibration of the hydraulic and hydro-
logical models may yield biased parameters, ultimately com-
promising the realism and reliability of the calibrated mod-
els.

Considering the increasing number of remotely sensed
hydrological data that have become available over the last
decades (Birkinshaw et al., 2010; Papa et al., 2012; Bianca-
maria et al., 2016) and that these satellite products are the
only means to estimate river discharges in many regions of
the world, the question arises as to how best use such re-
motely sensed data to support model calibration. Hence, the
overarching questions that this paper addresses are as fol-
lows:

– To what extent is it possible and helpful to calibrate a
macroscale hydrological model in ungauged catchments
using remotely sensed data?

– How do we deal with potential interactions between pa-
rameters used in data preprocessing (i.e., from remotely
sensed data to reconstructed discharge data) and param-
eters of the hydrological models when doing model cal-
ibration?

– Can we reduce the uncertainty from such interactions in
model calibration results?

We answer these questions for an implementation of the
VIC-Res hydrological model, a novel variant of the Vari-
able Infiltration Capacity (VIC) model that includes a module
for representing reservoir operations, for the Upper Mekong
Basin (Dang et al., 2020a), an area characterized by the un-
availability of discharge observations as well as major hydro-
logical alterations caused by dam development (Hecht et al.,
2019). To generate discharge time series for the calibration
of VIC-Res, we use satellite altimetry data and a hydraulic
model (based on Manning’s equation) that is also identified
from satellite data. In our framework, we first use global sen-
sitivity analysis to demonstrate the existence of a pronounced
codependence between the parameterization of the hydraulic
model and the modeling accuracy of VIC-Res. To break this
codependence, we leverage the results of the sensitivity anal-
ysis to constrain the parameterization of the hydraulic model
and, thus, safely inform the calibration of VIC-Res, which
is ultimately carried out using a multi-objective optimization
approach.

2 Study site, model domain, and gauging stations

In this section, we provide information on our study site, the
spatial domain of the hydrological model, and the availability
of observed and remotely sensed discharge data.

2.1 The Lancang–Mekong Basin

Spanning an area of about 795 000 km2, the Mekong River
basin is the largest transboundary basin in Southeast Asia.
The river is 4350 km long and stretches in a northwest–
southeast direction from the Tibetan Plateau (approximately
5200 m a.s.l.) to the East Vietnam Sea (Fig. 2a). The basin
can be roughly divided into two parts, namely, the Upper
Mekong (also known as the Lancang in China) and the Lower
Mekong, which is shared by five countries (Myanmar, Thai-
land, Laos, Cambodia, and Vietnam).

The Lancang accounts for 45 % of the river length, 21 %
of the catchment area, and 16 % of the annual discharge of
the entire Mekong (MRC, 2009). The complex topography
of the Lancang Basin (high mountains and low valleys) con-
tributes to the uneven spatial distribution of precipitation,
which ranges from 600 mm yr−1 on the Tibetan Plateau to
1700 mm yr−1 in the mountains of Yunnan. Meanwhile, the
monsoonal climate causes an uneven temporal distribution of
precipitation, with 70 %–80 % of precipitation arriving in the
wet season (June–November) (Yun et al., 2020).

Because of the advantageous topography and abundant
water availability, the Lancang River basin has become a
hotspot for hydropower development. Indeed, the Lancang
dam system – developed over the past 3 decades – consists
of more than 35 hydropower dams (WLE Mekong, 2022), in-
cluding 10 large dams on the main stem with a volume larger
than 100×106 m3 each (see their location in Fig. 2a and spec-
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Figure 1. Two approaches to the calibration of macroscale hydrological models with discharge data retrieved from satellite data. (a) With se-
quential calibration, the discharge data are first estimated using a hydraulic model linking water level (H ) and/or river width (W ) to discharge
(Q), and they are then used to calibrate the hydrological model. (b) With the second approach, both models are calibrated simultaneously.

ifications in Table S1 in the Supplement). The system has
a total capacity of more than 42000× 106 m3 and can con-
trol up to 55 % of the annual flow to northern Thailand and
Laos. The Lancang River basin is an excellent example of a
transboundary and heavily regulated river with limited infor-
mation on dam operations: initiatives on the sharing of year-
round water data are still in their infancy (Johnson, 2020),
so the only data available to the public are those retrieved
from satellite data (e.g., Bonnema and Hossain, 2017; Biswas
et al., 2021; Vu et al., 2022). Time series of river discharge
measured within China’s political boundaries are not avail-
able.

2.2 Model domain and study period

The spatial domain of our hydrological model is the light
green area illustrated in Fig. 2. This domain corresponds to
the Lancang Basin (namely, the area falling within China’s
political boundaries) as well as an additional area spanning
across Myanmar, Thailand, and Laos. Note that the domain
of hydrological models focusing on the Lancang is typically
“closed” at Chiang Saen (e.g., Dang et al., 2020a), where the
first gauging station with publicly available data is located.

Here, we slightly extend the domain so as to account for the
location of a virtual gauging station (see Sect. 2.3). The sim-
ulation period is from 2009 to 2018 and, thus, comprises the
main development of the Lancang reservoir system, includ-
ing the filling period of the two largest reservoirs, Xiaowan
and Nuozhadu, which account for ∼ 85 % of the total sys-
tem’s storage (Vu et al., 2022). Another reason for the choice
of this study period is to make it compatible with the tempo-
ral coverage of altimetry data at our virtual station, which we
describe next.

2.3 Gauging stations

As mentioned above, the first gauging station with publicly
available data is Chiang Saen, located in northern Thailand,
about 350 km from Jinghong Dam (Fig. 2). Daily water level
and discharge at the station have been collected since 1990
by the Mekong River Commission (MCR) and are available
on its online data portal (https://portal.mrcmekong.org/, last
access: 22 December 2022). As we developed a methodology
for calibrating models in ungauged river basins, these data
are used only for model validation.
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Figure 2. Panel (a) shows the Mekong River basin and its upper portion – the Lancang River basin. In this panel, we illustrate the location
of the gauging station (Chiang Saen), the virtual gauging station, and 10 large hydropower dams on the main stem of the Lancang with a
volume larger than 100× 106 m3 each, all included in the hydrological model. All dams are operational as of December 2020. The light
green area is the spatial domain of the hydrological model. Panel (b) illustrates the locations around Chiang Saen where altimetry water
level data are available. The data are collected by multiple satellites, namely, Envisat (light blue triangle), Jason-2/3 (dark blue triangle), and
Sentinel-3A (white triangle), and are processed by the Database for Hydrological Time Series of Inland Waters (DAHITI). The number above
each triangle corresponds to the station ID in DAHITI. The lower part of panel (b) illustrates the year that each dam was commissioned and
the temporal coverage of altimetry data in each location, constrained by the operational period of the satellites. Location 1422 is chosen as
our virtual station because of the temporal coverage and resolution of altimetry water level data at this location as well as its suitability with
respect to the application of the methods for constructing a river cross-section and rating curve (see Sect. 3.2).

To infer the discharge time series needed for model cali-
bration, we sought locations around Chiang Saen where al-
timetry water level data are available (Fig. 2b). From these
data, one can try to infer the river discharge. These data are
collected by multiple satellites (i.e., Envisat, Jason-2/3, and
Sentinel-3A) and are available in the Database for Hydrolog-
ical Time Series of Inland Waters (DAHITI, https://dahiti.
dgfi.tum.de/, last access: 22 December 2022). In this study,
we choose location 1422 (Jason-2/3) – about 280 km down-
stream of Chiang Saen – as our virtual gauging station (vir-
tual station hereafter). This is because of two main reasons.
First, the temporal coverage of data at the chosen location
covers the years in which the majority of the dams were com-
missioned, including the two largest reservoirs, Xiaowan and
Nuozhadu (see the lower part of Fig. 2b). Second, the tempo-

ral resolution of Jason-2/3 (10 d) is finer than that of Envisat
(35 d) and Sentinel-3A (27 d). It is also worth noting that an-
other database, Hydroweb (https://hydroweb.theia-land.fr/,
last access: 22 December 2022), provides (Sentinel-3A/B)
altimetry water level data for a number of locations at our
study site. However, these data have the same temporal res-
olution and coverage as the Sentinel-3A data provided by
DAHITI, which makes them unsuitable for our study. More-
over, the methods used to construct a river cross-section and
rating curve at the virtual station work best for location 1422
(see Sect. 3.2).
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Figure 3. Flowchart illustrating our numerical framework. The VIC-Res model (green boxes) includes a rainfall–runoff and a routing module;
the latter explicitly simulates reservoir operations using data retrieved from satellite observations. The discharge data used to calibrate VIC-
Res are estimated from altimetry water levels through a rating curve, which is based on Manning’s equation and developed using multiple
satellite data (Landsat images, altimetry water level, and a digital elevation model). All remote sensing items are represented by blue boxes.
The relationship between the parameterization of Manning’s equation (dark blue box) and the performance of VIC-Res is assessed and
quantified via global sensitivity analysis (a). Based on the results of the sensitivity analysis, we then set a value of Manning’s coefficient and
calibrate the parameters of VIC-Res using a non-dominated sorting genetic algorithm (ε-NSGA-II) for multi-objective optimization (b).

3 Methodology

The numerical framework developed for our study consists
of two main modeling components (illustrated in Fig. 3). We
model the hydrological processes within the Lancang Basin
with VIC-Res, whose routing module includes an explicit
representation of reservoir operations (Sect. 3.1). The dis-
charge data at the virtual station used to calibrate VIC-Res
are generated by a simple hydraulic model, namely, a rat-

ing curve based on Manning’s equation (Sect. 3.2). In our
approach, we first use global sensitivity analysis to explore
the relationship between the parameterization of the rating
curve and the performance (fit to data) that can be achieved
through calibration of VIC-Res (Sect. 3.3). Then, we use the
knowledge gained through this sensitivity analysis to select
the parameterization of the rating curve and proceed with the
calibration and validation of VIC-Res.
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Table 1. Soil parameters controlling the rainfall–runoff process and routing parameters in VIC-Res. The last column shows the range of each
parameter considered in this study and also adopted in previous studies (e.g., Dan et al., 2012; Park and Markus, 2014; Xue et al., 2015; Wi
et al., 2017).

Parameter Unit Description Range

Soil b – Variable infiltration capacity curve parameter (0, 0.9]
Dmax mm d−1 Maximum velocity of baseflow (0, 30]
DS – Fraction of Dmax where non-linear baseflow occurs (0, 1)
WS – Fraction of maximum soil moisture where non-linear baseflow occurs (0, 1)
c – Exponent used in baseflow curve [1, 3]
d1 m Thickness of the upper soil layer [0.05, 0.25]
d2 m Thickness of the lower soil layer [0.3, 1.5]

Routing v m s−1 Flow velocity [0.5, 5]
df m2 s−1 Flow diffusion [200, 4000]

3.1 Modeling hydrological processes and reservoir
operations

3.1.1 Hydrological model

The hydrological model used in this study is VIC-Res (Dang
et al., 2020a), a novel variant of VIC, which is a macroscale,
semi-distributed hydrological model developed by the Uni-
versity of Washington (Liang et al., 2014). Both VIC and
VIC-Res consist of two modules, namely, a rainfall–runoff
and a routing module (Fig. 3). In the rainfall–runoff module,
the study region is divided into computational cells with a
customizable cell size (0.0625◦ in this study). For each cell,
the key hydrological processes (evapotranspiration, infiltra-
tion, baseflow, and runoff) are calculated as a function of
various inputs, including climate forcing (e.g., precipitation,
temperature, and wind speed), land cover, leaf area index,
and albedo. In the routing module, simulated baseflow and
runoff produced by the first module are routed throughout the
river network, with the routing process modeled by the lin-
earized Saint-Venant equation (Lohmann et al., 1996, 1998).

Improving on the VIC model, VIC-Res includes an ex-
plicit representation of water reservoir operations. For each
reservoir in the study region, the model solves the storage
mass balance and calculates the reservoir release. Specifi-
cally, we leverage information on modeled inflow and es-
timated storage (see Sect. 3.1.2). These two variables are
combined with information on evaporation (simulated using
the estimated water surface area and evaporation rates calcu-
lated with the Penman equation) to invert the mass balance
equation, yielding the reservoir release. Additional details on
VIC-Res, including alternative approaches to reservoir oper-
ations, are described in Dang et al. (2020b).

In our VIC-Res model, we calibrate seven soil parameters
and two routing parameters (see Table 1). The soil parame-
ters controlling the rainfall–runoff process are b, Dmax, DS,
WS, c, d1, and d2. To be more specific, the parameter b is
the VIC curve parameter, which determines the infiltration

capacity and surface runoff amount generated by each cell
(Ren-Jun, 1992; Todini, 1996). In particular, higher values
of b produce less infiltration and more surface runoff. Dmax,
DS, WS, and c are the baseflow parameters, which influ-
ence the shape of the baseflow curve (Franchini and Pacciani,
1991). Specifically, Dmax is the maximum velocity of base-
flow, DS is the fraction of Dmax at which non-linear base-
flow begins, and WS is the fraction of maximum soil mois-
ture at which non-linear baseflow begins. The parameter c is
the exponent used in the baseflow curve. d1 and d2 are the
thickness of the two soil layers. Thicker layers increase the
water storage capacity and, hence, increase the evaporation
losses. Thicker soil layers also delay the seasonal peak flow.
The routing parameters are flow velocity (v) and flow diffu-
sion (df).

The data used in our VIC-Res model consist of climate
forcing data, land use and cover, leaf area index (LAI),
albedo, flow direction, and time series of reservoir storage
volume. Climate forcing data include daily precipitation data
retrieved from the CHIRPS-2.0 dataset, daily maximum and
minimum temperature, and wind speed (retrieved from the
ERA5 dataset). We collect land use and cover data from the
Global Land Cover Characterization (GLCC) dataset and soil
data from the Harmonized World Soil Database (HWSD).
Monthly LAI and albedo are derived from the Terra MODIS
satellite images, while the flow direction is calculated from
the Shuttle Radar Topography Mission (SRTM) digital ele-
vation model (DEM) data. The monthly time series of reser-
voir storage volume are reconstructed from satellite data, as
explained below.

We finally note that the choice of the cell size could affect
the rainfall–runoff and routing estimations, thereby impact-
ing model calibration and simulated discharge (Egüen et al.,
2012). As the issue applies to any modeling exercise, not
only to those relying on remotely sensed data like this study,
we do not carry out an analysis of the impact of cell size
on model performance. Instead, we choose a cell size (i.e.,
0.0625◦) that falls in between what is currently being adopted
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for the existing distributed models for the Mekong region.
For example, Costa-Cabral et al. (2007) and Tatsumi and Ya-
mashiki (2015) adopted a resolution of 1/12 and 0.25◦, re-
spectively, while Du et al. (2020) and Bonnema and Hossain
(2017) used a resolution of 90/900 m and 0.01◦, respectively.

3.1.2 Reservoir operations

To capture the actual operations of reservoirs, we use
monthly time series of reservoir storage volume recon-
structed from satellite data by Vu et al. (2022). Specifically,
the time series of reservoir storage volume are obtained from
Landsat images (Landsat 5 available from 1984 to 2013,
Landsat 7 from 1999 to 2022, and Landsat 8 from 2013 to
present) and a digital elevation model (SRTM DEM). The
time series are created via three steps. First, the relationship
between water surface area and storage volume (the area–
storage curve) for each reservoir is calculated from DEM
data. Then, the reservoir water surface area is estimated from
Landsat images by a water surface area estimation algorithm
that removes the effects of clouds and other disturbances
(Gao et al., 2012; Zhang et al., 2014). Finally, the storage vol-
ume is inferred from the water surface area through the area–
storage curve. The results obtained from Landsat images are
validated with altimetry water levels (Jason-2 available from
2008 to 2016, Jason-3 from 2016 to present, and Sentinel-
3 from 2016 to present) for the reservoirs where altimetry
water levels are available. As the VIC-Res model adopts a
daily simulation time step, the monthly time series of reser-
voir storage volume is interpolated to daily values. Although
using interpolated values (monthly to daily) is not ideal, it
is reasonable to do so if one considers the specific charac-
teristics of the reservoir system. In particular, Xiaowan and
Nuozhadu are the two largest reservoirs: they have a massive
capacity (∼ 36 km3) and account for about 85 % of the to-
tal system’s storage. Because of their size, their role is not
to follow inter- and intra-daily electricity demand variability
but rather to ensure a stable supply of power and to minimize
the variability in the production of the other dams compos-
ing the hydropower system. This goal is reflected by their
operating patterns. In the wet season (June–November), the
Xiaowan and Nuozhadu reservoirs gradually store water un-
til they reach their maximum operational level (and release
extra water if necessary). The other reservoirs run at their
normal operational level (full capacity for power generation).
In the dry season (December–May), Xiaowan and Nuozhadu
gradually release water to the downstream reservoirs to en-
sure that the other reservoirs can run at their normal op-
erational level (International Rivers, 2014). Therefore, it is
fair to state that Xiaowan and Nuozhadu are characterized
by slowly varying dynamics. Additionally, the analysis car-
ried out in Vu et al. (2022) shows a strong similarity between
the monthly storage of Xiaowan and Nuozhadu derived from
Landsat images and the storage derived from Jason altime-
try data (10 d temporal resolution) and Sentinel-1/2 images

(6 d temporal resolution). Because of the spatial and tempo-
ral coverage of those data, we use the result derived from
Landsat images for this study.

3.2 Inferring discharge data

To handle the lack of discharge data for model calibration,
we again resort to satellite data. Specifically, we convert al-
timetry water levels (Jason-2/3) to discharge through a rat-
ing curve specified for the location of the virtual station (see
Fig. 3). The rating curve (i.e., Manning’s equation) is identi-
fied based on the information on the river cross-section and
water surface slope at the virtual station, which is also de-
rived from satellite data.

3.2.1 River cross-section

We construct the river cross-section at the virtual station us-
ing multiple satellite products (see Fig. S1a in the Supple-
ment). First, we use a digital elevation model (SRTM DEM),
which has a spatial resolution of 30 m, to obtain the por-
tion of the cross-section above the water level at the obser-
vation time of the SRTM satellite (February 2000). To ex-
tend the information available to estimate the river cross-
section, we then pair data on river widths at the virtual
station with the corresponding water levels (nearest obser-
vations in time from the two satellites that provide river
widths and water levels) (Bose et al., 2021). River widths
are estimated from the water pixels – classified from Land-
sat images based on the normalized difference water index
(NDWI) – along the river cross-section. The NDWI is cal-
culated using the green and near-infrared bands of Landsat
images: NDWI= (green band− near-infrared band)/(green
band+ near-infrared band) (Zhai et al., 2015). All of these
bands have a spatial resolution of 30 m. Meanwhile, the wa-
ter level data are processed from Jason-2/3 altimetry satel-
lite data provided by DAHITI. Finally, for each riverbank,
we use a regression model (sixth-degree polynomial), which
is the best fit to the data points obtained from the two first
steps. The two models help us extrapolate the portion of the
river cross-section under the lowest water level observed by
the satellites. It is worth noting that the approach works best
for river banks under natural conditions, where it is possible
to infer the relation between river widths and water levels. It
would be challenging to apply this approach at Chiang Saen,
for example, where the river banks have been engineered.
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3.2.2 Rating curve

We construct the rating curve at the virtual station with Man-
ning’s equation (Eq. 1):

Q=
A5/3S1/2

P 2/3n
, (1)

where Q, A, and P are the respective discharge, river cross-
section area, and wet perimeter corresponding to the water
depth D (see Fig. S1b). As explained next, A and P are cal-
culated from the river cross-section for different values of
water depthD. S is the hydraulic slope, estimated from DEM
data (which reflect the water surface slope at the observation
time). n is the Manning coefficient (riverbed roughness); fol-
lowing Chow (1959) and Engineering ToolBox (2004), we
assume that it ranges from 0.03 to 0.06.

The rating curve is constructed in two steps. First, we use
Eq. (1) to estimate the discharge corresponding to each water
depth with regular intervals of 1 m (e.g., 0, 1, and 2 m). Af-
ter this step, we have a number of data points at hand, each
containing a value of the water depth and its corresponding
discharge. Then, we fit the data points using a power curve.
This translates into our rating curve. Note that, when convert-
ing altimetry water level to discharge using the rating curve,
we convert altimetry water level to water depth by deduct-
ing the riverbed elevation (Fig. S1b). It is worth noting that
this approach, based on Manning’s equation, works best for
straight river segments with limited discharge variations due
to tributaries and distributaries nearby (Przedwojski et al.,
1995). This condition and the condition for constructing the
river cross-section mentioned above make location 1422 the
most suitable location for our virtual station, despite the fact
that there are other locations closer to Chiang Saen (e.g., the
location 812) that could provide a better validation using ob-
served data at Chiang Saen.

3.3 Sensitivity analysis and model calibration

3.3.1 Sensitivity analysis

We carry out a global sensitivity analysis (Pianosi et al.,
2016) to study the relationship between the performance of
VIC-Res and the parameterization of the rating curve. We
investigate a total of 10 model parameters, including 7 soil
parameters of the rainfall–runoff module, 2 parameters of
the routing module, and the Manning coefficient appearing
in the rating curve. We use Latin hypercube sampling to cre-
ate 1000 samples in the 10-dimensional parameter space de-
fined by the ranges given in Sect. 3.1.1 and 3.2.2. For each
parameter sample, we run a simulation over the period from
2009 to 2018 (after a warm-up period from 2005 to 2008) and
then reconstruct discharge data for the same period with the
rating curve. We then compare reconstructed and simulated
discharges through four performance metrics, which are de-
scribed in the next subsection. Having built this input (param-
eters) and output (performance metrics) dataset, we analyze

the codependence between the performance of VIC-Res and
the Manning coefficient. We also identify the parameter sam-
ples that map into the top 25 % of samples yielding the best
performance with respect to each metric and analyze if (and
how) such performance constraints map back into parame-
ter value constraints. The simulation experiment is run on
a 2.50 GHz Intel® Xeon® W-2175 CPU with 128 GB RAM
running Linux Ubuntu 18.04. The total running time is about
200 h.

3.3.2 Performance metrics

The performance metrics are calculated by comparing the
simulated (by VIC-Res) and remotely sensed discharge at
the virtual station. Because the temporal resolution of re-
motely sensed discharge is defined by the revisit time of the
altimetry satellite (approximately 10 d for Jason-2/3), we cal-
culate the performance metrics using the data of all days on
which altimetry water levels are available. Among the sev-
eral metrics available in literature (Dawson et al., 2010), we
chose four metrics that explicitly capture different aspects
of modeling accuracy: the Nash–Sutcliffe efficiency (NSE),
the transformed root-mean-square error (TRMSE), the mean-
squared derivative error (MSDE), and the runoff coefficient
error (ROCE). The NSE and TRMSE assess the model per-
formance on high and low flows, respectively, while the
MSDE accounts for the shape of the hydrograph timing er-
rors and for noisy signals. Finally, the ROCE assesses the
overall water balance (Reed et al., 2013). The metrics are de-
fined as outlined in the following.

NSE= 1−

n∑
t=1

(
QSim,t −QRS,t

)2
n∑
t=1

(
QRS,t −QRS

)2 , (2)

where n is the number of satellite altimetry water level ob-
servations,QSim,t andQRS,t are the respective simulated and
remotely sensed discharge at the virtual station (for the ob-
servation number t), and QRS is the mean of the remotely
sensed discharge.

TRMSE=

√√√√1
n

n∑
t=1

(
zSim,t − zRS,t

)2
, (3)

where zsim,t and zRS,t represent the respective values of the
simulated and remotely sensed discharge at the virtual sta-
tion (for the observation number t), both transformed by the
expression z= (1+Q)λ−1

λ
(λ= 0.3). In other words, λ scales

down the values of the discharge, thereby emphasizing the

Hydrol. Earth Syst. Sci., 27, 3485–3504, 2023 https://doi.org/10.5194/hess-27-3485-2023



D. T. Vu et al.: Calibrating hydrological models in poorly gauged basins 3493

errors on low flows.

MSDE=

n∑
t−1

((
QRS,t −QRS,t−1

)
−
(
QSim,t −QSim,t−1

))2
n− 1

(4)

ROCE= abs

(
QSim

P
−
QRS

P

)
(5)

Here, QSim is the mean of the simulated discharge at the vir-
tual station and P is the mean annual rainfall.

3.3.3 Model calibration

As we shall see, the global sensitivity analysis helps us un-
derstand the relationship between the performance of VIC-
Res and the parameterization of the rating curve. Moreover,
by identifying the parameter samples that map into high val-
ues of the performance metrics (here the top 25 %), the anal-
ysis helps us narrow down the range of variability in (at least
some of) the model parameters. However, one may still want
to complete the model calibration by further seeking for com-
binations of the VIC-Res parameters that optimize the per-
formance metrics. To this end, we couple VIC-Res with ε-
NSGA-II, a multi-objective evolutionary algorithm widely
used for hydrological modeling applications (Reed et al.,
2013; Dang et al., 2020a). Here, the decision variables are
the nine parameters of VIC-Res, while the objective func-
tion is a vector consisting of the four metrics described in
Sect. 3.3.2. Similarly to the sensitivity analysis, all metrics
are calculated via simulation over the period from 2009 to
2018, with a spin-up period going from 2005 to 2008. The ε-
NSGA-II is set up with ε = 0.001, an initial population size
of 10, and a number of function evaluations equal to 100. All
performance metrics are normalized between zero and one.
The calibration exercise is carried out on 10 independent tri-
als, with the best (Pareto-efficient) parameter combinations
selected across the 10 calibration exercises. The total runtime
is about 210 h (using the same computational infrastructure
adopted for the sensitivity analysis).

4 Results

Here, we move across three steps. First, we illustrate the re-
sults leading to the estimation of a discharge time series at
the virtual station, including the identification of the river
cross-section and rating curve (Sect. 4.1). Then, we use sen-
sitivity analysis to show that a codependence exists between
the Manning coefficient and the performance of VIC-Res,
and we propose an approach to overcome this potential is-
sue (Sect. 4.2). We finally calibrate VIC-Res and validate its
performance using observed discharge data at Chiang Saen
(Sect. 4.3).

4.1 Estimation of the remotely sensed discharge at the
virtual station

4.1.1 River cross-section

Figure 4a shows the river cross-section at the virtual station,
constructed via the use of multiple satellite data. Specifically,
each dark blue bar represents a 30 m cell of the SRTM DEM
lying along the river cross-section. These bars are connected
by a series of segments representing an estimate of the cross-
section above the water surface at the observation time of
the SRTM satellite. That specific water surface is depicted
by the horizontal dark blue line at an elevation of 293 m.
The light blue lines indicate the river widths derived from
19 Landsat 5 images and water levels obtained from Jason-
2/3. Additional information about these images, water lev-
els, and corresponding collection dates are reported in Ta-
ble S2 in the Supplement. Finally, the dotted blue line repre-
sents the cross-section below the lowest observed water level.
This line is created via extrapolation by two regression mod-
els (sixth-degree polynomial), which are fitted to the obser-
vations retrieved from the DEM, Landsat 5, and Jason-2/3
(11 and 14 data points for the left and right banks, respec-
tively). We also explore four alternative cross-sections, cre-
ated by moving the one at the location of the virtual station
30 and 60 m (one and two cells) both upstream and down-
stream, with the assumption that water levels at the alterna-
tive cross-sections are the same as those at the virtual station
(water surface slope around the virtual station estimated from
the DEM is about 0.00015≈ 8.8 mm/60 m). The alternative
cross-sections are in good agreement with the cross-section
at virtual station (see Fig. S2). Specifically, riverbed eleva-
tions are 277.2, 275.6, 276, 274.5, and 274.3 m a.s.l. (from
upstream to downstream).

4.1.2 Rating curve

With the river cross-section at hand, we estimate the rating
curve at the virtual station using Manning’s equation (Eq. 1).
As the value of the Manning coefficient n is unknown, the
value of the estimated discharge Q depends not only on the
water depth D but also on n, that is

Q=
0.161D2.357

n
. (6)

In Fig. 4b, we plot the range of variability in the rating curve
corresponding to values of n varying between 0.03 and 0.06
(Sect. 3.2.2). This range is represented by the light blue band.
Note the large increase in river discharge estimates corre-
sponding to a depth larger than 20 m. In this figure, we also
report three rating curves corresponding to three specific val-
ues of n, namely, the minimum (dotted blue line), average
(dark blue line), and maximum (dashed blue line).
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Figure 4. (a) River cross-section at the virtual station constructed from multiple satellite data. The dark blue line is obtained from a
SRTM DEM, while the light blue lines are retrieved by pairing Landsat-derived river widths with Jason altimetry water levels. The dot-
ted blue line is created using two regression models, which are first fitted to the right and left banks and then extrapolated to the portion
below the lowest observed water level. Panel (b) shows the range of variability in the rating curve (at the virtual station) for values of n rang-
ing from 0.003 to 0.006 (light blue band). In this plot, we also illustrate three rating curves corresponding to specific values of n: minimum
(dotted blue line), average (dark blue line), and maximum (dashed blue line). Panel (c) presents remotely sensed (RS) discharge at the virtual
station. The light blue band represents the range of variability, with n varying from 0.03 to 0.06. The dark blue line is the estimated discharge
with the average value of n (0.045). Note that this time series is relatively similar to the one obtained by scaling the discharge measured at
Chiang Saen by the area ratio (equal to 1.17). That time series is depicted by the dotted orange line. The unit “cms” on the y axes represents
cubic meters per second.

4.1.3 Remotely sensed discharge

Using the rating curve and water depth (converted from
Jason-2/3 altimetry water level data), we estimate 298 dis-
charge data points at the virtual station during the period
from 2009 to 2018 (Fig. 4c). The light blue band represents
the envelope of variability in the discharge corresponding to
values of n ranging between 0.03 and 0.06. The figure also
depicts the discharge time series corresponding to the aver-
age value of the Manning coefficient (n= 0.045) as well as
an additional time series obtained by scaling the observed
discharge at Chiang Saen by a coefficient (equal to 1.17)
representing the relative increase in drainage area between
Chiang Saen and the virtual station (dotted orange line). A

qualitative comparison of these estimated discharge values
provides a few useful insights. First, there is large uncer-
tainty in the discharge estimated during the summer mon-
soon season. This result is explained by the characteristics
of the rating curve – the higher the value of D, the higher
the uncertainty in Q (Fig. 4b). Second, there is a larger vari-
ability in the discharge estimated during the dry season of
2013–2018 compared with that of 2009-2012. That is be-
cause the cascade dam system in the Lancang modified the
natural flow downstream, increasing low flows (Vu et al.,
2022). The change can be seen most clearly since 2013, when
Nuozhadu, the largest reservoir in the system, became oper-
ational. Moreover, it should be considered that the discharge
variability could be further amplified by the use of a rating
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curve; recall that when converting water level to discharge,
the higher the water depth value, the larger the discharge
variability (Fig. 4b). Lastly, there seems to be a reasonable
agreement between the discharge time series corresponding
to n= 0.045 and that estimated from values observed at Chi-
ang Saen. This implicitly validates the rating curve, further
suggesting that the mean value of n might be a reasonable
estimate. To further investigate this last point – and under-
stand how the choice of the Manning coefficient influences
the performance of VIC-Res – we now move to the sensitiv-
ity analysis.

4.2 Sensitivity analysis

4.2.1 Codependence between VIC-Res performance
and the Manning coefficient

The first fundamental step in our analysis is to understand
whether co-estimating the Manning coefficient and the pa-
rameters of the hydrological model (see Fig. 1) could bias
the calibration process, ultimately limiting the reliability of
VIC-Res. To answer this question, we leverage the results
obtained by exploring (via simulation) 1000 different param-
eterizations of VIC-Res and Manning’s equation.

In Fig. 5a, d, g, and j, we illustrate the relationship be-
tween the four metrics of performance calculated for VIC-
Res (i.e., NSE, TRMSE, MSDE, and ROCE) and the value
of the Manning coefficient n. To aid the analysis, we high-
light (in a darker color) the parameterizations yielding the
top 25 % of samples yielding the best performance (250 sam-
ples) with respect to each metric. For example, in Fig. 5a, the
250 samples with a higher NSE are represented by the dark
blue lines, whereas the 750 samples with a lower NSE are
represented by the light blue lines. The NSE threshold cre-
ated by the top 25 % is equal to 0.48. Interestingly, when
comparing these four panels, we see that the values of n
corresponding to the best performance vary with the met-
ric that we consider. For example, the performance of the
top 25 % of parameterizations yielding the highest values of
NSE is given by values of n ranging between 0.03 and 0.054,
whereas those giving the best performance for the MSDE
range between 0.037 and 0.06. This point is consolidated by
Fig. 5b, e, h, and k, where we show the frequency distribu-
tion of n corresponding to the performance of the top 25 %
of samples for each metric. The minimum and maximum
values that we found for each distribution are [0.03, 0.054],
[0.034, 0.06], [0.037, 0.06], and [0.033, 0.059] for the NSE,
TRMSE, MSDE, and ROCE, respectively. Note also how the
median value of each distribution changes with the selected
performance metric.

The explanation behind this result must be sought in the
different aspects of the simulated hydrograph that are cap-
tured by the four metrics (see Sect. 3.3.2). Let us consider,
for instance, the NSE, a metric that emphasizes model per-
formance on high flows: the top 25 % of parameterizations

of VIC-Res achieving the best performance are those corre-
sponding to smaller values of n, which translate (via Man-
ning’s equation) into higher discharge estimates. In other
words, calibrating both models simultaneously while using
the NSE as a performance metric leads to producing dis-
charge data that are biased towards higher values (Fig. 5c).
Similarly, the values of n associated with the best TRMSE
and MSDE performance are shifted upward (i.e., producing
lower discharges), as both metrics emphasize model accuracy
on lower flows (Fig. 5f, i). For the ROCE, most values of n
are concentrated around the median value of 0.043 (close to
the mean of 0.045). Note that ROCE the looks at the over-
all water balance, thereby requiring calibration of the hydro-
logical models on discharge values that are more centered
towards the bulk of the distribution (Fig. 5l).

4.2.2 Breaking the codependence

Having established that there can be a codependence be-
tween the performance of VIC-Res and the Manning coef-
ficient, we now turn our attention to a potential solution. Ide-
ally, one would like to calibrate a hydrological model that
performs well with respect to multiple performance metrics
(Efstratiadis and Koutsoyiannis, 2010). Guided by this sim-
ple concept, we consider the parameterizations of VIC-Res
and Manning’s equation associated with the top 25 % of pa-
rameterizations with the best performance with respect to
all metrics (i.e., NSE, TRMSE, MSDE, and ROCE). This
leaves us with 40 parameterizations (illustrated in Fig. 6).
The first interesting point to note in the figure (right panel)
is the empirical distribution of n. Focusing on satisfactory
performance across multiple metrics yields a narrower range
of the Manning coefficient concentrated around the median
value of 0.046. As we shall see later, this means that the un-
certainty in discharge values is reduced with respect to what
we observed in Fig. 5.

The left panel of Fig. 6 illustrates the specific values of
the parameterizations through a parallel-coordinate plot, in
which each axis represents a parameter and each line is a
parameter sample. The 40 top-performing parameterizations
are highlighted in bold, whereas the remaining 960 are de-
picted with a lighter color. Here, we notice that only the range
of the flow velocity (v) can be clearly narrowed down (in ad-
dition to n, of course). Specifically, when considering only
the 40 top-performing parameterizations, the range is re-
duced from [0.5, 5] to [2, 5]. For some parameters (i.e., b, d1,
and d2), although their ranges remain fairly large, the values
in the 40 top-performing combinations are mostly (but not
exclusively) concentrated in certain parts of the initial range:
for b, in the middle part (0.2 to 0.75); for d1 in the upper part
(0.12 to 0.25); for d2 in the lower part (0.3 to 1). Lastly, for
the remaining parameters (i.e.,Dmax,DS,WS, c, and df ), the
40 top-performing samples are evenly distributed throughout
the initial range. This is a common problem in macroscale
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Figure 5. The first column contains four parallel-coordinate plots. In each plot, the left axis is a model performance metric (i.e., NSE,
TRMSE, MSDE, or ROCE) and the right axis is the Manning coefficient n. Each line corresponds to one of the 1000 parameterizations gen-
erated by Latin hypercube sampling. The dark blue lines highlight the top 25 % of parameterizations yielding the best performance for each
metric. The histograms in the second column illustrate the frequency distribution of n corresponding to these top 25 % of parameterizations.
The median is depicted by the dark blue line. In the last column, we report (in light blue) the range of variability in the discharge estimated
with n ∈ [0.03,0.06] (this is the same range as in Fig. 4c) and (in dark blue) the range corresponding to the top 25 % of parameterizations
with the best performance for each metric. The black lines present the discharge corresponding to the four median values of n (see the second
column) and the dotted orange line is the discharge estimated from observations at Chiang Saen via the area-ratio-based method. Note how
the use of different performance metrics results in different ranges and different medians of the Manning coefficient. The unit “cms” on the
y axes represents cubic meters per second.
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Figure 6. Parallel-coordinate plot illustrating the 1000 parameterizations explored in this study. The first nine axes (green) represent the
VIC-Res model parameters, while the last axis (blue) represents the Manning coefficient n. Darker lines highlight the 40 parameterizations
showing good performance for all metrics; these are identified by intersecting the four groups of parameterizations (each group is the top
25 % of parameterizations yielding the best performance for each metric). The panel on the right illustrates the frequency distribution of n
corresponding to the 40 selected parameterizations. The median of this distribution is 0.046.

hydrological models, including VIC (Yeste et al., 2020), a
point to which we will return in Sect. 5.

4.2.3 Narrowing the uncertainty in discharge data

How does the new parameterization of n impact the remotely
sensed discharge data needed to calibrate the model? To an-
swer this question, we compare two envelops of variability
for the discharge data in Fig. 7a: the one (light blue en-
velope) corresponding to n ∈ [0.03,0.06] (the initial uncer-
tainty range of n) and the one (dark blue envelope) corre-
sponding to n ∈ [0.04,0.052] (the narrowed range after con-
straining across all four metrics; see Sect. 4.2.2). As ex-
pected, the range of remotely sensed discharge is narrowed
down significantly, especially during the high-flow periods.
Another point that is worth noticing here is that the dis-
charge time series corresponding to the median value of n
(i.e., 0.046) is close to the time series estimated from the data
available at Chiang Saen. This is a qualitative, yet informa-
tive, validation of the sensitivity analysis results.

To complete the analysis, we compare the envelopes of
variability in remotely sensed discharge data with the sim-
ulations of VIC-Res using the narrow range of n (Fig. 7b).
The comparison shows encouraging results, as the range of
simulated discharge (green envelope) is not too wide and it
mostly overlaps with the remotely sensed one. A good level
of overlap is also found in the monthly averages of the sim-
ulated and remotely sensed discharge (Fig. 7e). Looking at
specific years (Fig. 7c, d) in more detail reveals more mixed
results. In one case (2014), the model predictions seem to fol-
low the estimated discharge very well, particularly in the dis-
charge fluctuations over the summer monsoon; in the other
case (2013), in contrast, the simulated discharge in the wet

season (September–November) is ∼ 1.5 to 2.5 times higher
than the remotely sensed (and area-ratio-based) discharge.
This may be due to errors in the rainfall data used to force the
hydrological model, which are common in this region (Kabir
et al., 2022).

4.3 Model calibration and validation performance

In our last step, we seek to reduce the uncertainty in simu-
lated discharge presented in the previous section. To this end,
we need to select a specific discharge time series to which we
can calibrate the model. Albeit arbitrary, a reasonable choice
is the remotely sensed discharge corresponding to the median
value of n, as (1) it does represent the envelope of variabil-
ity produced by Manning’s equation and (2) it is rather close
to the discharge at the virtual station estimated by scaling
the discharge observed at Chiang Saen. Using this time se-
ries, we carry out a calibration using the multi-objective evo-
lutionary algorithm described in Sect. 3.3.3. From the 1100
Pareto-optimal parameterizations provided by the algorithm,
we select the best-performing parameterizations (12 param-
eterizations) by applying the same criteria used in the sensi-
tivity analysis (i.e., we take the intersection of the top 25 %
of parameterizations with respect to each of the four perfor-
mance metrics). The envelope of variability in the simulated
discharge corresponding to these 12 selected parameteriza-
tions is illustrated by the dark green band in Fig. 8a, where it
is contrasted against the envelope of variability generated by
VIC-Res before this calibration step. As expected, the range
of variability is narrowed significantly and is in good agree-
ment with the remotely sensed discharge corresponding to a
value of n of 0.046 (dark blue line) and the area-ratio-based
discharge (dotted orange line). The performance metrics of
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Figure 7. In panel (a), we compare the range of variability in the remotely sensed (RS) discharge before and after sensitivity analysis. The
two envelopes correspond to values of n belonging to [0.03, 0.06] and [0.04, 0.052]. In the plot, we add the discharge values corresponding
to the median value of n (0.046) and those estimated from the data at Chiang Saen (dotted orange line). In panel (b), we compare the RS
discharge against the discharge data simulated by VIC-Res. Both envelopes correspond to a value of n ∈ [0.04,0.052]. In panels (c)–(e), we
focus on 2013, 2014, and the average monthly discharge. The plots of other individual years are provided in Fig. S3. The unit “cms” on the
y axes represents cubic meters per second.

the 12 selected parameterizations – calculated by compar-
ing simulated and remotely sensed discharge at the virtual
station – are reasonable, with the NSE, TRMSE, MSDE,
and ROCE falling into the [0.686, 0.689], [3.337, 3.360],
[890, 904, 908, 805], and [0.03, 0.04] ranges, respectively.
The detailed performance of each parameterization is pro-
vided in Table S3.

In Fig. 8b, we report the performance of the model valida-
tion at Chiang Saen station. The variability range of the sim-
ulated discharge corresponding to the 12 selected parameter-
izations (dark green band) is much narrower than that of the
40 parameterizations selected through the sensitivity analy-
sis (light green band). The new envelope of variability is also
in good agreement with the observed discharge at Chiang
Saen station (dotted orange line). The performance metrics
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Figure 8. Simulated discharge at the virtual station used for calibration (a) and at Chiang Saen station (used for validation) (b). The dark green
band is the variability range of simulated discharge corresponding to the 12 parameterizations produced by the multi-objective calibration,
while the light green band corresponds to the 40 parameterizations selected from the sensitivity analysis. The dark blue line is the remotely
sensed discharge at the virtual station with n= 0.046. In panel (a), the dotted orange line is the discharge at the virtual station scaled from
the observed discharge at Chiang Saen. In panel (b), the orange line is the observed discharge at Chiang Saen. The unit “cms” on the y axes
represents cubic meters per second.

of the 12 selected parameterizations show only a small decay
when compared against those achieved at the virtual station:
NSE, TRMSE, MSDE, and ROCE within the [0.594, 0.616],
[3.891, 3.935], [1 057 966, 1 071 282], and [0.169, 0.195]
ranges, respectively. (The detailed performance of each pa-
rameterization is provided in Table S4.) We note that simi-
lar results are achieved by selecting all parameterizations be-
longing to the Pareto front (58 parameterizations), as shown
in Fig. S4 and Tables S5 and S6 in the Supplement. How-
ever, visual inspection of the time series in Fig. 8b shows
some discrepancies in the time to peak of the discharge at
Chiang Saen (e.g., in 2014 and 2017). These discrepancies
could be due to different factors, including, as already men-
tioned above, errors in the precipitation data (Kabir et al.,
2022). It should also be noted that the comparison of the dis-
charge at Chiang Saen is our validation; we indeed calibrated

our model with remotely sensed discharge at the virtual sta-
tion. However, overall, the fit to observed discharge at Chiang
Saen is a remarkable if we consider that the model was cali-
brated purely with remotely sensed data at the virtual station
and that no gauged discharge data were used for calibration.

Finally, we looked at the parameter values in the 12 pa-
rameterizations selected by the model calibration (Fig. S5a).
Interestingly, these 12 parameterizations are all quite similar.
On the other hand, the 58 parameterizations corresponding
to the Pareto front span over a much larger variability range
(Fig. S5b). Moreover, these 58 optimal parameterizations are
in good agreement with the parameter ranges identified via
sensitivity analysis (Sect. 4.2.2).
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5 Discussion and conclusions

Our study contributes an approach to calibrate macroscale
hydrological models in poorly gauged and heavily regulated
basins. The approach uses satellite data to infer both the dis-
charge data used for model calibration and the reservoir op-
erations included in the hydrological model. Unlike previous
studies, our approach uses global sensitivity analysis to avoid
the biases that could be introduced when co-calibrating the
hydrological model and the rating curve used to reconstruct
the discharge data (Lima et al., 2019). This fundamental step
also helps us narrow down the uncertainty range for the pa-
rameterization of the rating curve in a more justified way. In
turn, this step paves the way to a more reliable calibration of
the hydrological model.

Looking at the specific results of the sensitivity analysis,
there are two important points worth stressing here. First,
we show that simultaneously estimating the parameters of
the hydrological model and the Manning coefficient (by op-
timizing a set of model performance metrics) may signifi-
cantly bias the reconstruction of the discharge values. Dif-
ferent combinations of performance metrics can result in dif-
ferent estimates of river discharge, thereby influencing the
parameterization of the hydrological model. We saw, for ex-
ample, that using the NSE for the joint calibration introduces
bias in the Manning coefficient towards producing higher
flows. Second, the sensitivity analysis specifically focused on
the nine parameters of VIC-Res shows the existence of equi-
finality, meaning that different parameterizations can yield
similar performance in terms of the NSE, TRMSE, MSDE,
and ROCE. This equifinality issue is perhaps explained by
the fact that we are using only river discharge data for cali-
bration. Previous research (Wagener and Pianosi, 2019; Yeste
et al., 2020) has shown that a few parameters typically domi-
nate the variability in a given model output (although the pa-
rameters that are dominant might vary with the chosen met-
ric). Therefore, one may expect that observations of other hy-
drological processes, such as evapotranspiration, could help
reduce the uncertainty in the model parameters.

Our numerical framework seeks to reduce the pitfalls hid-
den in model calibration, but, like any other modeling study,
is potentially affected by various errors and uncertainties.
First, because of the unavailability of gauged rainfall data, we
use a gridded product – a common approach for macroscale
studies. However, gridded rainfall data inevitably carry er-
rors, especially in regions (like Southeast Asia) where the
number of rainfall gauges is limited (Funk et al., 2015; Kabir
et al., 2022). Another potential source of uncertainty is the
estimation of the river discharge from altimetry water level
data (via a rating curve). Our results show that the estima-
tion is reliable; nevertheless, the estimation of river cross-
section and the use of water surface slope – needed for con-
structing the rating curve – could generally contribute to fur-
ther uncertainty. Specifically, the accuracy of the river cross-
section can be affected by the spatial resolution of satellite

data (DEM and Landsat images). Furthermore, the DEM, a
static “product” captured at a specific time, hardly grasps the
evolution of the river cross-section. Moreover, the interpo-
lation of the cross-section below the lowest observed water
level may also cause uncertainty. Meanwhile, there could be
uncertainty arising from the estimation of water surface slope
from a DEM, which captures the water surface slope at the
observation time (i.e., February 2000 for the SRTM). A po-
tential solution to this problem could be to calculate the wa-
ter surface slope from the altimetry water level time series at
multiple locations near the virtual station; this is an approach
that, of course, is only possible when enough data are avail-
able. Looking at the issues of river discharge estimation, a
potential game changer is the Surface Water and Ocean To-
pography (SWOT) NASA satellite mission, launched in De-
cember 2022. SWOT will provide river width, water level,
and water surface slope for major rivers with an average re-
visit time of 11 d for the next 3 years (JPL, 2022.). This
means that we will be able to leverage existing algorithms
to estimate river discharge (Gleason and Smith, 2014; Du-
rand et al., 2016; Hagemann et al., 2017) and then inform
the implementation of macroscale hydrological models – an
area certainly worth additional research. However, we should
not forget that model calibration requires time series longer
than 3 years. Thus, we could envisage a future in which cal-
ibration exercises assimilate multiple discharge data inferred
from multiple satellite data.

We note that the approach proposed in this study could be
adopted for other basins, although there are a few specific
caveats that should be kept in mind. First, the choice of the
location for the virtual station (where we construct the river
cross-section) should be driven not only by the availability
of altimetry data but also by the site topography. In particu-
lar, the river banks should not be affected by levees, roads,
or other interventions. This is because our approach works
best for river banks under natural conditions, as it is possi-
ble to infer the relation between river widths and water levels
for the portion below the lowest observed water level under
the aforementioned conditions. Moreover, the virtual station
should be located in a straight river segment with minimal
discharge variation due to nearby tributaries and distribu-
taries (both upstream and downstream), a setting in which
our approach – based on Manning’s equation – works best
(Przedwojski et al., 1995). In such locations, the variation
in the water surface slope with time is also minimal. Sec-
ond, if enough data are available, one should consider the
option of using altimetry water level time series data at mul-
tiple locations (near the virtual station) to estimate the water
surface slope. Lastly, we note that our modeling approach is
applicable to river basins unaffected by the presence of dams;
this simply requires one to switch off the reservoir module in
VIC-Res (Dang et al., 2020b).

Looking forward, we should consider expanding frame-
works like the one presented here to even more complex
modeling environments. For example, a modeling challenge
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that is often recurring in downstream applications is the pres-
ence of multiple human interventions, such as dams, irriga-
tion withdrawals, and groundwater pumping. Understanding
how data concerning the representation of all of these pro-
cesses influence model calibration remains an open question.
A similar comment applies to the calibration of multi-basin
and global models. Bringing all of these elements together
would be a major step towards a more reliable calibration of
macroscale hydrological models.

Code and data availability. The VIC-Res model codes are avail-
able at https://github.com/Critical-Infrastructure-Systems-Lab/
VICRes (Critical-Infrastructure-Systems-Lab, 2023). Reser-
voir storage data and the Python scripts used to produce
those data are available at https://github.com/dtvu2205/210520
(dtvu2205, 2023) and https://doi.org/10.5281/zenodo.6299041
(Vu, 2022). Daily discharge data at Chiang Saen were col-
lected from the Mekong River Commission web portal:
https://portal.mrcmekong.org/time-series/discharge/ (MRC,
2009). Altimetry water level data were retrieved from the
Database for Hydrological Time Series of Inland Waters
(DAHITI): https://dahiti.dgfi.tum.de/ (Dahiti, 2023). All Landsat
images and the SRTM DEM used in our study are available at
https://earthexplorer.usgs.gov/ (USGS, 2022).
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