Articles | Volume 26, issue 19
Research article
 | Highlight paper
11 Oct 2022
Research article | Highlight paper |  | 11 Oct 2022

Improving hydrologic models for predictions and process understanding using neural ODEs

Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia

Related authors

Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
EGUsphere,,, 2022
Short summary
SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072,,, 2021
Short summary
Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: the case study of the Thur catchment
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345,,, 2020
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172,,, 2019
Short summary
Modelling biocide and herbicide concentrations in catchments of the Rhine basin
Andreas Moser, Devon Wemyss, Ruth Scheidegger, Fabrizio Fenicia, Mark Honti, and Christian Stamm
Hydrol. Earth Syst. Sci., 22, 4229–4249,,, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943,,, 2023
Short summary
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863,,, 2023
Short summary
Water and energy budgets over hydrological basins on short and long timescales
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744,,, 2023
Short summary
Hydrological response to climate change and human activities in the Three-River Source Region
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492,,, 2023
Short summary
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341,,, 2023
Short summary

Cited articles

Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system, J Hydrol., 87, 45–59,, 1986. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,, 2017. a, b
Bennett, A. and Nijssen, B.: Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models, Water Resour. Res., 57, e2020WR029328,, 2021. a, b
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Rev., 59, 65–98, 2017. a
Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D.: Neural ordinary differential equations, arXiv [preprint], arXiv:1806.07366, 2018. a, b
Executive editor
This is a paper demonstrating the added value of hybrid modeling approaches for modeling hydrological features (flow and internal states). The paper is well written and will be sent out for a detailed scientific review. The combination of ANN with ODE-based hydrological models is a good way forward to construct hybrid modeling approaches. It is a significant step forward compared to the current state of the art.
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.