Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1493-2023
https://doi.org/10.5194/hess-27-1493-2023
Research article
 | Highlight paper
 | 
06 Apr 2023
Research article | Highlight paper |  | 06 Apr 2023

Patterns and drivers of water quality changes associated with dams in the Tropical Andes

R. Scott Winton, Silvia López-Casas, Daniel Valencia-Rodríguez, Camilo Bernal-Forero, Juliana Delgado, Bernhard Wehrli, and Luz Jiménez-Segura

Related authors

A map of global peatland extent created using machine learning (Peat-ML)
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022,https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Reviews and syntheses: Dams, water quality and tropical reservoir stratification
Robert Scott Winton, Elisa Calamita, and Bernhard Wehrli
Biogeosciences, 16, 1657–1671, https://doi.org/10.5194/bg-16-1657-2019,https://doi.org/10.5194/bg-16-1657-2019, 2019
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Instruments and observation techniques
Phosphorus supply and floodplain design govern phosphorus reduction capacity in remediated agricultural streams
Lukas Hallberg, Faruk Djodjic, and Magdalena Bieroza
Hydrol. Earth Syst. Sci., 28, 341–355, https://doi.org/10.5194/hess-28-341-2024,https://doi.org/10.5194/hess-28-341-2024, 2024
Short summary
Transpiration rates from mature Eucalyptus grandis  ×  E. nitens clonal hybrid and Pinus elliottii plantations near the Two Streams Research Catchment, South Africa
Nkosinathi David Kaptein, Colin S. Everson, Alistair David Clulow, Michele Lynn Toucher, and Ilaria Germishuizen
Hydrol. Earth Syst. Sci., 27, 4467–4484, https://doi.org/10.5194/hess-27-4467-2023,https://doi.org/10.5194/hess-27-4467-2023, 2023
Short summary
Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023,https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
δ13C, CO2 ∕ 3He and 3He ∕ 4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium)
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022,https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Advances in the hydraulic interpretation of water wells using flowmeter logs
Jesús Díaz-Curiel, Bárbara Biosca, Lucía Arévalo-Lomas, María Jesús Miguel, and Natalia Caparrini
Hydrol. Earth Syst. Sci., 26, 2617–2636, https://doi.org/10.5194/hess-26-2617-2022,https://doi.org/10.5194/hess-26-2617-2022, 2022
Short summary

Cited articles

Agostinho, A. A., Alves, D. C., Gomes, L. C., Dias, R. M., Petrere Jr., M., and Pelicice, F. M.: Fish die-off in river and reservoir: A review on anoxia and gas supersaturation, Neotrop. Ichthyol., 19, 1–28, 2021. 
Ailly, D. A. B., Assemiro, F. E. A. S. C., Gostinho, C. A. S. A., and Arques, E. L. E. M.: The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish, Ecology, 95, 553–562, 2014. 
Almeida, R. M., Shi, Q., Gomes-selman, J. M., Wu, X., Xue, Y., Angarita, H., Barros, N., Forsberg, B. R., García-villacorta, R., Hamilton, S. K., Melack, J. M., Montoya, M., Perez, G., Sethi, S. A., Gomes, C. P., and Flecker, A. S.: Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning, Nat. Commun, 10, 4281, https://doi.org/10.1038/s41467-019-12179-5, 2019. 
Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-ocampo, J. A., Carvajal-vallejos, F. M., Encalada, A. C., and Rivadeneira, J. F.: Fragmentation of Andes-to-Amazon connectivity by hydropower dams, Science Advances, 4, 1–8, https://doi.org/10.1126/sciadv.aao1642, 2018. 
Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R., G. A., Delgado, J., and Purkey, D.: Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia, Hydrol. Earth Syst. Sci., 22, 2839–2865, https://doi.org/10.5194/hess-22-2839-2018, 2018. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Executive editor
The quest for low-carbon energy sources is driving a wave of new hydropower dam construction throughout the world. This is particularly the case in mountain regions such as the Andes, where a very large, untapped potential for hydropower still exists. It is therefore essential to get a better grip on the side-effects of dam development, and their impact on water quality is a very important but highly understudied aspect of those. This is again particularly timely and relevant in tropical regions, which are facing a perfect storm of limited data availability, poorly understood processes, and major challenges for sustainable development.
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.