Articles | Volume 27, issue 11
https://doi.org/10.5194/hess-27-2173-2023
https://doi.org/10.5194/hess-27-2173-2023
Research article
 | 
09 Jun 2023
Research article |  | 09 Jun 2023

Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada

Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh

Related authors

Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022,https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Linking tundra vegetation, snow, soil temperature, and permafrost
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020,https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023,https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022,https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system)
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022,https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary

Cited articles

Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013), J. Geophys. Res.-Biogeo., 120, 466–479, https://doi.org/10.1002/2014JG002778, 2015. a, b
Arp, C. D., Jones, B. M., Urban, F. E., and Grosse, G.: Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska, Hydrol. Process., 25, 2422–2438, https://doi.org/10.1002/hyp.8019, 2011. a, b
Arp, C. D., Jones, B. M., Liljedahl, A. K., Hinkel, K. M., and Welker, J. A.: Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes, Water Resour. Res., 51, 9379–9401, https://doi.org/10.1016/0022-1694(68)90080-2, 2015. a, b, c, d
Bartsch, A., Widhalm, B., Leibman, M., Ermokhina, K., Kumpula, T., Skarin, A., Wilcox, E. J., Jones, B. M., Frost, G. V., Höfler, A., and Pointner, G.: Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data, Remote Sens. Environ., 237, 111515, https://doi.org/10.1016/j.rse.2019.111515, 2020. a
Bergmann, M. A. and Welch, H. E.: Spring Meltwater Mixing in Small Arctic Lakes, Can. J. Fish. Aquat. Sci., 42, 1789–1798, https://doi.org/10.1139/f85-224, 1985. a, b
Download
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.