Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5085-2022
https://doi.org/10.5194/hess-26-5085-2022
Research article
 | Highlight paper
 | 
11 Oct 2022
Research article | Highlight paper |  | 11 Oct 2022

Improving hydrologic models for predictions and process understanding using neural ODEs

Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia

Related authors

Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023,https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary

Cited articles

Abbott, M., Bathurst, J., Cunge, J., O'Connell, P., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system, J Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a, b
Bennett, A. and Nijssen, B.: Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models, Water Resour. Res., 57, e2020WR029328, https://doi.org/10.1029/2020WR029328, 2021. a, b
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Rev., 59, 65–98, 2017. a
Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D.: Neural ordinary differential equations, arXiv [preprint], arXiv:1806.07366, 2018. a, b
Download
Executive editor
This is a paper demonstrating the added value of hybrid modeling approaches for modeling hydrological features (flow and internal states). The paper is well written and will be sent out for a detailed scientific review. The combination of ANN with ODE-based hydrological models is a good way forward to construct hybrid modeling approaches. It is a significant step forward compared to the current state of the art.
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Share