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Abstract. Deep learning methods have frequently outper-
formed conceptual hydrologic models in rainfall-runoff mod-
elling. Attempts of investigating such deep learning mod-
els internally are being made, but the traceability of model
states and processes and their interrelations to model input
and output is not yet fully understood. Direct interpretability
of mechanistic processes has always been considered an asset
of conceptual models that helps to gain system understand-
ing aside of predictability. We introduce hydrologic neural
ordinary differential equation (ODE) models that perform as
well as state-of-the-art deep learning methods in stream flow
prediction while maintaining the ease of interpretability of
conceptual hydrologic models. In neural ODEs, internal pro-
cesses that are represented in differential equations, are sub-
stituted by neural networks. Therefore, neural ODE models
enable the fusion of deep learning with mechanistic mod-
elling. We demonstrate the basin-specific predictive perfor-
mance for 569 catchments of the continental United States.
For exemplary basins, we analyse the dynamics of states and
processes learned by the model-internal neural networks. Fi-
nally, we discuss the potential of neural ODE models in hy-
drology.

1 Introduction

1.1 Machine learning in hydrology

Deep learning models, in particular long-short-term memory
(LSTM) neural networks, have outperformed traditionally
used conceptual models in hydrologic modelling (Kratzert
et al., 2018; Feng et al., 2020; Lees et al., 2021). Machine
learning methods provide great versatility (Shen, 2018; Shen

et al., 2018; Reichstein et al., 2019) and have demonstrated
unprecedented accuracy in various modelling tasks like pre-
dictions in ungauged basins (PUB; e.g. Kratzert et al., 2019b;
Prieto et al., 2019), transfer learning to data-scarce regions
(Ma et al., 2021) or flood forecasting (Frame et al., 2022;
Nevo et al., 2022). Nonetheless, deep learning remains a field
of progress with gaps to fill. Here, we want to focus on three
of them that are particularly relevant in hydrology.

First, machine-learning models are still not as easily inter-
pretable as traditionally used physics-based conceptual hy-
drologic models are (Samek et al., 2019; Reichstein et al.,
2019). Although high predictive accuracy is crucial to all
modelling tasks, it is often not the only purpose. When deal-
ing with complex systems, as is the case in hydrology, learn-
ing about the system and understanding its internal and ex-
ternal interrelations is just as important to many researchers.
There have been first attempts in this direction by investigat-
ing what happens inside machine-learning models (Kratzert
et al., 2019a). Generally, research on explainable artificial
intelligence (XAI) or “interpretable machine learning” (e.g.
Samek et al., 2019; Montavon et al., 2018; Molnar et al.,
2020; Molnar, 2022) has strongly advanced in recent years.
Specifically, in hydrologic modelling, ties between internal
model states and hydrologic processes are being elicited like
the correlation between the dynamics of certain hidden states
of LSTM models with measured soil moisture (Lees et al.,
2022).

Therefore, it is becoming more and more inaccurate to
label machine-learning methods as black box models since
techniques exist that shed light on the internal information
processing of machine-learning methods (see also Near-
ing et al., 2021; Lees et al., 2022). Yet, internal investiga-
tion of machine-learning models relies on additional methods
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that come with their own assumptions and caveats, and the
current straightforward interpretability of conceptual models
serves as a benchmark in the hydrologic community. Much
environmental research is dedicated toward extrapolation in
space and in time and of boundary conditions, in order to in-
vestigate extreme events (Frame et al., 2022), climate change
projections (Nearing et al., 2019) and so on. In all these
fields, ease of interpretability is desirable.

Second, while the introduction of system memory as a
physical principle (like in LSTM models) has turned out
to be crucial for hydrograph prediction, other basic physi-
cal principles have not necessarily been fulfilled, yet. Cur-
rently used machine-learning approaches are limited to fixed
time steps, which restricts their usage. For instance, while
LSTM approaches have been shown to perform well at the
task of discharge prediction on daily resolution in many dif-
ferent cases (e.g. Kratzert et al., 2018, 2019b), high-flow
events often occur at a higher temporal resolution. For LSTM
models, recent developments show adaptation approaches to
finer time intervals, i.e. from daily to hourly (Gauch et al.,
2021), or introduce continuous time hidden states within the
LSTM framework in order to internally update their step-
wise dynamics (Lechner and Hasani, 2020). Yet, thereby,
modelling becomes more interlaced, and computational ef-
fort increases without increasing system understanding. De-
spite all the progress in this field, real-world systems with
their states and processes are continuous in time, and from
a physics perspective, it remains unsatisfactory when mod-
els are restricted to certain timescales. Further, attempts to
enforce fundamental principles like mass balance were made
but showed that this constraint might even worsen predictive
power compared to the unconstrained LSTM variants (Hoedt
et al., 2021).

Third, there is often prior knowledge that cannot be in-
cluded in machine-learning models. Data-driven modelling
demonstrates impressive abilities in terms of mimicking
and/or improving the translation from driving forces vari-
ables through the system into its output, like from precipi-
tation to discharge in hydrology. Yet, the question remains
as to why such models only have to use data to learn all the
internal processes of the system from scratch. Much knowl-
edge about hydrology has been gathered in the past, so why
not provide such knowledge, for example, mechanistic struc-
ture, reliable causal interrelations and context-specific infor-
mation (Rackauckas et al., 2020), to the models directly? Of
course, the risk impends that certain constitutive relations as
they are used in mechanistic processes might be inexact or
misleading. Nonetheless, on the one hand we can rely on
many basic principles that are generally agreed upon, and on
the other hand, including constitutive relations has the poten-
tial of providing additional knowledge on hydrological pro-
cesses aside from data alone.

1.2 Conceptual hydrologic models

For conceptual hydrologic models, these gaps have been
mostly closed over the last decades: the development of con-
ceptual bucket-type models (e.g. HBV or GR4J; see Knoben
et al., 2020, and references therein) rests on the deductive in-
sight that physical principles do hold in general. Basic build-
ing blocks have been elicited, and modular frameworks allow
models to be tailored to any task at hand (Fenicia et al., 2011;
Clark et al., 2015) while maintaining full interpretability of
each element. Knowledge about local conditions is used to
improve the models (Gnann et al., 2021), fostering both sys-
tem understanding and accuracy in predictions (Kirchner,
2006; Fenicia et al., 2014) in typically data-limited mod-
elling tasks (Fenicia et al., 2008; Li et al., 2021).

Yet, there remains a dichotomy between bottom-up and
top-down approaches in hydrology (Savenije, 2009; Gharari
et al., 2021). In the former, process knowledge that was ac-
quired at smaller scales is generalized to the catchment scale,
while in the latter, prediction and interpretation of the hy-
drologic system are based on the overall catchment response
(Sivapalan et al., 2003). The bottom-up approach yields
physically based and distributed models (Abbott et al., 1986;
Loritz et al., 2018), and, over recent years, different methods
have been investigated to learn constitutive equations directly
from data (Gharari et al., 2021). Top-down models have been
widely explored using different modelling approaches which
include the present range of conceptual model structures (see
Knoben et al., 2020), aided by flexible frameworks such as
Superflex (Fenicia et al., 2011) or the Framework for Un-
derstanding Structural Errors (FUSE; Clark et al., 2008),
or transfer function models (Young, 2003). Both approaches
seek to obtain parsimonious models that shall be as sim-
ple as possible for the sake of interpretability and complex
enough to achieve high predictive accuracy (Höge et al.,
2018; Gharari et al., 2021). Often enough, only a few model
states and processes (see, for example, Patil and Stieglitz,
2014) are sufficient as an effective theory to describe an en-
tire hydrologic system (Kirchner, 2009; Fenicia et al., 2016).
However, the plethora of hydrologic models itself points to
the fact that no single model or framework exists that is al-
ways applicable.

Recently, hybrid attempts have been made to extend con-
ceptual hydrologic models with machine-learning methods
in order to alleviate their shortcomings. For example, Jiang
et al. (2020) used convolutional neural networks (CNNs)
to predict discharge time series, taking meteorological in-
put time series and the output from a conceptual hydrologic
model as inputs. There, the hydrologic model output acts as
physical guidance that is used aside of driving input forces
like precipitation by the CNN to achieve better discharge pre-
dictions. In their workflow, the application of the neural net-
work serves as a postprocessing step to the hydrologic model
simulation.
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1.3 Scientific machine learning and neural ODEs

Other approaches that combine principles from physical
process-based models (PBMs) and deep learning have in-
creasingly been developed in recent years. Mixtures of PBMs
and deep learning methods have been used to model the
global hydrological cycle (Kraft et al., 2022) or evapotran-
spiration (Zhao et al., 2019) and latent energy fluxes (Bennett
and Nijssen, 2021). So-called physics-informed neural net-
works (PINNs; Raissi et al., 2019) have to satisfy physical
constraints from differential equations aside of minimizing
residuals between predictions and data in the loss function
during training, and this technique has been used, for exam-
ple, to solve subsurface flow inverse problems (Tartakovsky
et al., 2020). Such approaches are also applied in various
other scientific domains and belong to a field that goes by
various names like physics-informed machine learning (Kar-
niadakis et al., 2021) or theory-guided data science (Karpatne
et al., 2017).

Here, we introduce a modelling approach that addresses
the above gaps regarding interpretability, physics and knowl-
edge simultaneously and that therefore has the potential to
help dissolving the dichotomy in hydrology. The approach is
also a hybrid of deep learning and differential equations, but
it does not apply deep learning only in a postprocessing step
like in the hybrid CNN approach above, and it does not only
use constraints from differential equations in the loss func-
tion like in PINNs. We employ neural ordinary differential
equation (ODE) models (Chen et al., 2018; Rackauckas et al.,
2020), i.e. models based on differential equations with terms
that are substituted by neural networks partially or entirely.
Neural ODEs fuse mechanistic physics with machine learn-
ing, and their appeal is twofold: first, differential equations
as mathematically elegant representations of scientific inter-
relations have been well investigated and widely used. Neural
ODEs extend this framework. Second, it is much easier for a
neural network to not learn the behaviour of the observable
directly, but encoding the mechanism behind that determines
the observed behaviour (Rackauckas et al., 2020). In other
words, the derivatives often have simpler functional relation-
ships than their solution. Comparably, simple mechanistic in-
terrelations sometimes lead to very complex observable out-
comes like, for example, chaos.

Neural ODEs are part of so-called scientific machine
learning (Rackauckas et al., 2020) that seeks to bring to-
gether both the knowledge contained in data (bottom-up)
and knowledge from expertise (top-down) and leverage both
for greater knowledge gain, higher predictive power and in-
creased system understanding. The rationale behind scien-
tific machine learning is that reliable inter- and extrapolation
in science has always overwhelmingly been due to mecha-
nistic laws that impose a physical structure on the problem at
hand. With pure data-driven approaches, this structure has to
be learned entirely from data. Here, the inclusion of mech-
anistic principles might help to fill knowledge gaps, espe-

cially in data-limited contexts, and novel differentiable pro-
gramming tools foster its application in scientific computing
(Innes et al., 2019). In scientific machine learning, it is possi-
ble (and desired) to include physical structure and processes
that are known mechanistically as hard-coded features and
leave what is not known or only known vaguely to the data-
driven method.

Deep learning methods in hydrology have proven their
ability to process integrated site-specific information to im-
prove discharge prediction tremendously (Kratzert et al.,
2019c). This has not been possible with conceptual mod-
els. Nonetheless, there might be catchments with unique fea-
tures or site-specific conditions that are invisible to machine-
learning methods due to only using averaged attributes or
due to the fact that these features are exceptions and dis-
tinctively different from any other basin. Further, it might
be impossible to provide respective information (like highly
resolved spatially explicit features) to a machine-learning
method since it becomes computationally infeasible. Pure
machine-learning approaches are not meant to be modified
by adding specifics via hard-coding additional formulas into
the model. Contrarily, scientific machine learning provides
an interactive framework where knowledge can be included
explicitly, allowing us to put “humans in the loop” (e.g.
Holzinger, 2016) if desired and not to leave this resource
of knowledge aside. This pertains to, for example, identify-
ing plausible processes based on mechanistic understanding
or to providing context information: seasonal features, spe-
cific topography, geology (e.g. karst) and so on. We intro-
duce scientific machine learning for hydrology by leverag-
ing a physics-based conceptual hydrologic model with one
or several neural networks, substituting mechanisms in the
underlying mass-balance ODEs.

The remainder of this article is structured as follows: in
Sect. 2, we introduce our model and the data used, as well
as the chosen training and evaluation procedure. In Sect. 3,
we rate predictive accuracy of our models on a few common
hydrologic metrics. There, we present our internal hybrid ap-
proach in direct conjunction to state-of-the-art results from
Jiang et al. (2020). In Sect. 4 we analyse model internal states
and processes dynamics of our neural ODE models. We dis-
cuss the results and their implication in Sect. 5. Finally, we
close with a conclusion and outlook in Sect. 6.

2 Methods

2.1 Models

As a baseline conceptual framework, we work with a typi-
cal hydrologic bucket-type model. We employ the structure
of the simple rainfall-runoff model EXP-Hydro (Patil and
Stieglitz, 2014). The model comprises only two state vari-
ables as buckets, snow storage Ssnow and the so-called catch-
ment water storage Swater, and five mechanistic processes,
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Figure 1. Schemes of the neural ODE models M50 (a) and M100 (b): (a) the two small neural networks in M50 that substitute evapotranspi-
ration (NN50

ET) and discharge (NN50
Q

) have only one output node, and each has an additional input variable compared to the basic mechanistic

process. (b) The large neural network (NN100) has five output nodes – one for each substituted process – and all driving forces and model
states as input. The structure of two model states and five processes without neural networks resembles the plain conceptual model M0.

precipitation of rain Prain and snow Psnow, meltingM , evapo-
transpiration ẼT and discharge Q. In general terms, the cou-
pled ODE model structure is written as

dSsnow(t)

dt
= Psnow(I (t);2)−M(I (t);2) (1)

dSwater(t)

dt
= Prain(I (t);2)+M(I (t);2)

−Lday(t) · ẼT(I (t);2)−Q(I (t);2), (2)

with time t , length of day Lday(t) and model parame-
ters 2. Model inputs and internal states are defined as I (t)=

(T (t),P (t), Ssnow(t), Swater(t))
T, with temperature T (t) and

precipitation P(t) as driving forces and model states Ssnow(t)

and Swater(t). Depending on the process, not every element
in the generally formulated I (t) might be used. Note that
the actual estimated evapotranspirative flux ET is ẼT multi-
plied by Lday(t). The conceptual model structure is shown
schematically in Fig. 1.

EXP-Hydro as originally developed by Patil and Stieglitz
(2014) and re-implemented by Jiang et al. (2020) is dis-
cretized for daily time steps. Opposed thereto, we use a
solver with adaptive time stepping (see Rackauckas and Nie,
2017). Since input data series are only available with fixed
observation times, we apply monotonic interpolation using
Steffen’s method (Steffen, 1990). To foster comparability,
we use EXP-Hydro as implemented by Jiang et al. (2020)
as a starting point but transferred it to the programming lan-
guage Julia (Bezanson et al., 2017). All original equations
of the five mechanistic processes with process-specific driv-
ing forces, model states and model parameters can be found
in Appendix A1. Note that, there, the precipitation terms in
Eqs. (1) and (2) do not have any dependence on model states,
while discharge only depends on the model state Swater(t).

We refer to our implementation of EXP-Hydro as model
M0. In total, we set up three different models, with numbers
in the model name indicating the percentage of neural net-
work fraction within the model. Our models M50 and M100
have terms in Eqs. (1) and (2) substituted by feed-forward
neural networks. To build M50, we replaced the mechanistic
formulas of evapotranspiration and discharge by two small
neural networks, NN50

ET and NN50
Q , respectively. As indicated

in Fig. 1a, both NNs have two hidden layers with 16 nodes
each, one output node and input nodes for all driving forces
variables and model states that are considered relevant. Com-
pared to the plain mechanistic process (see Eq. A3), Ssnow is
also an additional input to the ẼT50, accounting for any in-
terference of snow cover with evapotranspirative fluxes. Re-
garding discharge Q50, precipitation (without specification
about whether as rain or as snow) serves as an additional in-
put, potentially allowing the network to emulate processes
like direct surface run-off.

As shown in Fig. 1b, M100 contains only one single neural
network NN100 with five output nodes substituting all mech-
anistic processes in the model. M100 has both external input
variables temperature and precipitation as well as the inter-
nal states of snow and water storage as inputs. The neural
network has five hidden layers, each with 32 nodes, and the
five model processes in Eqs. (1) and (2) are replaced by out-
put nodes P 100

snow(t), P
100
rain (t), M

100(t), ET100(t) and Q100(t),
respectively. A more detailed rationale for developing mod-
els M50 and M100 from M0 is available in Sect. A2.

2.2 Data

We use the data provided in the CAMELS (Catchment At-
tributes and Meteorology for Large-sample Studies) dataset
(Addor et al., 2017) that contains catchment-specific uni-
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formly organized data for 671 catchments in the continental
United States. The dynamic time series in this dataset have
a daily resolution. Besides the discharge time series, they
also cover the three input forcing variables to the model: day
length, temperature and precipitation. Specifically, the forc-
ings are based on the Daymet dataset, that has the spatial
highest resolution (1 km× 1 km) compared to the available
alternatives (Newman et al., 2015, and references therein).
Daymet was also used by Jiang et al. (2020), and it was
shown to give the best results among the alternative input
data sources in other modelling attempts (Newman et al.,
2015; Kratzert et al., 2021).

In our model evaluation, we also use lumped snow water
equivalent (SWE) time series data for each basin. Aside of
the catchment-integrated time series such as those for tem-
perature or precipitation, the CAMELS dataset contains dy-
namic data provided for different elevation bands in each
basin, including SWE time series. Each elevation band is as-
signed a respective area as fraction of the full catchment area.
Using this information, we integrate the SWE data as an area-
weighted average in order to obtain lumped SWE data for
each catchment. Note that SWE is not used as model input in
calibration. The observed SWE data are solely used for com-
parison with the dynamics of the snow storage Ssnow of the
models.

From the 671 available catchments, we use the same 569
as in Jiang et al. (2020). Likewise, the calibration/training
period is set to 1 October 1980–30 September 2000 and the
validation/test period to 1 October 2000–30 September 2010,
comprising 20 and 10 hydrologic years, respectively. Model
evaluation is based on the validation period only.

2.3 Procedure and model rating

Our models are calibrated to each catchment specifically and
validated on the same catchment. The procedure is structured
as follows, with steps 2 and 3 only applying to neural ODE
models M50 or M100:

1. Conceptual hydrologic model training. M0 is calibrated
with the training data using only Nash–Sutcliffe effi-
ciency (see Eq. 3 below) as the objective function. The
results from this step are used as the M0 benchmark in
the model comparison.

2. Neural network pre-training. Each internal process of
the calibrated M0 is simulated individually using the
required driving variables or simulated model states
over the training period. Then, the neural network(s)
from M50 or M100 that shall substitute the respective
processes are trained on these simulated process data
series with the sum of squared errors as the objective
function. No regularization is applied in this step, since
it shall only roughly inform the neural network parame-
ters.

3. Neural ODE model training. The pre-trained neural net-
works are inserted into M50 or M100, respectively, and
the entire neural ODE models are individually trained
on the calibration data using again only Nash–Sutcliffe
efficiency as the objective function. In this step, the neu-
ral networks are fine-tuned, and the model structure acts
as regularization.

Over the different steps, we enable knowledge transfer be-
tween the models: results from the trained conceptual hydro-
logic model are used as an example for the neural network(s)
to learn general relations between input variables and out-
put quantities. These relations are then improved and refined
in the neural ODE training step. After successful training,
we conduct a twofold evaluation of the models with valida-
tion data from the test period between 1 October 2000 and
30 September 2010:

1. We benchmark the models by three metrics commonly
used in hydrology (cf. Jiang et al., 2020) and compare
them to state-of-the-art model approaches (see Sect. 3).

2. We analyse internal model states and processes between
the conceptual (M0) and the neural ODE (M50, M100)
models (see Sect. 4).

First, for benchmarking, the following metrics are used:
the Nash–Sutcliffe efficiency (NSE), as defined in Eq. (3)
with α = 2, compares the used model to simply using the av-
erage of observed discharges for predictions. With NSE< 0,
the model is worse than just using the observed average,
while the maximum value of 1 indicates a perfect fit. Values
above 0.55 are considered to represent “some model skill”
(Newman et al., 2015). Generally, there is no fixed scheme
to interpret NSE values, but rules of thumb are available (see
Moriasi et al., 2007; Schaefli and Gupta, 2007). Following
Legates and McCabe Jr (1999), NSE (α = 2) is only a special
case of the so-called coefficient of efficiency over N corre-
sponding observed Qobs and simulated Qsim discharge val-
ues:

CoEα = 1−
∑N
i=1|Qobs,i −Qsim,i |

α∑N
i=1|Qobs,i −Qobs|

α
. (3)

Another special case with α = 1 is referred to as the mod-
ified coefficient of efficiency (Legates and McCabe Jr, 1999)
or, briefly, as mNSE (Jiang et al., 2020). The values of mNSE
(CoE1) can be interpreted similarly to NSE (CoE2). The
mNSE, however, gives less weight to extreme fluctuations
than the NSE, which typically relate to peak flow. Hence,
mNSE is better suited to rate low and base flow. Peak flow
is rated specifically by the percent bias in the flow duration
curve high-segment volume (FHV; Yilmaz et al., 2008):

FHV= 100 ·
∑H
h=1(Qsim:high,h−Qobs:high,h)∑H

h=1Qobs:high,h
, (4)
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Figure 2. Histograms of NSE (orange; optimal value: 1), FHV (yellow; optimal value: 0) and mNSE (blue; optimal value: 1) for the developed
neural ODE models M100 and M50, the plain conceptual baseline model M0 and state-of-the-art LSTM and postprocessing hybrid CNN
models (bottom; cf. Jiang et al., 2020).

where Qobs:high and Qsim:high refer to the observed and sim-
ulated discharges sorted in descending order, respectively.
H defines the number of highest values according to a cho-
sen exceedance probability. Here, for comparability reasons,
we use the exceedance probability 0.01 like in Jiang et al.
(2020). This means that FHV is based on the highest percent
of discharges, as opposed to the typical chosen exceedance
probability of 0.02 (Yilmaz et al., 2008). The optimal value
of FHV is 0. For comparability and since FHV values can be-
come negative, we use only the absolute values like in Jiang
et al. (2020) (where FHV was renamed to absolute peak flow
bias, PFAB).

Second, the evaluation of internal model states and pro-
cesses is conducted in direct comparison between the con-
ceptual model M0 and the neural ODE models M50 and
M100: the dynamics of snow and water storages is inspected
alongside the model-specific estimated streamflow. Further,
the internal processes for discharge, evapotranspiration and
melting are isolated and explored over plausible ranges of
input variables and model states, for example, discharge as
a function of water storage. Additional input variables to the

neural networks in M50 and M100 that shall not be explored
are kept fixed with catchment-specific values (like mean tem-
perature) as specified in Sect. 4.

3 Benchmarking neural ODE models

Figure 2 shows the distributions of the three evaluation met-
rics per evaluated model over all 569 considered catchments.
NSE, FHV and mNSE are displayed in one row per model,
i.e. the two newly developed neural ODE models (M50 and
M100), the conceptual model M0 and two state-of-the-art
models. The performance values shown for both the hybrid
CNN and LSTM model are the original values from Jiang
et al. (2020).

For both FHV and mNSE, the M100 scores better in both
mean and median than all other models. The distributions
over all catchments show clear shifts towards the optimal
scores 0 for FHV and 1 for mNSE, respectively. Consider-
ing NSE, which is also the calibration metric, M100 outper-
forms all other models except for the hybrid CNN approach.
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Yet, both mean and median NSE between the two models do
only deviate by a small margin. Looking at the histograms, it
can be seen that the hybrid CNN model shows an accumula-
tion of scores slightly above the median for NSE and mNSE
and slightly below the median for FHV. Contrarily, the M100
achieves substantially more high scores for NSE and mNSE
and lower peak flow errors. At the tails of the histograms,
M100 managed to reduce the number of bad results (NSE
and mNSE below 0 and FHV around 100 and above).

Considering M50 and M0, the neural ODE model M50
achieves a significant improvement in all metrics over the
plain conceptual model: NSE mean and median improve by
about 0.15 and 0.23, respectively; mNSE increases in both
statistical moments by more than 0.1, while FHV drops by
about 25 %. This shows that the conceptual model clearly
benefits already from substituting only two processes (ET
and Q) by more flexible methods.

It can easily be seen that all models except for model M0
and LSTM achieve performances in a similar range with
similar means and medians over all metrics, although the
distributions show noticeable differences. While M0 shows
better FHV scores with the whole distribution tending to-
ward lower values, the LSTM is considerably better regard-
ing NSE and mNSE. Yet, all distributions for both models
deviate clearly from the other models, showing more insuf-
ficient values that are low (around 0.0) for NSE and mNSE
and high for FHV. This is further discussed in Sect. 5.1, with
a special focus on LSTM models.

4 Internal states and processes of neural ODE models

As with conceptual hydrologic models, the temporal dynam-
ics of processes and states can directly be inspected and
analysed in the neural ODE approach. We chose two ex-
emplary basins for demonstration purposes: Fish River near
Fort Kent, Maine (ID: 1013500), and Spearfish creek, South
Dakota (ID: 6431500). The former one in Maine is a com-
parably large basin (> 2000 km2) at an average altitude of
250 m, with temperate climate at about 1140 mm annual pre-
cipitation and 3.3 ◦C mean temperature. The latter one in
South Dakota is a medium-sized (ca. 430 km2), high-altitude
basin (average altitude ca. 1890 m) with an annual precipita-
tion of 700 mm and mean temperature of about 5 ◦C. Both
basins are covered by forest by slightly more than 90 %
and have similar fractions of precipitation that falls as snow
of 0.31 and 0.36, respectively.

Figure 3 shows the time series of discharge, snow storage
and water storage states from the plain conceptual (M0) and
the neural ODE models (M50 and M100) for both basins. For
discharge and snow storage, observations are available and
are displayed, with the latter being the lumped snow water
equivalent (SWE) data. Note that SWE was not used in the
calibration.

Table 1. Streamflow prediction performance based on NSE (opti-
mum: 1), FHV (optimum: 0) and mNSE (optimum: 1) of the con-
ceptual model (M0) and both neural ODE models (M50 and M100)
for basins 1013500 and 6431500. Bold values indicate best perfor-
mance.

Basin 1013500 Basin 6431500

Model NSE FHV mNSE NSE FHV mNSE

M0 0.85 8.38 0.66 0.005 34.73 −0.28
M50 0.89 4.94 0.7 0.33 30.47 0.18
M100 0.91 5.41 0.73 0.54 9.14 0.19

The two basins cover different magnitudes for all depicted
variables. For the basin 1013500, model predictions of the
three models are very similar. Discharge predictions of all
models match observations very well, which is also indicated
by overall good metrics in Table 1. The agreement between
models is weaker for snow storage, although the general pat-
tern is similar and approximately matches observations. For
basin 6431500, model predictions deviate more strongly and
show a larger discrepancy to data. As supported by rather bad
performance metrics, model M0 underestimates baseflow in
large parts and misses both timing and flashiness of peaks.

In neither basin do the neural ODE models alter the snow
storage component much from the plain conceptual model,
although there are small differences in specific years. Over-
all, the models do catch the temporal pattern of snow accu-
mulation, but there are discrepancies in the magnitude. The
models for basin 1013500 show acceptable estimates, while
for basin 6431500 they tend to underestimate SWE system-
atically. At the end of each snow season, the models pre-
dict snow to disappear much earlier compared to the ob-
served values for most years. This issue is further discussed
in Sect. 5.2. Regarding water storage, there are no data for
a direct comparison available. For basin 1013500, all mod-
els strongly agree on the dynamics and magnitude of the
model state. This is different with model estimates for the
second basin 6431500, where the two neural ODEs are sim-
ilar with only small deviations but both differ strongly from
the conceptual model estimate. Apart from variations in the
annual cycles, M50 and M100 show much smaller variance,
while M0 indicates a general magnitude shift to higher water
storage in the last third of the testing period. Together with
the significantly better scores in Table 1 of both neural ODE
models, this indicates that M0 might not be a suitable choice
as model for this particular basin.

Like in plain conceptual models, internal processes like
discharge, evapotranspiration and melting can be analysed
over plausible ranges of input variables in neural ODE mod-
els. Figure 4 shows the relations between water storage S1
and (logarithmic) discharge Q for models M0 (hard-coded,
Eq. A5), M50 (learned by NN50

Q ) and M100 (learned by
NN100) for both basins. All three discharge–water storage
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Figure 3. Time series of data and model predictions from models M0, M50 and M100 for discharge (top), snow storage (centre) and water
storage (bottom; no data) for the test period in basin 1013500 (a) and in basin 6431500 (b).

Figure 4. Relation between water storage and discharge (a, b) or logarithmic discharge (c, d) in basin 1013500 (left) and basin 6431500 (right)
for models M0 (hard-coded relation), M50 and M100 (learned by a neural network, with additional neural network input snow storage fixed
at 0 for both M50 and M100 and both precipitation and temperature fixed at basin averages over the training period).
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relations appear similar for small to medium water storage
values in Fig. 4a and b. Beyond, strong differences evolve: in
basin 1013500, the hard-coded relation in M0 shows a strong
increase for large values of S1, reaching values much higher
than the maximum discharge that was observed over both the
training and the testing period. At the same time, M50 shows
a linear trend for large water storages, underestimating the
maximum observed discharge slightly. For basin 6431500
it is the opposite; M0 underestimates discharge, and model
M50 shows a strong tendency to overshoot. In both basins,
M100 shows the most plausible relation.

The discrepancies of the learned relations between the
three models become even more apparent on the logarith-
mic scale in Fig. 4c and d. While it is revealed that for
basin 1013500 both neural ODE models M50 and M100 es-
timate higher discharge already for medium storage values,
the learned relations flatten toward high storage states. This
indicated that the sigmoidal shape prevents the overshoot-
ing of discharge in this range as it occurs in M0. For basin
6431500 in Fig. 4d, the learned relations in M50 and M100
even deviate entirely from the simple exponential increase of
discharge in M0 that is shown as a straight line on the log-
arithmic scale. Both neural ODE models generally estimate
a higher order of magnitude of the discharge there and also
suggest a sigmoidal shape. Generally, both M50 and M100
estimate larger discharge over all storage values than M0.
For higher water storage values, M100 learns that discharge
grows more than exponentially until it starts flattening again,
reaching discharge maxima that are about 2 orders of mag-
nitude higher than those from M0. This pattern is similar for
M50 but it overshoots discharge in the high water storage
range.

Exceeding plain conceptual models, the neural ODE ap-
proach further allows us to directly analyse the (cross-
)impact of additionally assigned variables to specific pro-
cesses. Both neural networks NN50

Q and NN100 in M50 and
M100, respectively, also use precipitation as input. Figure 5
depicts the relations of discharge to water storage and pre-
cipitation for the three models in each basin. Note that the
magnitudes of discharge vary between basins and that dis-
charge in the conceptual model M0 depends only on water
storage. For model M0, the very high discharge predictions
in basin 1013500 and the very low ones in basin 6431500 are
clearly shown in Fig. 5a and b, respectively.

For basin 1013500, models M50 and M100 show an over-
all similar pattern in Fig. 5c and e, respectively, with M100
reaching higher magnitudes. Both models locate the high-
est discharge in the same region of high water storage and
medium to low precipitation. For very small precipitation at
high water storage M100 in particular indicates a slight de-
cline in discharge. Interestingly, neither model shows an in-
crease of discharge with stronger precipitation. The decline
in discharge could be related to the lower frequency of strong
rain events in the basin and the resulting detriment of the
neural networks to learn another relation. Hence, it might be

subject to higher uncertainty in this variable range. This is
further discussed in Sect. 5.2.

The expected trend of increasing discharge for increas-
ing rain is clearly visible for both models in basin 6431500
(Fig. 5d and f). Notably, a peak in discharge for high water
storage and small rain rates is visible, similar to the other
basin. Investigations about whether this could be an indica-
tion of a general non-linearity require further discussion (see
Sect. 5.2).

Figure 6 depicts the models’ dependences of the evapo-
transpiration terms (without Lday) on temperature and water
storage. Note that the magnitude ranges of evapotranspira-
tion indicated by colours are the same between the basins.
The hard-coded relation according to Hamon’s formula in
the conceptual model M0 shows the most regular behaviour
in Fig. 6a and b for both catchments: for temperatures be-
low 0 ◦C, there is very small to no evapotranspiration. Over-
all, increasing temperatures or water storages are associ-
ated with increasing evapotranspiration, although the general
magnitude is smaller for basin 6431500.

For basin 1013500, M0 shows much higher ET estimates
over a large range of temperature–water storage combina-
tions compared to the other two models. M50 only reaches
maximal ET in the region of medium to high water stor-
age and very high temperatures (extreme to unrealistic for
the considered basin) as shown in Fig. 6c. The general
trend of higher ET for higher temperature is also learned by
the NN50

ET, but the pattern is not as regular as in M0. In par-
ticular, for water storage values at the extremes, a decrease
of evapotranspiration is assumed. This indicates that either
the water storage–ET relation is not as proportional in these
regions as assumed by Hamon’s formula, or there are a lack
of data points covering these ranges, making it challenging
for NN50

ET to elicit the underlying relation. Nonetheless, the
elicited relation appears plausible, in particular for small wa-
ter storage.

In contrast to M50, M100 shows a much more regular de-
pendence of ET on temperature and water storage, as shown
in Fig. 6e. It shows the same regular increase of ET with tem-
perature as in M0 but a smaller dependence on water storage.
Yet, the magnitude of ET estimated by the neural network in
M100 is generally smaller. Hence, according to M100, evap-
otranspiration plays an overall smaller role in the water bal-
ance than represented in the conceptual model M0.

In basin 6431500, both models show a much more similar
pattern for the maxima of evapotranspiration (Fig. 6d and f)
although M100 indicates a much stronger increase in mag-
nitude for rising temperatures and water storage. In contrast
to Hamon’s formula in M0, the neural networks do not allo-
cate strong ET rates to small to medium water storages even
for higher temperatures, but both models depict higher rates
even for lower temperatures if water storage is high.

The effect of snow storage and temperature on melting
rates is displayed in Fig. 7. M0 and M50 employ the same
hard-coded melting formula (see Eq. A4), while in M100,
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Figure 5. Dependence of discharge on precipitation (rain) and water storage for neural ODE models M0, M50 and M100 in basin 1013500
(left; a, c and e, respectively) and in basin 6431500 (right; b, d and f, respectively). For NN100 the additional neural network input snow
storage was fixed at 0 in both basins, and temperature was fixed at the average temperatures over the training period (3.3 ◦C for basin 1013500
and 5 ◦C for basin 6431500).

the relation is learned by NN100. Note that the range of mag-
nitudes of melting rates and snow storage is much higher in
basin 1013500 than in basin 6431500. Despite some differ-
ences, there are also general trends over all models and both
basins: plausibly, no relation shows snowmelt for tempera-
tures below 0 ◦C – this is determined for M50 and M0 but
also not altered in M100. For larger temperatures, melting
rates constantly increase. The only exception is very small
snow storage values where no to only slowly growing melt-
ing occurs in the models.

For M100, differences between the basins and from the
hard-coded melting linear relationship in M0/M50 are clearly
observable: for basin 1013500 (Fig. 7c) M100 shows the
smoothest increase in the direction of higher temperatures
and higher snow storage and also reaches considerably

higher magnitudes. Yet, with small but growing snow storage
for higher temperatures, M0/M50 shows a stronger increase
over a smaller range. This increase is similar for M100 in
basin 6431500 (Fig. 7d), although for higher snow storage,
there is a decline in melting rate over the entire range for
temperatures above 15 ◦C. Further discussed in Sect. 5.2, this
could again be due to a lack of training points in a catchment
of warmer climate.

Of course, the highest temperatures covered in the above
analysis are unrealistic to be associated with snow cover.
Elevation information that would make it possible to con-
sider snow cover in high altitudes while already having warm
temperatures in lower parts of the catchment is neglected.
Nonetheless, we demonstrate that a physical extrapolation
and analysis of individual processes is possible with the neu-
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Figure 6. Dependence of evapotranspiration on temperature and water storage for neural ODE models M0, M50 and M100 in basin 1013500
(left; a, c and e, respectively) and in basin 6431500 (right; b, d and f, respectively). For NN50

ET and NN100, the additional neural network
input snow storage was fixed at 0 in both basins, and precipitation for NN100 was fixed at the average over the training period (3 mmd−1 for
basin 1013500 and 1.9 mmd−1 for basin 6431500).

ral ODE approach, just as is traditionally done with concep-
tual models.

5 Discussion

5.1 Benchmarking

All four machine-learning-based hydrologic models show a
significant improvement over the plain conceptual hydro-
logic model M0. Results indicate that more information from
training data can be leveraged by partial or pure data-driven
models, and considerably higher rating scores are achieved.
Arguably, the EXP-Hydro is a very simplistic bucket model,
and more sophisticated conceptual hydrologic models exist
that achieve higher scores (see SAC-SMA (Sacramento Soil

Moisture Accounting Model) in Appendix A3). Yet, more
complex conceptual hydrologic models also require more tai-
lored model features and higher parameterizations that again
entail more assumptions and fine-tuning.

Note that the displayed results for LSTM are the original
values from Jiang et al. (2020). There, they were obtained
by catchment-specific calibration and validation. However,
over recent years, LSTM models have achieved much higher
scores when being calibrated to many catchments simulta-
neously while also including static catchment attributes (like
topography and climatic indices, etc.) as additional inputs to
the model (Kratzert et al., 2019c; Feng et al., 2020). LSTM
models have demonstrated their ability to transfer learned
relations between input variables, attributes and streamflow
to unseen catchments, often yielding highly accurate pre-
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Figure 7. Dependence of melting rate on temperature and snow storage for neural ODE models M0/M50 and M100 in basin 1013500 (left; a
and c, respectively) and in basin 6431500 (right; b and d, respectively). For NN100, the additional neural network inputs were fixed at basin
averages of water storage and precipitation (3 mmd−1 for basin 1013500 and 1.9 mmd−1 for basin 6431500) over the training period.

dictions. This application case of large-sample hydrology is
however different from the application scenario here.

Despite their success, machine-learning models in hydrol-
ogy like LSTMs are known for often underestimating high
flow events (Kratzert et al., 2018). They often miss sharp
peaks as they regularly occur in hydrographs. Conceptual
models with their hard-coded peak flow relations are typ-
ically very good at this task. Both neural ODE models –
and especially M100 – show a clear improvement in this re-
spect based on learned relations that do not have to use a
threshold to distinguish between base and peak flow. FHV
scores of M50 are similar (yet still higher) to the hybrid CNN
model that already showed an improvement in peak flow pre-
diction, taking conceptual model predictions as additional
model input (see Jiang et al., 2020). M100 achieves an even
higher level of performance, with a median of about 13 and
a mean of about 16. The improved base flow prediction per-
formance is likewise indicated by the highest mNSE scores
(median 0.54 and mean 0.51). Overall, we summarize that
neural ODE models perform similarly well as or better than
alternative state-of-the art partial or pure machine-learning
models.

5.2 Internal states and processes

The overall better performance of neural ODE models com-
pared to plain conceptual models is associated with decisive
differences in the model internal dynamics and process rela-

tions. Results demonstrate that the pre-training of neural net-
works in order to mimic hard-coded processes before the full
neural ODE training does not prevent the neural networks
from learning new and vastly different relations. With neu-
ral ODEs being built on the same conceptual model struc-
ture, individual states and processes can easily be analysed
and compared between different models, or they can be in-
vestigated over specific ranges of input variables and model
states. Ultimately, the dependencies learnt by the neural net-
works might help to develop more sophisticated relations for
discharge and other processes.

In the variable ranges where many data were available, the
neural ODE models elicited plausible relations for the in-
vestigated processes. Yet, the analyses indicated that in the
extreme ranges of the process-dependent variables learned,
relations might be counter-intuitive or subject to uncertainty.
This is partially caused by a lack of data: 20 years of training
data for a single catchment typically does not provide enough
information to certainly extrapolate towards these limits. Al-
though general process trends often appeared to be plausi-
ble, cases remain that are hardly explainable (e.g. a decrease
of melting rate for growing snow storage). More data might
help to refine functional relations for broader data ranges to
a higher level of accuracy and to turn parts of the extrap-
olation into an interpolation problem. Yet, this will only be
one part of the solution since further extrapolation is always a
challenging task – especially for purely data-driven methods.
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Here, we conjecture that the hybrid neural ODE models ben-
efit from their physical structure that enforces regularization.
It informs the model parameters aside of data during training
and naturally constrains predictions during interpolation and
extrapolation tasks – just like the modelled natural system at
hand being constrained by physical limits. We think that this
combination of more data and physical structure might help
neural ODE models to elicit reliable functional relations that
can then be evaluated in plausibility testing. An example for
this could be a centennial rainfall-runoff event that might not
be covered by our data, but we would still be able to qualita-
tively judge whether the extrapolated relation to predict it is
plausible or not.

None of the models were trained on snow water equiva-
lent data, but due to their conceptual structure M0/M50 and
M100 learned snow dynamics indirectly via the snow stor-
age state of the model. Despite the close agreement regard-
ing their predictions of snow in both considered basins, all
models depict limitations of the lumped snow storage ap-
proach: melting of snow is often predicted earlier than shown
for the catchment by data (see Fig. 3). In higher altitudes,
snow stays much longer, and new precipitation might also
fill the snow storage there, even if spring and summer might
already have started in lower altitudes. Using only lumped
driving forces like average temperature as input variables to
the model prohibits the models from accounting for these ef-
fects and leads to potentially inaccurate estimates. Since the
CAMELS dataset provides elevation-band data for snow wa-
ter equivalent, we assume that including elevation-resolved
snow storage units in the neural ODE models might improve
this. Generally, a lumped model structure with only a few
processes and states facilitates information from data being
taken up falsely by parameters, even though it should be en-
coded in other parts of the model. This might additionally
exacerbate the elicitation of clear relations. As a remedy, a
more detailed conceptual structure might improve the encod-
ing of underlying functional relations.

6 Conclusions and outlook

Hydrologic neural ODE models fuse the modular bucket-
type structure of conceptual hydrologic models with machine
learning. Plainly spoken, neural ODE models are conceptual
hydrologic models with deep learning cores. The presented
models M50 and M100 depict hydrologic implementations
of the general neural ODE approach (Chen et al., 2018; Rack-
auckas et al., 2020) – and to our knowledge the first ones in
hydrology. The substitution of constitutive functions by neu-
ral networks has shown to significantly increase predictive
performance compared to a plain conceptual model while
keeping the same natural physical constraints. Overall, hy-
drologic neural ODE models perform similarly well as or
better than state-of-the-art pure or partial machine-learning

models but overcome three different limitations of former ap-
proaches as introduced in Sect. 1:

– First, using the conceptual hydrologic model structure
preserves the interpretability of the model as tradition-
ally given by conceptual models and appreciated by the
hydrologic community. Internal model states and pro-
cesses can directly be inspected for plausibility, and
their physical interpretation fosters system understand-
ing. The neural ODE approach might further trigger ad-
vancement in a more fundamental manner of building
“conceptual” models: theoretically, modellers only need
to set up the conceptual framework but do not have to
specify parameterizations within the model and let the
neural networks learn plausible relations. Potentially,
even features that are often neglected in typical concep-
tual models, like hysteresis (Gharari and Razavi, 2018),
could be elicited.

– Second, the neural ODE allows for physically con-
strained, continuous time solutions. In principle, this
also allows us to include data at an irregular temporal
resolution for both training and testing. Physical prin-
ciples and mechanistic structure act as guide rails that
are naturally included and do not have to be learned
or enforced as with pure machine-learning approaches.
The physical constraints act as regularization that bound
variability of the model. At the same time, the method is
flexible enough to learn constitutive relations from data.

– Third, our approach invites prior physical knowledge to
be incorporated into the model. For instance, the neural
ODE approach allows us to include processes that are
fully known as hard-coded features, like a sewage treat-
ment plant discharging into the stream at a known tem-
poral pattern. Locally, expert knowledge might be avail-
able about hydrologic systems that can be accounted for.
Pure data-driven methods might not be able to infer this
knowledge from data alone, and pure mechanistic mod-
els might not provide the desired flexibility like neural
ODE models.

In principle, the introduced approach can be applied to any
conceptual hydrologic model. Numerous alternative bucket-
type models and frameworks exist that can be fused with neu-
ral networks partially or entirely. The number of states and
processes is adjustable according to specific requirements of
the modelling problem at hand or in a more generic setup for
multiple catchments. Already the EXP-Hydro model used as
a rather simplistic example of conceptual model facilitated
a drastic improvement of model performance when used as
a basis for neural ODE models. Many sophisticated concep-
tual models exist (like SAC-SMA) that could also serve as
a framework for more sophisticated hydrologic neural ODE
models.

With the hydrological neural ODE model, we seek to in-
troduce a tool in between existing top-down and bottom-up
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approaches that paves the way for various subsequent re-
search routes. For example, the deterministic model can be
made probabilistic to enable uncertainty assessments as cur-
rently performed for stochastic hydrologic models (Reichert
et al., 2021). Also, due to its generic setup, the neural ODE
approach appears to be suitable for being trained with mul-
tiple basins simultaneously, including static attributes like in
respective investigations for LSTM models (Kratzert et al.,
2019c; Feng et al., 2020; Jiang et al., 2020). This large-
sample hydrology setting might be particularly useful to
further investigate process relations in data-scarce variable
ranges. We will investigate this in a subsequent step.

Appendix A

A1 EXP-Hydro equations

The simple rainfall-runoff model EXP-Hydro (Patil and
Stieglitz, 2014) comprises only two state variables represent-
ing buckets, five mechanistic processes and six parameters 2

(see Table A1). There are three inputs to the model: length of
day Lday, temperature T and precipitation P .

For ease of readability and comparability to Jiang et al.
(2020), parameters are written in Table A1 as they were orig-
inally defined by Patil and Stieglitz (2014). Further, the stor-
age state Ssnow is written as S0, and Swater is written as S1.
For ease of readability, dependence on time is implicitly as-
sumed, and t is dropped. Moreover, the driving forces and
model states relevant for each process are explicitly named.
Hence, the processes in EXP-Hydro are formulated as fol-
lows.

– precipitation as snow or rain:

Psnow(P,T ;Tmin)=

{
0 T > Tmin

P otherwise
(A1)

Prain(P,T ;Tmin)=

{
P T > Tmin

0 otherwise.
(A2)

– Evapotranspiration:

ET(T ,Lday,S1;Smax)={
PET(T ,Lday) · (S1/Smax) 0≤ S1 ≤ Smax

PET(T ,Lday) S1 > Smax
(A3)

originally using Hamon’s formula (Hamon, 1963)
for potential evapotranspiration PET(T ,Lday)= 29.8 ·
Lday

esat(T )
T+273.2 , with saturation water pressure esat(T )=

0.611 · exp( 17.3T
T+237.3 ). Note that Lday is factored out

in model M0 for ẼT. There, we use P̃ET(T )=
PET(T ,Lday)/Lday.

– Melting:

M(T,S0;Tmax,Df)={
min(S0,Df · (T − Tmax) T > Tmax and S0 > 0
0 otherwise.

(A4)

– Discharge:

Q(S1;f,Qmax,Smax)=Qbucket(S1,f,Qmax,Smax)

+Qspill(S1,Smax), (A5)

with

Qbucket(S1;f,Qmax,Smax)={
Qmax · exp(−f · (Smax− S1)) 0≤ S1 ≤ Smax

Qmax S1 > Smax

(A6)

and

Qspill(S1;Smax)=

{
0 0≤ S1 ≤ Smax

S1− Smax S1 > Smax
.

(A7)

A2 Rationale behind M50 and M100

With the substitutions from M0 to M50, we want to high-
light two important features of the neural ODE modelling
approach. First, physical knowledge can directly be included
in the model: the ET prescription uses potential evapotranspi-
ration based on Hamon’s formula (Hamon, 1963), in which
length of day Lday is factored (see Appendix A1). This is a
fully accessible input variable to the model – for a certain
latitude and time, it is physically fixed information (that the-
oretically could also be calculated within the model). When
used in a multiplication as in the chosen ET prescription, it
can therefore simply be kept as a factor, and only the rest of
the ET formula has to be substituted and learned by a neu-
ral network. It is a plausible assumption that ET is propor-
tional to the length of day, as represented in the mechanistic
description of Hamon’s formula, referring to the light activa-
tion of plants’ stomata. This proportionality is therefore kept
in M50 when substituting the rest of the ET formula by a neu-
ral network. As can be seen in the model scheme in Fig. 1a,
the NNET does not obtain Lday as input but instead Ssnow as
there could be interference of snow cover with evapotranspi-
ration.

Second, in hydrologic models, discharge is often split up
into (at least) a base flow component and an excess or peak
flow component that acts above a certain threshold of the wa-
ter storage. In the neural ODE approach, these two flow com-
ponents can be substituted by a neural network with a single
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Table A1. EXP-hydro parameter definitions, meaning and units (cf. Patil and Stieglitz, 2014).

Parameter Original definition Meaning Units

21 Tmin snowfall temperature ◦C
22 Tmax snowmelt temperature ◦C
23 Df thermal degree-day factor mm (d◦C)−1

24 Smax maximum water storage mm
25 f runoff decline rate mm−1

26 Qmax maximum subsurface runoff mmd−1

Figure A1. Histograms of NSE (orange; optimal value: 1), FHV (yellow; optimal value: 0) and mNSE (blue; optimal value: 1) for the
SAC-SMA model over 569 basins.

output node because neural networks are particularly suited
to learn nonlinearities. Hence, rather than defining an “arti-
ficial” threshold beyond which a new process is added, NNs
can learn a continuous relation between water storage and
model inputs to discharge. Unlike the Q formula in M0, we
added precipitation as a second input to the NNQ in M50 to
potentially account for direct runoff.

M50 is meant to demonstrate how strongly predictive per-
formance can be increased by including some more flexible,
data-driven model parts, i.e. only partial modifications within
the traditional modelling approach. This approach is simi-
lar to the one in Bennett and Nijssen (2021), although there,
fixed time stepping was applied, only one internal process
was substituted and exactly the same inputs were given to
the NN as were given to the mechanistic process. Further,
their goal was not to ultimately enhance stream flow predic-
tion but to substitute the internal process, i.e. the turbulent
heat flux.

In the next step from M50 to M100, the other mechanis-
tic processes that are “hard-coded” in the plain EXP-Hydro
are also substituted. These are to distinguish between precip-
itation as rain or snow and the melting process that transfers
water from the snow storage unit to the main storage unit. As
opposed to ET and Q, over certain parts of the year, these
processes do not occur; for example, if all snow was molten
in spring, there is no melting process going on in summer.
Hence the neural ODE model has to learn these regime dif-
ferences. Again,Lday is factored out in the ET process, which
highlights a feature of the neural ODE approach: if Lday shall
be included, it could also be given to the NN as input. Yet,
the NN could also learn a relation between Lday andQwhich

is physically implausible. In a plain machine-learning ap-
proach, this specific use of Lday cannot be as easily assigned.

A3 SAC-SMA

The current benchmark hydrologic model for the CAMELS
US dataset is the Sacramento Soil Moisture Accounting
Model (SAC-SMA; see Newman et al., 2015, and ref-
erences therein). The simulated discharge values from the
SAC-SMA model used for evaluation are taken from the
CAMELS dataset (Addor et al., 2017) (discharge predictions
for the test period 1 October 2000–30 September 2010).

Note, however, that training and testing periods for the
SAC-SMA were different from those used here. The SAC-
SMA was calibrated with a split-sample approach, where
30 years of data (1 October 1980 to 30 September 2010) was
split up into two parts, each covering 15 years. For details,
refer to Newman et al. (2015). In contrast, we used the first
20 years for training and the last 10 years for testing. The
scores of NSE, FHV and mNSE for the SAC-SMA model
shown in Fig. A1 are evaluated for this 10-year testing pe-
riod. Hence, the results should only be considered an indi-
cation and not a strict assessment when being directly com-
pared to the results in Sect. 3.

Figure A1 shows the overall performance of the SAC-
SMA model on all the 569 basins for the testing period. It
is significantly better than the simple conceptual EXP-Hydro
model implemented as M0, and it achieves comparable levels
of performance compared to the partial and pure machine-
learning models evaluated (see Sect. 3). Yet, it does not score
better than these, although many more processes and inter-
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relations (and corresponding assumptions) were put into the
model: 20 of in total 35 parameters were calibrated and the
rest adjusted according to expert knowledge (Newman et al.,
2015). This demonstrates that, in principle, conceptual mod-
els do have the ability to reach high scores in model rating –
but come with comparably high effort in setup, tuning and
adjustment compared to pure or hybrid machine-learning-
based methods.

Code availability. All software was written in the programming
language Julia (https://julialang.org/; Julia, 2022). The code is avail-
able at https://github.com/marv-in/HydroNODE (Höge, 2022a) and
citable via https://doi.org/10.5281/zenodo.7085028 (Höge, 2022b).

Author contributions. MH had the original idea and developed the
conceptualization and methodology of the study. MH developed the
software with initial support by AS. MH conducted all model simu-
lations and their formal analysis. Results were discussed and further
research steps planned between CA, MBJ, AS, FF and MH. The vi-
sualizations and the original draft of the manuscript were prepared
by MH, and reviewing and editing were provided by MBJ, CA, AS
and FF. Funding was acquired by FF. All authors have read and
agreed to the current version of the paper.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Hydrology and Earth System Sciences. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors would like to thank Shijie Jiang
for providing the original results from Jiang et al. (2020) for
the model benchmarking in this work. We thank Peter Reichert
for fruitful discussions and suggestions that helped improve the
manuscript. Further, we thank Andreas Wunsch, Miyuru Gunathi-
lake and Juan Pablo Carbajal for valuable comments and sugges-
tions during the review and interactive discussion.

Review statement. This paper was edited by Marnik Vanclooster
and reviewed by Miyuru Gunathilake and Andreas Wunsch.

References

Abbott, M., Bathurst, J., Cunge, J., O’Connell, P., and Rasmussen,
J.: An introduction to the European Hydrological System – Sys-
teme Hydrologique Europeen, “SHE”, 1: History and philoso-
phy of a physically-based, distributed modelling system, J Hy-

drol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9,
1986.

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Bennett, A. and Nijssen, B.: Deep learned process parameteriza-
tions provide better representations of turbulent heat fluxes in
hydrologic models, Water Resour. Res., 57, e2020WR029328,
https://doi.org/10.1029/2020WR029328, 2021.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A
fresh approach to numerical computing, SIAM Rev., 59, 65–98,
2017.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D.: Neural ordinary differential equations, arXiv [preprint],
arXiv:1806.07366, 2018.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A.,
Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Under-
standing Structural Errors (FUSE): A modular framework to di-
agnose differences between hydrological models, Water Resour.
Res., 44, W00B02, https://doi.org/10.1029/2007WR006735,
2008.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D.
E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W.,
Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R.
M.: A unified approach for process-based hydrologic modeling:
1. Modeling concept, Water Resour. Res., 51, 2498–2514, 2015.

Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast
and extracting insights using long-short term memory networks
with data integration at continental scales, Water Resour. Res.,
56, e2019WR026793, https://doi.org/10.1029/2019WR026793,
2020.

Fenicia, F., Savenije, H. H., Matgen, P., and Pfister, L.:
Understanding catchment behavior through stepwise model
concept improvement, Water Resour. Res., 44, W01402,
https://doi.org/10.1029/2006WR005563, 2008.

Fenicia, F., Kavetski, D., and Savenije, H. H.: Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation
and theoretical development, Water Resour. Res., 47, W11510,
https://doi.org/10.1029/2010WR010174, 2011.

Fenicia, F., Kavetski, D., Savenije, H. H., Clark, M. P., Schoups,
G., Pfister, L., and Freer, J.: Catchment properties, function, and
conceptual model representation: is there a correspondence?, Hy-
drol. Process., 28, 2451–2467, 2014.

Fenicia, F., Kavetski, D., Savenije, H. H., and Pfister, L.: From
spatially variable streamflow to distributed hydrological mod-
els: Analysis of key modeling decisions, Water Resour. Res., 52,
954–989, 2016.

Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon,
O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning
rainfall–runoff predictions of extreme events, Hydrol. Earth Syst.
Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022,
2022.

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochre-
iter, S.: Rainfall–runoff prediction at multiple timescales with a
single Long Short-Term Memory network, Hydrol. Earth Syst.
Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021,
2021.

Hydrol. Earth Syst. Sci., 26, 5085–5102, 2022 https://doi.org/10.5194/hess-26-5085-2022

https://julialang.org/
https://github.com/marv-in/HydroNODE
https://doi.org/10.5281/zenodo.7085028
https://doi.org/10.1016/0022-1694(86)90114-9
https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.1029/2020WR029328
https://arxiv.org/abs/1806.07366
https://doi.org/10.1029/2007WR006735
https://doi.org/10.1029/2019WR026793
https://doi.org/10.1029/2006WR005563
https://doi.org/10.1029/2010WR010174
https://doi.org/10.5194/hess-26-3377-2022
https://doi.org/10.5194/hess-25-2045-2021


M. Höge et al.: Improving hydrologic models for predictions and process understanding using neural ODEs 5101

Gharari, S. and Razavi, S.: A review and synthesis of hystere-
sis in hydrology and hydrological modeling: Memory, path-
dependency, or missing physics?, J. Hydrol., 566, 500–519,
2018.

Gharari, S., Gupta, H. V., Clark, M. P., Hrachowitz, M., Fenicia, F.,
Matgen, P., and Savenije, H. H. G.: Understanding the Informa-
tion Content in the Hierarchy of Model Development Decisions:
Learning From Data, Water Resour. Res., 57, e2020WR027948,
https://doi.org/10.1029/2020WR027948, 2021.

Gnann, S. J., McMillan, H. K., Woods, R. A., and Howden,
N. J.: Including regional knowledge improves baseflow signa-
ture predictions in large sample hydrology, Water Resour. Res.,
57, e2020WR028354, https://doi.org/10.1029/2020WR028354,
2021.

Hamon, W. R.: Computation of direct runoff amounts from storm
rainfall, Vol. 63, International Association of Scientific Hydrol-
ogy Publication, 52–62, https://iahs.info/uploads/dms/063006.
pdf (last access: 11 October 2022), 1963.

Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M.,
Nearing, G., Hochreiter, S., and Klambauer, G.: MC-LSTM:
Mass-Conserving LSTM, arXiv [preprint], arXiv:2101.05186,
2021.

Höge, M.: HydroNODE, GitHub [code], https://github.com/
marv-in/HydroNODE (last access: 21 August 2022), 2022a.

Höge, M.: HydroNODE-v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.7085028, 2022b.

Höge, M., Wöhling, T., and Nowak, W.: A primer for model selec-
tion: The decisive role of model complexity, Water Resour. Res.,
54, 1688–1715, 2018.

Holzinger, A.: Interactive machine learning for health informatics:
when do we need the human-in-the-loop?, Brain Informatics, 3,
119–131, 2016.

Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E.,
Shah, V. B., and Tebbutt, W.: A differentiable programming sys-
tem to bridge machine learning and scientific computing, arXiv
[preprint], arXiv:1907.07587, 2019.

Jiang, S., Zheng, Y., and Solomatine, D.: Improving AI system
awareness of geoscience knowledge: symbiotic integration of
physical approaches and deep learning, Geophys. Res. Lett., 47,
e2020GL088229, https://doi.org/10.1029/2020GL088229, 2020.

Julia: The Julia Programming Language, https://julialang.org/, last
access: 11 October 2022.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang,
S., and Yang, L.: Physics-informed machine learning, Nature Re-
views Physics, 3, 422–440, 2021.

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Baner-
jee, A., Ganguly, A., Shekhar, S., Samatova, N., and Kumar,
V.: Theory-guided data science: A new paradigm for scientific
discovery from data, IEEE T Knowl. Data En., 29, 2318–2331,
2017.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Kirchner, J. W.: Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and do-
ing hydrology backward, Water Resour. Res., 45, W02429,
https://doi.org/10.1029/2008WR006912, 2009.

Knoben, W. J., Freer, J. E., Peel, M., Fowler, K., and Woods,
R. A.: A brief analysis of conceptual model structure uncer-
tainty using 36 models and 559 catchments, Water Resour. Res.,
56, e2019WR025975, https://doi.org/10.1029/2019WR025975,
2020.

Kraft, B., Jung, M., Körner, M., Koirala, S., and Reichstein, M.: To-
wards hybrid modeling of the global hydrological cycle, Hydrol.
Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-
1579-2022, 2022.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klam-
bauer, G.: NeuralHydrology–interpreting LSTMs in hydrol-
ogy, in: Explainable AI: Interpreting, explaining and visual-
izing deep learning, edited by: Samek, W., Montavon, G.,
Vedaldi, A., Hansen, L., and Müller, K. R., Springer, 347–362,
https://doi.org/10.1007/978-3-030-28954-6_19, 2019a.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter,
S., and Nearing, G. S.: Toward improved predictions in ungauged
basins: Exploiting the power of machine learning, Water Resour.
Res., 55, 11344–11354, 2019b.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019c.

Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note
on leveraging synergy in multiple meteorological data sets with
deep learning for rainfall–runoff modeling, Hydrol. Earth Syst.
Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021,
2021.

Lechner, M. and Hasani, R.: Learning long-term dependen-
cies in irregularly-sampled time series, arXiv [preprint],
arXiv:2006.04418, 2020.

Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon,
G., and Dadson, S. J.: Benchmarking data-driven rainfall–
runoff models in Great Britain: a comparison of long short-
term memory (LSTM)-based models with four lumped con-
ceptual models, Hydrol. Earth Syst. Sci., 25, 5517–5534,
https://doi.org/10.5194/hess-25-5517-2021, 2021.

Lees, T., Reece, S., Kratzert, F., Klotz, D., Gauch, M., De Bruijn,
J., Kumar Sahu, R., Greve, P., Slater, L., and Dadson, S. J.:
Hydrological concept formation inside long short-term mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 26, 3079–3101,
https://doi.org/10.5194/hess-26-3079-2022, 2022.

Legates, D. R. and McCabe Jr, G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic
model validation, Water Resour. Res., 35, 233–241, 1999.

Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brant-
ley, S. L., Knapp, J. L., van Meerveld, I., Rinaldo, A., Seib-
ert, J., Wen, H., and Kirchner, J. W.: Toward catchment hydro-
biogeochemical theories, Wiley Interdisciplinary Reviews: Wa-
ter, 8, e1495, https://doi.org/10.1002/wat2.1495, 2021.

Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A.,
Ehret, U., and Zehe, E.: On the dynamic nature of hydro-
logical similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684,
https://doi.org/10.5194/hess-22-3663-2018, 2018.

https://doi.org/10.5194/hess-26-5085-2022 Hydrol. Earth Syst. Sci., 26, 5085–5102, 2022

https://doi.org/10.1029/2020WR027948
https://doi.org/10.1029/2020WR028354
https://iahs.info/uploads/dms/063006.pdf
https://iahs.info/uploads/dms/063006.pdf
https://arxiv.org/abs/2101.05186
https://github.com/marv-in/HydroNODE
https://github.com/marv-in/HydroNODE
https://doi.org/10.5281/zenodo.7085028
https://arxiv.org/abs/1907.07587
https://doi.org/10.1029/2020GL088229
https://julialang.org/
https://doi.org/10.1029/2005WR004362
https://doi.org/10.1029/2008WR006912
https://doi.org/10.1029/2019WR025975
https://doi.org/10.5194/hess-26-1579-2022
https://doi.org/10.5194/hess-26-1579-2022
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1007/978-3-030-28954-6_19
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/hess-25-2685-2021
https://arxiv.org/abs/2006.04418
https://doi.org/10.5194/hess-25-5517-2021
https://doi.org/10.5194/hess-26-3079-2022
https://doi.org/10.1002/wat2.1495
https://doi.org/10.5194/hess-22-3663-2018


5102 M. Höge et al.: Improving hydrologic models for predictions and process understanding using neural ODEs

Ma, K., Feng, D., Lawson, K., Tsai, W.-P., Liang, C., Huang, X.,
Sharma, A., and Shen, C.: Transferring Hydrologic Data Across
Continents–Leveraging Data-Rich Regions to Improve Hydro-
logic Prediction in Data-Sparse Regions, Water Resour. Res.,
57, e2020WR028600, https://doi.org/10.1029/2020WR028600,
2021.

Molnar, C.: Interpretable Machine Learning, 2nd edn., https://
christophm.github.io/interpretable-ml-book (last access: 21 Au-
gust 2022), 2022.

Molnar, C., Casalicchio, G., and Bischl, B.: Interpretable
machine learning–a brief history, state-of-the-art and chal-
lenges, in: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 417–431,
https://doi.org/10.1007/978-3-030-65965-3_28, 2020.

Montavon, G., Samek, W., and Müller, K.-R.: Methods for interpret-
ing and understanding deep neural networks, Digit. Signal Pro-
cess., 73, 1–15, https://doi.org/10.1016/j.dsp.2017.10.011, 2018.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
T. ASABE, 50, 885–900, 2007.

Nearing, G. S., Pelissier, C. S., Kratzert, F., Klotz, D., Gupta, H. V.,
Frame, J. M., and Sampson, A. K.: Physically Informed Machine
Learning for Hydrological Modeling Under Climate Nonstation-
arity, in: 44th NOAA Annual Climate Diagnostics and Prediction
Workshop, UMBC Faculty Collection, https://www.nws.noaa.
gov/ost/climate/STIP/44CDPW/44cdpw-GNearing.pdf (last ac-
cess: 21 August 2022), 2019.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S.,
Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.:
What role does hydrological science play in the age of ma-
chine learning?, Water Resour. Res., 57, e2020WR028091,
https://doi.org/10.1029/2020WR028091, 2021.

Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai,
C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, G.,
Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuk-
lea, L., Royz, M., Giladi, N., Peled Levi, N., Reich, O., Gilon,
O., Maor, R., Timnat, S., Shechter, T., Anisimov, V., Gigi, Y.,
Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., and Matias,
Y.: Flood forecasting with machine learning models in an op-
erational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032,
https://doi.org/10.5194/hess-26-4013-2022, 2022.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L.
E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J.
R., Hopson, T., and Duan, Q.: Development of a large-sample
watershed-scale hydrometeorological data set for the contiguous
USA: data set characteristics and assessment of regional variabil-
ity in hydrologic model performance, Hydrol. Earth Syst. Sci.,
19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.

Patil, S. and Stieglitz, M.: Modelling daily streamflow at ungauged
catchments: what information is necessary?, Hydrol. Process.,
28, 1159–1169, 2014.

Prieto, C., Le Vine, N., Kavetski, D., García, E., and Medina, R.:
Flow prediction in ungauged catchments using probabilistic ran-
dom forests regionalization and new statistical adequacy tests,
Water Resour. Res., 55, 4364–4392, 2019.

Rackauckas, C. and Nie, Q.: Differentialequations. jl–a perfor-
mant and feature-rich ecosystem for solving differential equa-

tions in julia, Journal of Open Research Software, 5, 15,
https://doi.org/10.5334/jors.151, 2017.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Su-
pekar, R., Skinner, D., Ramadhan, A., and Edelman, A.: Univer-
sal differential equations for scientific machine learning, arXiv
[preprint], arXiv:2001.04385, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed
neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differen-
tial equations, J. Comput. Phys., 378, 686–707, 2019.

Reichert, P., Ammann, L., and Fenicia, F.: Potential and
Challenges of Investigating Intrinsic Uncertainty of Hy-
drological Models with Stochastic, Time-Dependent Pa-
rameters, Water Resour. Res., 57, e2020WR028400,
https://doi.org/10.1029/2020WR028400, 2021.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., Carvalhais, N., and Prabhat: Deep learning and process un-
derstanding for data-driven Earth system science, Nature, 566,
195–204, 2019.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., and Müller,
K.-R.: Explainable AI: interpreting, explaining and visualizing
deep learning, Springer Nature, in: vol. 11700, Springer Nature,
https://doi.org/10.1007/978-3-030-28954-6, 2019.

Savenije, H. H. G.: HESS Opinions “The art of hydrology”*, Hy-
drol. Earth Syst. Sci., 13, 157–161, https://doi.org/10.5194/hess-
13-157-2009, 2009.

Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol.
Process., 21, 2075–2080, 2007.

Shen, C.: A transdisciplinary review of deep learning research and
its relevance for water resources scientists, Water Resour. Res.,
54, 8558–8593, 2018.

Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang,
F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang,
K., Li, D., Li, X., and Tsai, W.-P.: HESS Opinions: In-
cubating deep-learning-powered hydrologic science advances
as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656,
https://doi.org/10.5194/hess-22-5639-2018, 2018.

Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101–
2111, 2003.

Steffen, M.: A simple method for monotonic interpolation in one
dimension, Astron. Astrophys., 239, 443–450, 1990.

Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky,
G. D., and Barajas-Solano, D.: Physics-informed deep neu-
ral networks for learning parameters and constitutive rela-
tionships in subsurface flow problems, Water Resour. Res.,
56, e2019WR026731, https://doi.org/10.1029/2019WR026731,
2020.

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based di-
agnostic approach to model evaluation: Application to the NWS
distributed hydrologic model, Water Resour. Res., 44, W09417,
https://doi.org/10.1029/2007WR006716, 2008.

Young, P.: Top-down and data-based mechanistic modelling of
rainfall–flow dynamics at the catchment scale, Hydrol. Process.,
17, 2195–2217, 2003.

Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen,
Y., Lin, C., Li, X., and Qiu, G. Y.: Physics-constrained machine
learning of evapotranspiration, Geophys. Res. Lett., 46, 14496–
14507, 2019.

Hydrol. Earth Syst. Sci., 26, 5085–5102, 2022 https://doi.org/10.5194/hess-26-5085-2022

https://doi.org/10.1029/2020WR028600
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1016/j.dsp.2017.10.011
https://www.nws.noaa.gov/ost/climate/STIP/44CDPW/44cdpw-GNearing.pdf
https://www.nws.noaa.gov/ost/climate/STIP/44CDPW/44cdpw-GNearing.pdf
https://doi.org/10.1029/2020WR028091
https://doi.org/10.5194/hess-26-4013-2022
https://doi.org/10.5194/hess-19-209-2015
https://doi.org/10.5334/jors.151
https://arxiv.org/abs/2001.04385
https://doi.org/10.1029/2020WR028400
https://doi.org/10.1007/978-3-030-28954-6
https://doi.org/10.5194/hess-13-157-2009
https://doi.org/10.5194/hess-13-157-2009
https://doi.org/10.5194/hess-22-5639-2018
https://doi.org/10.1029/2019WR026731
https://doi.org/10.1029/2007WR006716

	Abstract
	Introduction
	Machine learning in hydrology
	Conceptual hydrologic models
	Scientific machine learning and neural ODEs

	Methods
	Models
	Data
	Procedure and model rating

	Benchmarking neural ODE models
	Internal states and processes of neural ODE models
	Discussion
	Benchmarking
	Internal states and processes

	Conclusions and outlook
	Appendix A
	Appendix A1: EXP-Hydro equations
	Appendix A2: Rationale behind M50 and M100
	Appendix A3: SAC-SMA

	Code availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

