Articles | Volume 27, issue 11
https://doi.org/10.5194/hess-27-2189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Mathilde de Fleury
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), UMR 5563, Université Toulouse 3, CNRS, IRD, 14 Av. Edouard Belin, OMP, 31400 Toulouse CEDEX 9, France
Laurent Kergoat
Géosciences Environnement Toulouse (GET), UMR 5563, Université Toulouse 3, CNRS, IRD, 14 Av. Edouard Belin, OMP, 31400 Toulouse CEDEX 9, France
Manuela Grippa
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), UMR 5563, Université Toulouse 3, CNRS, IRD, 14 Av. Edouard Belin, OMP, 31400 Toulouse CEDEX 9, France
Related authors
No articles found.
Erwan Le Roux, Valentin Wendling, Gérémy Panthou, Océane Dubas, Jean-Pierre Vandervaere, Basile Hector, Guillaume Favreau, Jean-Martial Cohard, Caroline Pierre, Luc Descroix, Eric Mougin, Manuela Grippa, Laurent Kergoat, Jérôme Demarty, Nathalie Rouche, Jordi Etchanchu, and Christophe Peugeot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1965, https://doi.org/10.5194/egusphere-2025-1965, 2025
Short summary
Short summary
In hydrological science, better accounting for regime shift (abrupt and/or irreversible changes) remains a challenge that could lead to a new paradigm for the adaptation to extreme events (flood , drought). In this article, we present a simple model that can account for a hydrological regime shift in Sahelian watersheds. Based on this model, we find that the Dargol, Nakanbé, and Sirba watersheds have shifted during the droughts of the '70s–'80s, while the Gorouol watershed has shifted before.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Cited articles
Abdourhamane Touré, A., Tidjani, A., Guillon, R., Rajot, J. L., Petit, C., Garba, Z., and Sebag, D.: Teneur en matières en suspension des lacs sahéliens en liaison avec les variations piézométrique et pluviométrique: cas des lacs Bangou Kirey et Bangou Bi, Sud-Ouest Niger, Afrique Science, 12, 384–392, 2016. a
Andam-Akorful, S. A., Ferreira, V. G., Ndehedehe, C. E., and Quaye-Ballard, J. A.: An investigation into the freshwater variability in West Africa during 1979–2010, Int. J. Climatol., 37, 333–349, https://doi.org/10.1002/joc.5006, 2017. a
Arsen, A., Crétaux, J.-F., Berge-Nguyen, M., and Del Rio, R. A.: Remote Sensing-Derived Bathymetry of Lake Poopó, Remote Sens., 6, 407–420, https://doi.org/10.3390/rs6010407, 2013. a
Assanvo, W., Dakono, B., Théroux-Bénoni, L. A., and Maïga I.: Extrémisme violent, criminalité organisée et conflits locaux dans le Liptako-Gourma, Report, Institut d'Etudes de Sécurité, 28 pp., https://issafrica.s3.amazonaws.com/site/uploads/war-26-fr.pdf (last access: 22 September 2022), 2019. a
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs’ storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017.
a
Ba, M.: Diagnostic environnemental d'un site minier en construction : cas de la mine d'or Bissa Gold, MS thesis, International Institute for Water and Environmental Engineering, 59 pp., http://documentation.2ie-edu.org/cdi2ie/opac_css/doc_num.php?explnum_id=177 (last access: 22 September 2022), 2012. a
Baup, F., Frappart, F., and Maubant, J.: Combining high-resolution satellite images and altimetry to estimate the volume of small lakes, Hydrol. Earth Syst. Sci., 18, 2007–2020, https://doi.org/10.5194/hess-18-2007-2014, 2014. a
Birkett, C. M.: Radar altimetry: A new concept in monitoring lake level changes, Eos Trans. Am. Geophys. Union, 75, 273–275, https://doi.org/10.1029/94EO00944, 1994. a
Birkett, C. M., Reynolds, C., Beckley, B. D., and Doorn, B.: From Research to Operations: The USDA Global Reservoir and Lake Monitor, in: Coastal Altimetry, Chap. 2, edited by: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-12796-0_2, 2010. a
Birkett, C. M., Ricko, M., Beckley, B. D., Yang, X., and Tetrault, R. L.: G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management, in: American Geophysical Union Fall Meeting, 12 December 2017, New-Orleans, Louisiana, USA, https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/209563 (last access: 24 September 2022), 2017. a
Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry, Hydrol. Earth Syst. Sc., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, 2019. a
Cecchi, P.: Qualité des eaux et risques sanitaires associés aux lacs et réservoirs du Burkina Faso: opération FasoTour 2014, Mission Report, IRD, 35 pp., https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-01/010065652.pdf (last access: 22 September 2022), 2014. a
Cecchi, P., Meunier-Nikiema, A., Moiroux, N., and Sanou, B.: Towards an Atlas of Lakes and Reservoirs in Burkina Faso, Small reservoirs toolkit, IWMI, Colombo, Sri Lanka, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-05/010046819.pdf (last access: 22 September 2022), 2009. a, b, c
Cordeiro, M. C. R., Martinez, J.-M., and Peña-Luque, S.: Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors, Remote Sens. Environ., 253, 112209, https://doi.org/10.1016/j.rse.2020.112209, 2021. a
Crétaux, J.-F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Abarca Del Rio, R., Cazenave, A., and Maisongrande, P.: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data, Adv. Space Res., 47, 1497–1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011. a
Crétaux, J.-F., Abarca-del-Río, R., Bergé-Nguyen, M., Arsen, A., Drolon, V., Clos, G., and Maisongrande, P.: Lake Volume Monitoring from Space, Surv. Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6, 2016. a
Crétaux, J.-F., Bergé-Nguyen, M., Calmant, S., Jamangulova, N., Satylkanov, R., Lyard, F., Perosanz, F., Verron, J., Samine Montazem, A., Le Guilcher, G., Leroux, D., Barrie, J., Maisongrande, P., and Bonnefond, P.: Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan), Remote Sens., 10, 1679, https://doi.org/10.3390/rs10111679, 2018. a, b
DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Huang, W., Creed, I. F., and Carroll, M. L.: Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery, Remote Sens., 9, 807, https://doi.org/10.3390/rs9080807, 2017. a
Douxchamps, S., Ayantunde, A., and Barron, J.: Taking stock of forty years of agricultural water management interventions in smallholder systems of Burkina Faso, Water Resour. Rural Dev., 3, 1–13, https://doi.org/10.1016/j.wrr.2013.12.001, 2014. a
European Union, ESA, and Copernicus: Sentinel-2 MSI: MultiSpectral Instrument, Level-1C, European Union, ESA, and Copernicus [data set], https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2, (last access: 22 September 2022), 2015. a
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., and Leduc, C.: Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review, Water Resour. Res., 45, W00A16, https://doi.org/10.1029/2007WR006785, 2009. a
Frappart, F., Hiernaux, P., Guichard, F., Mougin, E., Kergoat, L., Arjounin, M., Lavenu, F., Koité, M., Paturel, J.-E., and Lebel, T.: Rainfall regime across the Sahel band in the Gourma region, Mali, J. Hydrol., 375, 128–142, https://doi.org/10.1016/j.jhydrol.2009.03.007, 2009. a
Frappart, F., Blarel, F., Fayad, I., Bergé-Nguyen, M., Crétaux, J.-F., Shu, S., Schregenberger, J., and Baghdadi, N.: Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes, Remote Sens., 13, 2196, https://doi.org/10.3390/rs13112196, 2021. a, b, c, d
Frenken, K.: Irrigation in Africa in figures, AQUASTAT survey – 2005, Food and Agriculture Organization of the United Nations Water Reports, 29, 649 pp., https://www.researchgate.net/profile/Karen-Frenken/publication/235704388_Irrigation_in_Africa_in_figures_AQUASTAT_survey_2005/links/554f6bb708ae956a5d245b31/Irrigation-in-Africa-in-figures-AQUASTAT-survey-2005.pdf (last access: 22 September 2022), 2005. a, b
Gal, L., Grippa, M., Hiernaux, P., Peugeot, C., Mougin, E., and Kergoat, L.: Changes in lakes water volume and runoff over ungauged Sahelian watersheds, J. Hydrol., 540, 1176–1188, https://doi.org/10.1016/j.jhydrol.2016.07.035, 2016.
a, b, c
Gao, H., Birkett, C. M., and Lettenmaier, D. P.: Global monitoring of large reservoir storage from satellite remote sensing, Water Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063, 2012. a
Gardelle, J., Hiernaux, P., Kergoat, L., and Grippa, M.: Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali), Hydrol. Earth Syst. Sci., 14, 309–324, https://doi.org/10.5194/hess-14-309-2010, 2010. a, b
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a, b
Gourgouletis, N., Bariamis, G., Anagnostou, M. N., and Baltas, E.: Estimating Reservoir Storage Variations by Combining Sentinel-2 and 3 Measurements in the Yliki Reservoir, Greece, Remote Sens., 14, 1860, https://doi.org/10.3390/rs14081860, 2022. a
G-REALM – Global Reservoir And Lakes Monitor: https://ipad.fas.usda.gov/cropexplorer/global_reservoir/Default.aspx (last access: 24 October 2022), 2022. a
Grippa, M., Rouzies, C., Biancamaria, S., Blumstein, D., Cretaux, J.-F., Gal, L., Robert, E., Gosset, M., and Kergoat, L.: Potential of SWOT for Monitoring Water Volumes in Sahelian Ponds and Lakes, IEEE J. Select. Top. Appl., 12, 2541–2549, https://doi.org/10.1109/JSTARS.2019.2901434, 2019. a
Haas, E. M., Bartholomé, E., and Combal, B.: Time series analysis of optical remote sensing data for the mapping of temporary surface water bodies in sub-Saharan western Africa, J. Hydrol., 370, 52–63, https://doi.org/10.1016/j.jhydrol.2009.02.052, 2009. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a, b
Hou, J., van Dijk, A. I. J. M., Beck, H. E., Renzullo, L. J., and Wada, Y.: Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale, Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, 2022. a, b
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: Global Precipitation Measurement, GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019. a, b
Ji, L., Zhang, L., and Wylie, B.: Analysis of Dynamic Thresholds for the Normalized Difference Water Index, Photogram. Eng. Rem. Sens., 75, 1307–1317, https://doi.org/10.14358/PERS.75.11.1307, 2009. a
Jiang, L., Nielsen, K., Dinardo, S., Andersen, O. B., and Bauer-Gottwein, P.: Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers, Remote Sens. Environ., 237, 111546, https://doi.org/10.1016/j.rse.2019.111546, 2020. a
Kittel, C. M. M., Jiang, L., Tøttrup, C., and Bauer-Gottwein, P.: Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B, Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, 2021. a, b
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016. a
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013. a, b
Morris, C. S. and Gill, S. K.: Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes, J. Geophys. Res.-Oceans, 99, 24527–24539, https://doi.org/10.1029/94JC01642, 1994. a
Naegeli, K., Damm, A., Huss, M., Wulf, H., Schaepman, M., and Hoelzle, M.: Cross-Comparison of Albedo Products for Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data, Remote Sens., 9, 110, https://doi.org/10.3390/rs9020110, 2017. a
Newall, P.: High River Gold Mines LTD, The Bissa Asset, Tech. Report, Wardell Armstrong, Burkina Faso, 200 pp., https://www.miningdataonline.com/reports/Bissa_2012_TR.pdf (last access: 22 September 2022), 2012. a
Normandin, C., Frappart, F., Diepkilé, A. T., Marieu, V., Mougin, E., Blarel, F., Lubac, B., Braquet, N., and Ba, A.: Evolution of the Performances of Radar Altimetry Missions from ERS-2 to Sentinel-3A over the Inner Niger Delta, Remote Sens., 10, 833, https://doi.org/10.3390/rs10060833, 2018. a, b
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., and Calvez, R.: Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series, Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, 2018. a
Olivry, J.-C.: Fonctionnement hydrologique de la Cuvette Lacustre du Niger et essai de modélisation de l'inondation du Delta intérieur, in: Grands bassins fluviaux périatlantiques: Congo, Niger, Amazone (Colloques et Séminaires), edited by: Olivry J.-C. and Boulègue J., ORSTOM Editions, Paris, France, 267–280, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques2/42682.pdf (last access: 22 September 2022), 1995. a
Panthou, G., Lebel, T., Vischel, T., Quantin, G., Sane, Y., Ba, A., Ndiaye, O., Diongue-Niang, A., and Diopkane, M.: Rainfall intensification in tropical semi-arid regions: the Sahelian case, Environ. Res. Lett., 13, 064013, https://doi.org/10.1088/1748-9326/aac334, 2018. a
Papa, F., Crétaux, J.-F., Grippa, M., Robert, E., Trigg, M., Tshimanga, R. M., Kitambo, B., Paris, A., Carr, A., Fleischmann, A. S., de Fleury, M., Gbetkom, P. G., Calmettes, B., and Calmant, S.: Water Resources in Africa under Global Change: Monitoring Surface Waters from Space, Surv. Geophys., 44, 43–93, https://doi.org/10.1007/s10712-022-09700-9, 2023. a
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016. a, b, c
Penman, H. L. and Keen, B. A.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948.
a
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and Crétaux, J.-F.: The Lake Chad hydrology under current climate change, Sci. Rep.-UK, 10, 5498, https://doi.org/10.1038/s41598-020-62417-w, 2020. a
Reis, L. G. de M., Souza, W. de O., Ribeiro Neto, A., Fragoso, C. R., Ruiz-Armenteros, A. M., Cabral, J. J. da S. P., and Montenegro, S. M. G. L.: Uncertainties Involved in the Use of Thresholds for the Detection of Water Bodies in Multitemporal Analysis from Landsat-8 and Sentinel-2 Images, Sensors, 21, 7494, https://doi.org/10.3390/s21227494, 2021. a, b, c
Robert, E., Kergoat, L., Soumaguel, N., Merlet, S., Martinez, J.-M., Diawara, M., and Grippa, M.: Analysis of Suspended Particulate Matter and Its Drivers in Sahelian Ponds and Lakes by Remote Sensing (Landsat and MODIS): Gourma Region, Mali, Remote Sens., 9, 1272, https://doi.org/10.3390/rs9121272, 2017. a
Sally, H., Lévite, H., and Cour, J.: Local Water Management of Small Reservoirs: Lessons from Two Case Studies in Burkina Faso, Water Altern., 4, 365–382, 2011. a
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015. a
Schwatke, C., Dettmering, D., and Seitz, F.: Volume Variations of Small Inland Water Bodies from a Combination of Satellite Altimetry and Optical Imagery, Remote Sens., 12, 1606, https://doi.org/10.3390/rs12101606, 2020. a
Shu, S., Liu, H., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., Yang, B., Hinkel, K. M., Huang, Y., and Yu, B.: Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes, Remote Sens. Environ., 239, 111643, https://doi.org/10.1016/j.rse.2020.111643, 2020. a
Sophocleous, M.: Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002. a
Sun, F., Ma, R., Liu, C., and He, B.: Comparison of the Hydrological Dynamics of Poyang Lake in the Wet and Dry Seasons, Remote Sens., 13, 985, https://doi.org/10.3390/rs13050985, 2021. a
Taburet, N., Zawadzki, L., Vayre, M., Blumstein, D., Le Gac, S., Boy, F., Raynal, M., Labroue, S., Crétaux, J.-F., and Femenias, P.: S3MPC: Improvement on Inland Water Tracking and Water Level Monitoring from the OLTC Onboard Sentinel-3 Altimeters, Remote Sens., 12, 3055, https://doi.org/10.3390/rs12183055, 2020. a, b
Venot, J.-P. and Cecchi, P.: Valeurs d'usage ou performance techniques: comment apprécier le rôle des petits barrages en Afrique subsaharienne?, Cah. Agric., 20, 112–117, https://doi.org/10.1684/agr.2010.0457, 2011. a
Venot, J.-P. and Krishnan, J.: Discursive Framing: Debates over Small Reservoirs in the Rural South, Water Altern., 4, 316–324, 2011. a
Winter, T. C.: Hydrological Processes and the Water Budget of Lakes, in: Physics and Chemistry of Lakes, edited by: Lerman, A., Imboden, D. M., and Gat, J. R., Springer, Berlin, Heidelberg, New York, 37–62, https://doi.org/10.1007/978-3-642-85132-2_2, 1995.
a
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006.
a, b
Zhao, G.: Global lake evaporation volume (GLEV) dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.4646621, 2021. a
Zhao, G., Li, Y., Zhou, L., and Gao, H.: Evaporative water loss of 1.42 million global lakes, Nat. Commun., 13, 3686, https://doi.org/10.1038/s41467-022-31125-6, 2022. a, b, c
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a...