Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1493-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1493-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns and drivers of water quality changes associated with dams in the Tropical Andes
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
Department of Surface Waters, Eawag, Swiss Federal Institution of
Aquatic Science and Technology, Kastanienbaum, Switzerland
Department of Earth System Science, Stanford Doerr School of Sustainability, Stanford University, Stanford, California, USA
Silvia López-Casas
Wildlife Conservation Society Colombia, Bogotá, Colombia
Grupo de Ictiología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
Daniel Valencia-Rodríguez
Grupo de Ictiología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
Fundacion Horizonte Verde, Cumaral, Colombia
Red de Biología Evolutiva, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
Camilo Bernal-Forero
Autoridad Nacional de Licencias Ambientales, Bogotá, Colombia
Juliana Delgado
The Nature Conservancy Colombia, Bogotá, Colombia
Bernhard Wehrli
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
Department of Surface Waters, Eawag, Swiss Federal Institution of
Aquatic Science and Technology, Kastanienbaum, Switzerland
Luz Jiménez-Segura
Grupo de Ictiología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
Related authors
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Anna Canning, Bernhard Wehrli, and Arne Körtzinger
Biogeosciences, 18, 3961–3979, https://doi.org/10.5194/bg-18-3961-2021, https://doi.org/10.5194/bg-18-3961-2021, 2021
Short summary
Short summary
Inland waters are usually not well restrained in terms of greenhouse gas measurements. One of these regions is the Danube Delta, Romania. Therefore, we measured continuously with sensors to collect high-resolution data for CH4 and O2 throughout the Delta. We found significant variation for all concentrations over the day and night and between regions, as well as large spatial variation throughout all regions, with large CH4 concentrations flowing in from the reed beds to the lakes.
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021, https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Cited articles
Agostinho, A. A., Alves, D. C., Gomes, L. C., Dias, R. M., Petrere Jr., M., and Pelicice, F. M.: Fish die-off in river and reservoir: A review on anoxia and gas supersaturation, Neotrop. Ichthyol., 19, 1–28, 2021.
Ailly, D. A. B., Assemiro, F. E. A. S. C., Gostinho, C. A. S. A., and
Arques, E. L. E. M.: The metabolic theory of ecology convincingly explains
the latitudinal diversity gradient of Neotropical freshwater fish, Ecology,
95, 553–562, 2014.
Almeida, R. M., Shi, Q., Gomes-selman, J. M., Wu, X., Xue, Y., Angarita, H.,
Barros, N., Forsberg, B. R., García-villacorta, R., Hamilton, S. K.,
Melack, J. M., Montoya, M., Perez, G., Sethi, S. A., Gomes, C. P., and
Flecker, A. S.: Reducing greenhouse gas emissions of Amazon hydropower with
strategic dam planning, Nat. Commun, 10, 4281,
https://doi.org/10.1038/s41467-019-12179-5, 2019.
Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-ocampo, J. A.,
Carvajal-vallejos, F. M., Encalada, A. C., and Rivadeneira, J. F.:
Fragmentation of Andes-to-Amazon connectivity by hydropower dams, Science
Advances, 4, 1–8, https://doi.org/10.1126/sciadv.aao1642, 2018.
Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R., G. A., Delgado, J., and Purkey, D.: Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia, Hydrol. Earth Syst. Sci., 22, 2839–2865, https://doi.org/10.5194/hess-22-2839-2018, 2018.
ANLA: Portal de Datos Abiertos ANLA, https://datosabiertos-anla.hub.arcgis.com/, last access: 4 April 2023.
Bratrich, C., Truffer, B., Jorde, K., Markard, J., Meier, W., Peter, A.,
Schneider, M., and Wehrli, B.: Green hydropower: a new assessment procedure
for river management, River Res. Appl., 20, 865–882,
https://doi.org/10.1002/rra.788, 2004.
Caissie, D.: The thermal regime of rivers: A review, Freshwater Biol., 51,
1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Calamita, E., Siviglia, A., Gettel, G. M., Franca, J., Winton, R. S.,
Teodoru, C. R., Schmid, M., and Wehrli, B.: Unaccounted CO2 leaks
downstream of a large tropical hydroelectric reservoir, P. Natl. Acad. Sci. USA, 118, e2026004118, https://doi.org/10.1073/pnas.2026004118, 2021.
Carvajal-Quintero, J. D., Januchowski-Hartley, S. R., Maldonado-Ocampo, J.
A., Jézéquel, C., Delgado, J., and Tedesco, P. A.: Damming Fragments
Species' Ranges and Heightens Extinction Risk, Conserv. Lett., 10,
708–716, https://doi.org/10.1111/conl.12336, 2017.
Chapman, L. J., Chapman, C. A., Nordlie, F. G., and Rosenberger, A. E.:
Physiological refugia: Swamps, hypoxia tolerance and maintenance of fish
diversity in the Lake Victoria region, Comp. Biochem.
Phys. A, 133, 421–437,
https://doi.org/10.1016/S1095-6433(02)00195-2, 2002.
Clarkson, R. W. and Childs, M. R.: Temperature Effects of
Hypolimnial-Release Dams on Early Life Stages of Colorado River Basin
Big-River Fishes, Copeia, 2000, 402–412,
https://doi.org/10.1643/0045-8511(2000)000[0402:TEOHRD]2.0.CO;2, 2000.
Coble, D. W.: Fish Populations in Relation to Dissolved Oxygen in the
Wisconsin River, T. Am. Fish. Soc., 111,
612–623, https://doi.org/10.1577/1548-8659(1982)111<612:FPIRTD>2.0.CO;2, 1982.
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., and Lazarus, E. D.:
Sediment supply as a driver of river meandering and floodplain evolution in
the Amazon Basin, Nat. Geosci., 7, 899–903,
https://doi.org/10.1038/ngeo2282, 2014.
Cooper, C. J., Mueller, C. A., and Eme, J.: Temperature tolerance and oxygen
consumption of two South American tetras, Paracheirodon innessi and
Hyphessobrycon herbertaxelrodi, J. Therm. Biol., 86, 102434,
https://doi.org/10.1016/j.jtherbio.2019.102434, 2019.
Deines, A. M., Bee, C. A., Katongo, C., Jensen, R., and Lodge, D. M.: The
potential trade-off between artisanal fisheries production and
hydroelectricity generation on the Kafue River, Zambia, Freshwater Biol.,
58, 640–654, https://doi.org/10.1111/fwb.12055, 2013.
Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., and
Fekete, B. M.: Projections of declining fluvial sediment delivery to major
deltas worldwide in response to climate change and anthropogenic stress,
Environ. Res. Lett., 14, 084034, https://doi.org/10.1088/1748-9326/ab304e,
2019.
Eady, B. R., Rivers-Moore, N. A., and Hill, T. R.: Relationship between
water temperature predictability and aquatic macroinvertebrate assemblages
in two South African streams, Afr. J. Aquat. Sci., 38,
163–174, https://doi.org/10.2989/16085914.2012.763110, 2013.
Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish), Biogeosciences, 7, 1669–1699, https://doi.org/10.5194/bg-7-1669-2010, 2010.
Deas, M. L. and Lowney, C. L.: Water Temperature Modelling Review, California Water Modelling Forum, Central Valley, California, https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/part2/DWR-1045 Bay Delta Modeling Forum 2000.pdf (last access: 2 April 2023), 2000.
de Fex-wolf, D., López-Casas, S., and Jiménez-Segura, L. F.:
Hydropower effects on Prochilodus magdalenae (Prochilodontidae)
reproduction: evidence from endocrine response, Rev. MVZ Cordoba, 24,
7180–7187, https://doi.org/10.21897/rmvz.1606, 2019.
Flecker, A. S., Shi, Q., Almeida, R. M., Angarita, H., Gomes-Selman, J. M.,
García-Villacorta, R., Sethi, S. A., Thomas, S. A., LeRoy Poff, N.,
Forsberg, B. R., Heilpern, S. A., Hamilton, S. K., Abad, J. D., Anderson, E.
P., Barros, N., Bernal, I. C., Bernstein, R., Cañas, C. M., Dangles, O.,
Encalada, A. C., Fleischmann, A. S., Goulding, M., Higgins, J.,
Jézéquel, C., Larson, E. I., McIntyre, P. B., Melack, J. M.,
Montoya, M., Oberdorff, T., Paiva, R., Perez, G., Rappazzo, B. H.,
Steinschneider, S., Torres, S., Varese, M., Walter, M. T., Wu, X., Xue, Y.,
Zapata-Ríos, X. E., and Gomes, C. P.: Reducing adverse impacts of
Amazon hydropower expansion, Science, 375, 753–760,
https://doi.org/10.1126/science.abj4017, 2022.
Fovet, O., Ndom, M., Crave, A., and Pannard, A.: Influence of dams on river
water-quality signatures at event and seasonal scales: The Sélune River
(France) case study, River Res. Appl., 36, 1267–1278,
https://doi.org/10.1002/rra.3618, 2020.
García, A., Jorde, K., Habit, E., Caamaño, D., and Parra, O.:
Downstream environmental effects of dam operations: changes in habitat
quality for native fish species, River Res. Appl., 27, 312–327, https://doi.org/10.1002/rra.1358, 2011.
Giosan, L., Syvitski, J., Constantinescu, S., and Day, J.: Climate change:
Protect the world's deltas, Nature, 516, 31–33,
https://doi.org/10.1038/516031a, 2014.
Granzotti, R. V., Miranda, L. E., Agostinho, A. A., and Gomes, L. C.:
Downstream impacts of dams: shifts in benthic invertivorous fish
assemblages, Aquat. Sci., 80, 1–14,
https://doi.org/10.1007/s00027-018-0579-y, 2018.
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., and
Liermann, C. R.: An index-based framework for assessing patterns and trends
in river fragmentation and flow regulation by global dams at multiple
scales, Environ. Res. Lett., 10, 015001,
https://doi.org/10.1088/1748-9326/10/1/015001, 2015.
Harrison, J. A., Prairie, Y. T., Mercier-blais, S., and Soued, C.: Year –
2020 Global Distribution and Pathways of Reservoir Methane and Carbon
Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res)
Model, Global Biogeochem. Cy., 35, e2020GB006888,
https://doi.org/10.1029/2020GB006888, 2021.
Harvey, B. J. and Hoar, W. S.: Teoría y Práctica de la Reproducción Inducida en los Peces, Centro Internacional de
Investigaciones para el Desarrollo, Ottawa, 50 pp., ISBN 0-88936-253-X, 1980.
He, F., Zarfl, C., Bremerich, V., David, J. N. W., Hogan, Z., Kalinkat, G.,
Tockner, K., and Jähnig, S. C.: The global decline of freshwater
megafauna, Glob. Change Biol., 25, 3883–3892,
https://doi.org/10.1111/gcb.14753, 2019.
Hutchinson, G. E. and Loffler, H.: The thermal stratification of lakes,
P. Natl. Acad. Sci. USA, 42, 84–86,
https://doi.org/10.1073/pnas.42.2.84, 1956.
International Commission on Large Dams: World Register of Dams, https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp, last access: 1 August 2018.
King, J., Cambray, J. A., and Impson, N. D.: Linked effects of dam-released
floods and water temperature on spawning of the Clanwilliam yellowfish
Barbus capensis, Hydrobiologia, 384, 245–265,
https://doi.org/10.1023/A:1003481524320, 1998.
Kirby, M., Krittasudthacheewa, C., Mainuddin, M., Kemp-Benedict, E., Swartz,
C., and de la Rosa, E.: The mekong: A diverse basin facing the tensions of
development, Water Int., 35, 573–593,
https://doi.org/10.1080/02508060.2010.514094, 2010.
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang,
J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi,
T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T.:
Sustainable sediment management in reservoirs and regulated rivers:
Experiences from five continents, Earth's Future, 2, 256–280,
https://doi.org/10.1002/2013EF000184, 2014.
Kramer, D. L. and McClure, M.: Aquatic surface respiration, a widespread
adaptation to hypoxia in tropical freshwater fishes, Environ. Biol. Fish., 7, 47–55, https://doi.org/10.1007/BF00011822, 1982.
Kummu, M., Lu, X. X., Wang, J. J., and Varis, O.: Basin-wide sediment
trapping efficiency of emerging reservoirs along the Mekong, Geomorphology,
119, 181–197, https://doi.org/10.1016/j.geomorph.2010.03.018, 2010.
Kunz, M. J., Senn, D. B., Wehrli, B., Mwelwa, E. M., and Wüest, A.:
Optimizing turbine withdrawal from a tropical reservoir for improved water
quality in downstream wetlands, Water Resour. Res., 49, 5570–5584,
https://doi.org/10.1002/wrcr.20358, 2013.
Ledec, G. and Quintero, J. D.: Good dams and bad dams: environmental
criteria for site selection of hydroelectric projects, Latin America and the
Caribbean Region: Sustainable Development Working Paper 16, vi + 21 pp.,
https://documents1.worldbank.org/curated/en/224701468332373651/pdf/303600NWP0Good000010Box18600PUBLIC0.pdf
(ast access: 28 March 2023), 2003.
Lewis, W. M. J.: Tropical limnology, Annu. Rev. Ecol.
Syst., 18, 159–184, 1987.
Lewis, W. M. J.: Perspectives in Tropical Limnology, edited by: Schiemer, F. and Boland, K. T., SPB Academic Publishing, Amsterdam, 43–64, ISBN 9051031130, 1996.
Li, T., Mo, K., Wang, J., Chen, Q., Zhang, J., and Zeng, C.: Science of the
Total Environment Mismatch between critical and accumulated temperature
following river damming impacts fi sh spawning, Sci. Total
Environ., 756, 144052, https://doi.org/10.1016/j.scitotenv.2020.144052,
2021.
López-Casas, S.: Magdalena potamodromous migrations: effects of
regulated and natural hydrological regimes, Universidad de Antioquia, 1–135, https://bibliotecadigital.udea.edu.co/dspace/bitstream/10495/5651/1/SilviaLopezCasas_2015_MagdalenaPotadromousMigrations.pdf
(last access: 28 March 2023), 2015.
López-casas, S., Jiménez-segura, L. F., and Pérez-Gallego, C.
M.: Peces migratorios al interior de una central hidroeléctrica: caso Miel I, cuenca del río Magdalena (Caldas-Antioquia), Colombia, Biota Colombiana, 15, 26–39, 2014.
López-Casas, S., Jiménez-Segura, L. F., Agostinho, A. A., and
Pérez, C. M.: Potamodromous migrations in the Magdalena River basin:
bimodal reproductive patterns in neotropical rivers, J. Fish
Biol., 89, 157–171, https://doi.org/10.1111/jfb.12941, 2016.
Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H.,
Powley, H. R., and Van Cappellen, P.: Global phosphorus retention by river
damming, P. Natl. Acad. Sci. USA, 112, 15603–15608, https://doi.org/10.1073/pnas.1511797112,
2015.
Moran, E. F., Claudia, M., Moore, N., Müller, N., and Hyndman, D. W.:
Sustainable hydropower in the 21st century, P. Natl. Acad. Sci. USA, 115, 11981–11898,
https://doi.org/10.1073/pnas.1809426115, 2018.
Olden, J. D. and Naiman, R. J.: Incorporating thermal regimes into
environmental flows assessments: Modifying dam operations to restore
freshwater ecosystem integrity, Freshwater Biol., 55, 86–107,
https://doi.org/10.1111/j.1365-2427.2009.02179.x, 2010.
Opperman, J., Grill, G., and Hartmann, J.: The Power of Rivers: Finding
balance between energy and conservation in hydropower development,
Washington, D.C., 52 pp., https://www.nature.org/media/freshwater/power-of-rivers-report.pdf (last access: 28 March 2023), 2015.
Opperman, J., Hartmann, J., Raepple, J., Angarita, H., Beames, P., Chapin,
E., Geressu, R., Grill, G., Harou, J., Hurford, A., D, K., Kelman, R.,
Martin, E., Martins, T., Peters, R., Rogéliz, C., and Shirley, R.: The
Power of Rivers A Business Case, The Nature Conservancy, Washington, D.C.,
1–88, https://www.nature.org/content/dam/tnc/nature/en/documents/powerofriversreport_final3.pdf (last access: 28 March 2023), 2017.
Orlob, G. T.: Mathematical Modeling of Water Quality: Streams, Lakes and
Reservoirs, John Wiley & Sons, Chichester, UK, ISBN 978-0471100317, 1983.
Parker, F. L., Benedict, B. A., and Tsai, C.: Evaluation of mathematical
models for temperature prediction in deep reservoirs, National Envrionmental
research center, US Environmental Protection Agency, Corvallis, Oregon,
1975.
Pesántez, J., Birkel, C., Mosquera, G. M., Peña, P.,
Arízaga-Idrovo, V., Mora, E., McDowell, W. H., and Crespo, P.:
High-frequency multi-solute calibration using an in situ UV–visible sensor,
Hydrol. Process., 35, e14357, https://doi.org/10.1002/hyp.14357, 2021.
Preece, R. M. and Jones, H. A.: The effect of Keepit Dam on the temperature
regime of the Namoi River, Australia, River Res. Appl., 18,
397–414, https://doi.org/10.1002/rra.686, 2002.
Rudorff, N., Rudorff, C. M., Kampel, M., and Ortiz, G.: Remote sensing
monitoring of the impact of a major mining wastewater disaster on the
turbidity of the Doce River plume off the eastern Brazilian coast, ISPRS
Journal of Photogrammetry and Remote Sensing, 145, 349–361,
https://doi.org/10.1016/j.isprsjprs.2018.02.013, 2018.
Spoor, W. A.: Distribution of fingerling brook trout, Salvelinus fontinalis
(Mitchill), in dissolved oxygen concentration gradients, J. Fish Biol., 36,
363–373, 1990.
Stone, R.: Dam-building threatens Mekong fisheries, Science, 354, 1084–1085,
https://doi.org/10.1126/science.354.6316.1084, 2016.
Todd, C. R., Ryan, T., Nicol, S. J., and Bearlin, A. R.: The impact of cold
water releases on the critical period of post-spawning survival and its
implications for Murray cod (Maccullochella peelii peelii): A case study of
the Mitta Mitta River, southeastern Australia, River Res.
Appl., 21, 1035–1052, https://doi.org/10.1002/rra.873, 2005.
Tognelli, M. F., Lasso, C. A., Bota-Sierra, C. A., Jiménez-Segura, L.
F., and Cox, N. A.: Estado de conservación y distribución de la
biodiversidad de agua dulce en los Andes tropicales, edited by: Tognelli, M.
F., Lasso, C. A., Bota-Sierra, C. A., Jiménez-Segura, L. F., and Cox, N.
A., IUCN, Gland, Switzerland, Cambridge, UK and Arlington, USA, 214 pp.,
ISBN 978-2-8317-1791-3, 2016.
Valencia-Rodríguez, D., Herrera-Pérez, J.,
Restrepo-Santamaría, D., Galeano, A., Winton, R. S., and
Jiménez-Segura, L.: Fish community turnover in a dammed Andean River
over time, Neotrop. Ichthyol., 20, 1–19,
https://doi.org/10.1590/1982-0224-2021-0091, 2022.
van Puijenbroek, P. J. T. M., Buijse, A. D., Kraak, M. H. S., and
Verdonschot, P. F. M.: Through the dam into troubled waters: Combined
effects of stream fragmentation, habitat deterioration, and poor water
quality on lowland stream fish distribution, River Res.
Appl., 37, 1016–1024, https://doi.org/10.1002/rra.3829, 2021.
van Vliet, M. T. H., Ludwig, F., and Kabat, P.: Global streamflow and
thermal habitats of freshwater fishes under climate change, Climatic Change,
121, 739–754, https://doi.org/10.1007/s10584-013-0976-0, 2013.
Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P.,
and Syvitski, J. P. M.: Anthropogenic sediment retention: Major global
impact from registered river impoundments, Global Planet. Change, 39,
169–190, https://doi.org/10.1016/S0921-8181(03)00023-7, 2003.
Ward, J. V and Stanford, J. A.: Evolutionary Ecology of Aquatic Insects,
Annu. Rev. Entomol., 27, 97–117, 1982.
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E.,
Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison,
I., Stiassny, M. L. J., Silvano, R. A. M., Fitzgerald, D. B., Pelicice, F.
M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere, M.,
Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M.,
Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster,
J., Thieme, M. L., Petry, P., Zuanon, J., Vilara, G. T., Snoeks, J., Ou, C.,
Rainboth, W., Pavanelli, C. S., Akama, A., van Soesbergen, A., and Saenz,
L.: Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong,
Science, 351, 128–129, https://doi.org/10.1126/science.aac7082, 2016.
Winton, R. S., Calamita, E., and Wehrli, B.: Reviews and syntheses: Dams, water quality and tropical reservoir stratification, Biogeosciences, 16, 1657–1671, https://doi.org/10.5194/bg-16-1657-2019, 2019.
Young, W. C., Kent, D. H., and Whiteside, B. G.: The influence of a deep
storage reservoir on the species diversity of benthic macroinvertebrate
communities of the Guadalupe River, Texas J. Sci., 27, 213–224,
1976.
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K.: A
global boom in hydropower dam construction, Aquat. Sci., 77, 161–170,
https://doi.org/10.1007/s00027-014-0377-0, 2014.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3327 KB) - Full-text XML
- Corrigendum
- Spanish version
-
Supplement
(486 KB) - BibTeX
- EndNote
Executive editor
The quest for low-carbon energy sources is driving a wave of new hydropower dam construction throughout the world. This is particularly the case in mountain regions such as the Andes, where a very large, untapped potential for hydropower still exists. It is therefore essential to get a better grip on the side-effects of dam development, and their impact on water quality is a very important but highly understudied aspect of those. This is again particularly timely and relevant in tropical regions, which are facing a perfect storm of limited data availability, poorly understood processes, and major challenges for sustainable development.
The quest for low-carbon energy sources is driving a wave of new hydropower dam construction...
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of...