Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean
Institut de Ciència i Tecnologia Ambientals, UAB, Bellaterra, 08193, Spain
Valentí Rodellas
CORRESPONDING AUTHOR
Institut de Ciència i Tecnologia Ambientals, UAB, Bellaterra, 08193, Spain
Aaron Alorda-Kleinglass
Institut de Ciència i Tecnologia Ambientals, UAB, Bellaterra, 08193, Spain
Maarten Saaltink
Department of Civil and Environmental Engineering, UPC, Barcelona, 08034, Spain
Hydrogeology Group, UPC-CSIC, Barcelona, 08034, Spain
Albert Folch
Department of Civil and Environmental Engineering, UPC, Barcelona, 08034, Spain
Hydrogeology Group, UPC-CSIC, Barcelona, 08034, Spain
Jordi Garcia-Orellana
Institut de Ciència i Tecnologia Ambientals, UAB, Bellaterra, 08193, Spain
Departament de Física, UAB, Bellaterra, 08193, Spain
deceased, 5 July 2022
Related authors
No articles found.
Yufei Wang, Daniel Fernandez Garcia, and Maarten W. Saaltink
EGUsphere, https://doi.org/10.22541/au.170709021.19680723/v1, https://doi.org/10.22541/au.170709021.19680723/v1, 2024
Short summary
Short summary
During geological carbon sequestration, the injected supercritical CO2, being less dense, floats above the brine. The dissolution of CO2 into brine helps mitigate the risk of CO2 leakage. As CO2 dissolves into the brine, it increases the density of brine in the upper layer, initiating gravity-driven convection (GDC), which significantly enhances the rate of CO2 dissolution. We derived two empirical formulas to predict the asymptotic dissolution rate driven by GDC in heterogeneous fields.
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabian Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martínez, Laura del Val, David Bosch, and Jesús Carrera
Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, https://doi.org/10.5194/hess-24-2121-2020, 2020
Short summary
Short summary
Coastal areas are highly populated and seawater intrusion endangers the already scarce freshwater resources. We use, for the first time, a geophysical experiment called cross-hole electrical resistivity tomography to monitor seawater intrusion dynamics. The technique relies on readings of rock and water electrical conductivity to detect salt in the aquifer. Two years of experiment allowed us to reveal variations in aquifer salinity due to natural seasonality, heavy-rain events and droughts.
Carme Barba, Albert Folch, Núria Gaju, Xavier Sanchez-Vila, Marc Carrasquilla, Alba Grau-Martínez, and Maira Martínez-Alonso
Hydrol. Earth Syst. Sci., 23, 139–154, https://doi.org/10.5194/hess-23-139-2019, https://doi.org/10.5194/hess-23-139-2019, 2019
Short summary
Short summary
Managed aquifer recharge allows increasing water resources and can be used to improve water quality. We assess the degradative capabilities of infiltrating pollutants by mapping the composition of microbial communities linked to periods of infiltration/drought. From samples of soil, surface and groundwater, we found some microbial species involved in the nitrogen and carbon cycles. Furthermore, we found that, during infiltration, microbial abundance rises, increasing degradative capabilities.
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Short summary
Efforts to include tidal marsh, mangrove and seagrass ecosystems in existing carbon mitigation strategies are limited by a lack of estimates of carbon accumulation rates (CARs). We discuss the use of 210Pb dating to determine CARs in these habitats, which are often composed of heterogeneous sediments and affected by sedimentary processes. Results show that obtaining reliable geochronologies in these systems is ambitious, but estimates of mean 100-year CARs are mostly secure within 20 % error.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Paula Rodríguez-Escales, Arnau Canelles, Xavier Sanchez-Vila, Albert Folch, Daniel Kurtzman, Rudy Rossetto, Enrique Fernández-Escalante, João-Paulo Lobo-Ferreira, Manuel Sapiano, Jon San-Sebastián, and Christoph Schüth
Hydrol. Earth Syst. Sci., 22, 3213–3227, https://doi.org/10.5194/hess-22-3213-2018, https://doi.org/10.5194/hess-22-3213-2018, 2018
Short summary
Short summary
In this work, we have developed a methodology to evaluate the failure risk of managed aquifer recharge, and we have applied it to six different facilities located in the Mediterranean Basin. The methodology was based on the development of a probabilistic risk assessment based on fault trees. We evaluated both technical and non-technical issues, the latter being more responsible for failure risk.
Related subject area
Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Effect of tides on river water behavior over the eastern shelf seas of China
Temporally resolved coastal hypoxia forecasting and uncertainty assessment via Bayesian mechanistic modeling
Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline
Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands
Estimating the probability of compound floods in estuarine regions
Accretion, retreat and transgression of coastal wetlands experiencing sea-level rise
Climate change overtakes coastal engineering as the dominant driver of hydrological change in a large shallow lagoon
Dynamic mechanism of an extremely severe saltwater intrusion in the Changjiang estuary in February 2014
A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries
Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping
Sediment budget analysis of the Guayas River using a process-based model
Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy)
Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) – effect of the “Super Blood Moon” (total lunar eclipse) of 2015
Linking biogeochemistry to hydro-geometrical variability in tidal estuaries: a generic modeling approach
Impact of the Three Gorges Dam, the South–North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary
A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling
Revised predictive equations for salt intrusion modelling in estuaries
Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
Hydrodynamic controls on oxygen dynamics in a riverine salt wedge estuary, the Yarra River estuary, Australia
Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon
Environmental flow assessments in estuaries based on an integrated multi-objective method
Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements
An analytical solution for tidal propagation in the Yangtze Estuary, China
Understanding and managing the Westerschelde – synchronizing the physical system and the management system of a complex estuary
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024, https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Short summary
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust characterization of nonlinear interactions among the sources of uncertainty. Such an approach enables the quantification of cascading uncertainty and relative contributions to total uncertainty while also tracking their evolution during compound flooding. The proposed approach is a feasible alternative to conventional statistical approaches designed for uncertainty analyses.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023, https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Short summary
In deltas, saltwater sometimes intrudes far inland and causes problems with freshwater availability. We created a model to forecast salt concentrations at a critical location in the Rhine–Meuse delta in the Netherlands. It requires a rather small number of data to make a prediction and runs fast. It predicts the occurrence of salt concentration peaks well but underestimates the highest peaks. Its speed gives water managers more time to reduce the problems caused by salt intrusion.
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022, https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Short summary
Ocean surges can impact the stability of beaches by changing the hydraulic regime. These surge-induced changes in the hydraulic regime have important implications for coastal engineering and for beach morphology. This work uses 3D computer simulations to study how these alterations vary in space and time. We find that certain areas along and across the beach are potentially more vulnerable than others and that previous assumptions regarding the most dangerous places may need to be revised.
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022, https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary
Short summary
Earth system (climate) model is an important instrument for projecting the global water cycle and climate change, in which tides are commonly excluded due to the much small timescales compared to the climate. However, we found that tides significantly impact the river water transport pathways, transport timescales, and concentrations in shelf seas. Thus, the tidal effect should be carefully considered in earth system models to accurately project the global water and biogeochemical cycle.
Alexey Katin, Dario Del Giudice, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 26, 1131–1143, https://doi.org/10.5194/hess-26-1131-2022, https://doi.org/10.5194/hess-26-1131-2022, 2022
Short summary
Short summary
Low oxygen conditions (hypoxia) occur almost every summer in the northern Gulf of Mexico. Here, we present a new approach for forecasting hypoxia from June through September, leveraging a process-based model and an advanced statistical framework. We also show how using spring hydrometeorological information can improve forecast accuracy while reducing uncertainties. The proposed forecasting system shows the potential to support the management of threatened coastal ecosystems and fisheries.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Víctor M. Santos, Mercè Casas-Prat, Benjamin Poschlod, Elisa Ragno, Bart van den Hurk, Zengchao Hao, Tímea Kalmár, Lianhua Zhu, and Husain Najafi
Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, https://doi.org/10.5194/hess-25-3595-2021, 2021
Short summary
Short summary
We present an application of multivariate statistical models to assess compound flooding events in a managed reservoir. Data (from a previous study) were obtained from a physical-based hydrological model driven by a regional climate model large ensemble, providing a time series expanding up to 800 years in length that ensures stable statistics. The length of the data set allows for a sensitivity assessment of the proposed statistical framework to natural climate variability.
Wenyan Wu, Seth Westra, and Michael Leonard
Hydrol. Earth Syst. Sci., 25, 2821–2841, https://doi.org/10.5194/hess-25-2821-2021, https://doi.org/10.5194/hess-25-2821-2021, 2021
Short summary
Short summary
Flood probability estimation is important for applications such as land use planning, reservoir operation, infrastructure design and safety assessments. However, it is a challenging task, especially in estuarine areas where floods are caused by both intense rainfall and storm surge. This study provides a review of approaches to flood probability estimation in these areas. Based on analysis of a real-world river system, guidance on method selection is provided.
Angelo Breda, Patricia M. Saco, Steven G. Sandi, Neil Saintilan, Gerardo Riccardi, and José F. Rodríguez
Hydrol. Earth Syst. Sci., 25, 769–786, https://doi.org/10.5194/hess-25-769-2021, https://doi.org/10.5194/hess-25-769-2021, 2021
Short summary
Short summary
We study accretion, retreat and transgression of mangrove and saltmarsh wetlands affected by sea-level rise (SLR) using simulations on typical configurations with different levels of tidal obstruction. Interactions and feedbacks between flow, sediment deposition, vegetation migration and soil accretion result in wetlands not surviving the predicted high-emission scenario SLR, despite dramatic increases in sediment supply. Previous simplified models overpredict wetland resilience to SLR.
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020, https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
Short summary
Our results conclude that the climate change in the past decades has a remarkable effect on the hydrology of a large shallow lagoon with the same magnitude as that caused by the opening of an artificial channel, and it also highlighted the complexity of their interactions. We suggested that the consideration of the projected drying trend is essential in designing management plans associated with planning for environmental water provision and setting water quality loading targets.
Jianrong Zhu, Xinyue Cheng, Linjiang Li, Hui Wu, Jinghua Gu, and Hanghang Lyu
Hydrol. Earth Syst. Sci., 24, 5043–5056, https://doi.org/10.5194/hess-24-5043-2020, https://doi.org/10.5194/hess-24-5043-2020, 2020
Short summary
Short summary
An extremely severe saltwater intrusion event occurred in February 2014 in the Changjiang estuary and seriously influenced the water intake of the reservoir. For the event cause and for freshwater safety, the dynamic mechanism was studied with observed data and a numerical model. The results indicated that this event was caused by a persistent and strong northerly wind, which formed a horizontal estuarine circulation, surpassed seaward runoff and drove highly saline water into the estuary.
Huayang Cai, Ping Zhang, Erwan Garel, Pascal Matte, Shuai Hu, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020, https://doi.org/10.5194/hess-24-1871-2020, 2020
Short summary
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Pedro D. Barrera Crespo, Erik Mosselman, Alessio Giardino, Anke Becker, Willem Ottevanger, Mohamed Nabi, and Mijail Arias-Hidalgo
Hydrol. Earth Syst. Sci., 23, 2763–2778, https://doi.org/10.5194/hess-23-2763-2019, https://doi.org/10.5194/hess-23-2763-2019, 2019
Short summary
Short summary
Guayaquil, the commercial capital of Ecuador, is located along the Guayas River. The city is among the most vulnerable cities to future flooding ascribed to climate change. Fluvial sedimentation is seen as one of the factors contributing to flooding. This paper describes the dominant processes in the river and the effects of past interventions in the overall sediment budget. This is essential to plan and design effective mitigation measures to face the latent risk that threatens Guayaquil.
Emanuele Bevacqua, Douglas Maraun, Ingrid Hobæk Haff, Martin Widmann, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, https://doi.org/10.5194/hess-21-2701-2017, 2017
Short summary
Short summary
We develop a conceptual model to quantify the risk of compound events (CEs), i.e. extreme impacts to society which are driven by statistically dependent climatic variables. Based on this model we study compound floods, i.e. joint storm surge and high river level, in Ravenna (Italy). The model includes meteorological predictors which (1) provide insight into the physical processes underlying CEs, as well as into the temporal variability, and (2) allow us to statistically downscale CEs.
Soufiane Haddout, Mohammed Igouzal, and Abdellatif Maslouhi
Hydrol. Earth Syst. Sci., 20, 3923–3945, https://doi.org/10.5194/hess-20-3923-2016, https://doi.org/10.5194/hess-20-3923-2016, 2016
Chiara Volta, Goulven Gildas Laruelle, Sandra Arndt, and Pierre Regnier
Hydrol. Earth Syst. Sci., 20, 991–1030, https://doi.org/10.5194/hess-20-991-2016, https://doi.org/10.5194/hess-20-991-2016, 2016
Short summary
Short summary
A generic estuarine model is applied to three idealized tidal estuaries representing the main hydro-geometrical estuarine classes. The study provides insight into the estuarine biogeochemical dynamics, in particular the air-water CO2/sub> flux, as well as the potential response to future environmental changes and to uncertainties in model parameter values. We believe that our approach could help improving upscaling strategies to better integrate estuaries in regional/global biogeochemical studies.
M. Webber, M. T. Li, J. Chen, B. Finlayson, D. Chen, Z. Y. Chen, M. Wang, and J. Barnett
Hydrol. Earth Syst. Sci., 19, 4411–4425, https://doi.org/10.5194/hess-19-4411-2015, https://doi.org/10.5194/hess-19-4411-2015, 2015
Short summary
Short summary
This paper demonstrates a method for calculating the probability of long-duration salt intrusions in the Yangtze Estuary and examines the impact of the Three Gorges Dam, the South-North Water Transfer Project and local abstractions on that probability. The relationship between river discharge and the intensity and duration of saline intrusions is shown to be probabilistic and continuous. That probability has more than doubled under the normal operating rules for those projects.
F. M. Achete, M. van der Wegen, D. Roelvink, and B. Jaffe
Hydrol. Earth Syst. Sci., 19, 2837–2857, https://doi.org/10.5194/hess-19-2837-2015, https://doi.org/10.5194/hess-19-2837-2015, 2015
Short summary
Short summary
Suspended sediment concentration (SSC) levels are important indicator for the ecology of estuaries. Observations of SSC are difficult to make, therefore we revert to coupled 2-D hydrodynamic-sediment process-based transport models to make predictions in time (seasonal and yearly) and space (meters to kilometers). This paper presents calibration/validation of SSC for the Sacramento-San Joaquin Delta and translates SSC to turbidity in order to couple with ecology models.
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
V. D. Vinh, S. Ouillon, T. D. Thanh, and L. V. Chu
Hydrol. Earth Syst. Sci., 18, 3987–4005, https://doi.org/10.5194/hess-18-3987-2014, https://doi.org/10.5194/hess-18-3987-2014, 2014
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
C. Ferrarin, M. Ghezzo, G. Umgiesser, D. Tagliapietra, E. Camatti, L. Zaggia, and A. Sarretta
Hydrol. Earth Syst. Sci., 17, 1733–1748, https://doi.org/10.5194/hess-17-1733-2013, https://doi.org/10.5194/hess-17-1733-2013, 2013
T. Sun, J. Xu, and Z. F. Yang
Hydrol. Earth Syst. Sci., 17, 751–760, https://doi.org/10.5194/hess-17-751-2013, https://doi.org/10.5194/hess-17-751-2013, 2013
M. Faneca Sànchez, J. L. Gunnink, E. S. van Baaren, G. H. P. Oude Essink, B. Siemon, E. Auken, W. Elderhorst, and P. G. B. de Louw
Hydrol. Earth Syst. Sci., 16, 4499–4516, https://doi.org/10.5194/hess-16-4499-2012, https://doi.org/10.5194/hess-16-4499-2012, 2012
E. F. Zhang, H. H. G. Savenije, S. L. Chen, and X. H. Mao
Hydrol. Earth Syst. Sci., 16, 3327–3339, https://doi.org/10.5194/hess-16-3327-2012, https://doi.org/10.5194/hess-16-3327-2012, 2012
A. van Buuren, L. Gerrits, and G. R. Teisman
Hydrol. Earth Syst. Sci., 14, 2243–2257, https://doi.org/10.5194/hess-14-2243-2010, https://doi.org/10.5194/hess-14-2243-2010, 2010
Cited articles
Adyasari, D., Montiel, D., Mortazavi, B., and Dimova, N.:
Storm-Driven Fresh Submarine Groundwater Discharge and Nutrient Fluxes From a Barrier Island, Front. Mar. Sci., 8, 1–17, https://doi.org/10.3389/fmars.2021.679010, 2021.
Alorda-Kleinglass, A., Garcia-Orellana, J., Rodellas, V., Cerdà-Domènech, M., Tovar-Sánchez, A., Diego-Feliu, M., Trezzi, G., Sánchez-Quilez, D., Sanchez-Vidal, A., and Canals, M.:
Remobilization of dissolved metals from a coastal mine tailing deposit driven by groundwater discharge and porewater exchange, Sci. Total Environ., 688, 1359–1372, https://doi.org/10.1016/j.scitotenv.2019.06.224, 2019.
Alorda-Kleinglass, A., Ruiz-Mallén, I., Diego-Feliu, M., Rodellas, V., Bruach-Menchén, J. M., and Garcia-Orellana, J.:
The social implications of Submarine Groundwater Discharge from an Ecosystem Services perspective: A systematic review, Earth-Sci. Rev., 221, 103742, https://doi.org/10.1016/j.earscirev.2021.103742, 2021.
Anwar, N., Robinson, C. E., and Barry, D. A.:
Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations, Adv. Water Resour., 73, 203–213, https://doi.org/10.1016/j.advwatres.2014.08.015, 2014.
Bakhtyar, R., Barry, D. A., and Brovelli, A.:
Numerical experiments on interactions between wave motion and variable-density coastal aquifers, Coast. Eng., 60, 95–108, https://doi.org/10.1016/j.coastaleng.2011.09.001, 2012.
Beck, A. J. and Cochran, M. A.:
Controls on solid-solution partitioning of radium in saturated marine sands, Mar. Chem., 156, 38–48, https://doi.org/10.1016/j.marchem.2013.01.008, 2013.
Beck, A. J., Rapaglia, J. P., Cochran, J. K., and Bokuniewicz, H. J.:
Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater, Mar. Chem., 106, 419–441, https://doi.org/10.1016/j.marchem.2007.03.008, 2007.
Beck, A. J., Rapaglia, J. P., Cochran, J. K., Bokuniewicz, H. J., and Yang, S.:
Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes, Mar. Chem., 109, 279–291, https://doi.org/10.1016/j.marchem.2007.07.011, 2008.
Beusen, A. H. W., Slomp, C. P., and Bouwman, A. F.: Global land-ocean linkage: Direct inputs of nitrogen to coastal waters via submarine groundwater discharge, Environ. Res. Lett., 8, 034035, https://doi.org/10.1088/1748-9326/8/3/034035, 2013.
Booij, M. J.:
Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales, Int. J. Climatol., 22, 69–85, https://doi.org/10.1002/joc.715, 2002.
Camarasa-Belmonte, A. M. and Segura Beltrán, F.:
Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain, Catena, 45, 229–249, https://doi.org/10.1016/S0341-8162(01)00146-1, 2001.
Camarasa-Belmonte, A. M. and Soriano-García, J.:
Flood risk assessment and mapping in peri-urban Mediterranean environments using hydrogeomorphology. Application to ephemeral streams in the Valencia region (eastern Spain), Landscape Urban Plan., 104, 189–200, https://doi.org/10.1016/j.landurbplan.2011.10.009, 2012.
Camarasa-Belmonte, A. M. and Tilford, K. A.:
Rainfall-runoff modelling of ephemeral streams in the Valencia region (eastern Spain), Hydrol. Process., 16, 3329–3344, https://doi.org/10.1002/hyp.1103, 2002.
Catalan Water Agency: Model numèric de l'aqü⋅fer al luvial de la riera d'argentona, 2010.
Charette, M. A.:
Hydrologic forcing of submarine groundwater discharge: Insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary, Limnol. Oceanogr., 52, 230–239, https://doi.org/10.4319/lo.2007.52.1.0230, 2007.
Cho, H., Kim, T.-H., Moon, J.-H., Song, B.-C., Hwang, D.-W., Kim, T., and Im, D.-H.:
Estimating submarine groundwater discharge in Jeju volcanic island (Korea) during a typhoon (Kong-rey) using humic-fluorescent dissolved organic matter-Si mass balance, Sci. Rep., 11, 941, https://doi.org/10.1038/s41598-020-79381-0, 2021.
Cisteró, X. F. and Camarós, J. G.:
Les rierades al Maresme, L'Atzavara, 23, 61–79, 2014.
Cook, P. G., Rodellas, V., and Stieglitz, T. C.:
Quantifying Surface Water, Porewater, and Groundwater Interactions Using Tracers: Tracer Fluxes, Water Fluxes, and End-member Concentrations Water Resources Research, Water Resour. Res., 54, 2452–2465, https://doi.org/10.1002/2017WR021780, 2018.
Diego-Feliu, M., Rodellas, V., Alorda-Kleinglass, A., Tamborski, J. J., Beek, P., Heins, L., Bruach, J. M., Arnold, R., and Garcia-Orellana, J.:
Guidelines and Limits for the Quantification of Ra Isotopes and Related Radionuclides With the Radium Delayed Coincidence Counter (RaDeCC), J. Geophys. Res.-Oceans, 125, e2019JC015544, https://doi.org/10.1029/2019JC015544, 2020.
Diego-Feliu, M., Rodellas, V., Saaltink, M. W., Alorda-Kleinglass, A., Goyetche, T., Martínez-Pérez, L., Folch, A., and Garcia-Orellana, J.: New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies, J. Hydrol., 596, 126043, https://doi.org/10.1016/j.jhydrol.2021.126043, 2021.
Durán, R., Canals, M., Sanz, J. L., Lastras, G., Amblas, D., and Micallef, A.:
Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea, Geomorphology, 204, 1–20, https://doi.org/10.1016/j.geomorph.2012.10.004, 2014.
Folch, A., del Val, L., Luquot, L., Martínez-Pérez, L., Bellmunt, F., Le Lay, H., Rodellas, V., Ferrer, N., Palacios, A., Fernández, S., Marazuela, M. A., Diego-Feliu, M., Pool, M., Goyetche, T., Ledo, J., Pezard, P., Bour, O., Queralt, P., Marcuello, A., Garcia-Orellana, J., Saaltink, M. W., Vázquez-Suñé, E., and Carrera, J.:
Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer, J. Hydrol., 588, 125050, https://doi.org/10.1016/j.jhydrol.2020.125050, 2020.
Garcia-Orellana, J., Cochran, J. K., Bokuniewicz, H. J., Daniel, J. W. R., Rodellas, V., and Heilbrun, C.:
Evaluation of 224Ra as a tracer for submarine groundwater discharge in Long Island Sound (NY), Geochim. Cosmochim. Ac., 141, 314–330, https://doi.org/10.1016/j.gca.2014.05.009, 2014.
Garcia-Orellana, J., Rodellas, V., Tamborski, J. J., Diego-Feliu, M., van Beek, P., Weinstein, Y., Charette, M. A., Alorda-Kleinglass, A., Michael, H. A., Stieglitz, T., and Scholten, J.: Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations, Earth-Sci. Rev., 220, 103681, https://doi.org/10.1016/j.earscirev.2021.103681, 2021.
Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., and Dulaiova, H.:
Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC), Mar. Chem., 109, 198–219, https://doi.org/10.1016/j.marchem.2007.11.006, 2008.
Gonneea, M. E., Mulligan, A. E., and Charette, M. A.:
Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge, Geophys. Res. Lett., 40, 2701–2706, https://doi.org/10.1002/grl.50192, 2013.
Gwak, Y.-S., Kim, S.-H. S.-W., Lee, Y.-W., Khim, B.-K., Hamm, S.-Y., and Kim, S.-H. S.-W.:
Estimation of submarine groundwater discharge in the Il-Gwang watershed using water budget analysis and 222Rn mass balance, Hydrol. Process., 28, 3761–3775, https://doi.org/10.1002/hyp.9927, 2014.
Hu, C., Muller-Karger, F. E., and Swarzenski, P. W.:
Hurricanes, submarine groundwater discharge, and Florida's red tides, Geophys. Res. Lett., 33, 2005GL025449, https://doi.org/10.1029/2005GL025449, 2006.
IPCC: Assessment Report 6 Climate Change 2021: The Physical Science Basis, https://www.ipcc.ch/report/ar6/wg1/ (last access: 10 January 2022), 2021.
Kiro, Y., Weinstein, Y., Starinsky, A., and Yechieli, Y.:
The extent of seawater circulation in the aquifer and its role in elemental mass balances: A lesson from the Dead Sea, Earth Planet. Sc. Lett., 394, 146–158, https://doi.org/10.1016/j.epsl.2014.03.010, 2014.
Knee, K. L., Crook, E. D., Hench, J. L., Leichter, J. J., and Paytan, A.:
Assessment of Submarine Groundwater Discharge (SGD) as a Source of Dissolved Radium and Nutrients to Moorea (French Polynesia) Coastal Waters, Estuar. Coast., 39, 1651–1668, https://doi.org/10.1007/s12237-016-0108-y, 2016.
Kundzewicz, Z. W. and Döll, P.:
Will groundwater ease freshwater stress under climate change?, Hydrolog. Sci. J., 54, 665–675, https://doi.org/10.1623/hysj.54.4.665, 2009.
Kunkel, K. E., Easterling, D. R., Kristovich, D. A. R., Gleason, B., Stoecker, L., and Smith, R.:
Meteorological Causes of the Secular Variations in Observed Extreme Precipitation Events for the Conterminous United States, J. Hydrometeorol., 13, 1131–1141, https://doi.org/10.1175/JHM-D-11-0108.1, 2012.
Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Cho, H., DeVries, T., Sarmiento, J. L., Charette, M. A., and Cho, Y.:
Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model, Geophys. Res. Lett., 41, 8438–8444, https://doi.org/10.1002/2014GL061574, 2014.
Lecher, A. L., Mackey, K., Kudela, R., Ryan, J., Fisher, A., Murray, J., and Paytan, A.:
Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey bay, CA, Environ. Sci. Technol., 49, 6665–6673, https://doi.org/10.1021/acs.est.5b00909, 2015.
Lee, Y.-W., Kim, G., Lim, W. A., and Hwang, D. W.:
A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea, Limnol. Oceanogr., 55, 1–10, https://doi.org/10.4319/lo.2010.55.1.0001, 2010.
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O., Jansà, A., Maheras, P., Sanna, A., Trigo, I. F. and Trigo, R.: Chapter 6 Cyclones in the Mediterranean region: Climatology and effects on the environment, in: Developments in Earth and Environmental Sciences, vol. 4, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Elsevier B. V., Amsterdam, 325–372, ISBN 978-0-444-52170-5, https://doi.org/10.1016/S1571-9197(06)80009-1, 2006.
Luek, J. L. and Beck, A. J.:
Radium budget of the York River estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member, Mar. Chem., 165, 55–65, https://doi.org/10.1016/j.marchem.2014.08.001, 2014.
Luijendijk, E., Gleeson, T., and Moosdorf, N.: Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems, Nat. Commun., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8, 2020.
Martín-Vide, X.: Pluges i inundacions, Col⋅lecció, Ed. Ketrés, Barcelona, ISBN 9788485256440, 1985.
Martínez-Pérez, L., Luquot, L., Carrera, J., Angel Marazuela, M., Goyetche, T., Pool, M., Palacios, A., Bellmunt, F., Ledo, J., Ferrer, N., del Val, L., Pezard, P. A., García-Orellana, J., Diego-Feliu, M., Rodellas, V., Saaltink, M. W., Vázquez-Suñé, E., and Folch, A.:
A multidisciplinary approach to characterizing coastal alluvial aquifers to improve understanding of seawater intrusion and submarine groundwater discharge, J. Hydrol., 127510, https://doi.org/10.1016/j.jhydrol.2022.127510, 2022.
Meenu, S., Gayatri, K., Malap, N., Murugavel, P., Samanta, S., and Prabha, T. V.:
The physics of extreme rainfall event: An investigation with multisatellite observations and numerical simulations, J. Atmos. Sol.-Terr. Phy., 204, 105275, https://doi.org/10.1016/j.jastp.2020.105275, 2020.
Michael, H. A., Mulligan, A. E., and Harvey, C. F.:
Seasonal oscillations in water exchange between aquifers and the coastal ocean, Nature, 436, 1145–1148, https://doi.org/10.1038/nature03935, 2005.
Michael, H. A., Charette, M. A., and Harvey, C. F.:
Patterns and variability of groundwater flow and radium activity at the coast: A case study from Waquoit Bay, Massachusetts, Mar. Chem., 127, 100–114, https://doi.org/10.1016/j.marchem.2011.08.001, 2011.
Monsen, N. E., Cloern, J. E., Lucas, L. V., and Monismith, S. G.:
A comment on the use of flushing time, residence time, and age as transport time scales, Limnol. Oceanogr., 47, 1545–1553, https://doi.org/10.4319/lo.2002.47.5.1545, 2002.
Montiel, D., Lamore, A., Stewart, J., and Dimova, N.:
Is Submarine Groundwater Discharge (SGD) Important for the Historical Fish Kills and Harmful Algal Bloom Events of Mobile Bay?, Estuar. Coast., 42, 470–493, https://doi.org/10.1007/s12237-018-0485-5, 2019.
Moore, R. J.:
The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483–499, https://doi.org/10.5194/hess-11-483-2007, 2007.
Moore, W. S.:
The subterranean estuary: A reaction zone of ground water and sea water, Mar. Chem., 65, 111–125, https://doi.org/10.1016/S0304-4203(99)00014-6, 1999.
Moore, W. S.:
Ages of continental shelf waters determined from 223Ra and 224Ra, J. Geophys. Res., 105, 117–122, https://doi.org/10.1029/1999JC000289, 2000.
Moore, W. S. and Arnold, R.:
Ra in coastal waters using a delayed coincidence counter, J. Geophys. Res., 101, 1321, https://doi.org/10.1029/95JC03139, 1996.
Moore, W. S. and Reid, D. F.:
Extraction of Radium from Natural Waters Using Manganese-Impregnated Acrylic Fibers, J. Geophys. Res., 78, 8880–8886, https://doi.org/10.1029/JC078i036p08880, 1973.
Moore, W. S. and Wilson, A. M.:
Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge, Earth Planet. Sc. Lett., 235, 564–576, https://doi.org/10.1016/j.epsl.2005.04.043, 2005.
Palacios, A., Ledo, J. J., Linde, N., Luquot, L., Bellmunt, F., Folch, A., Marcuello, A., Queralt, P., Pezard, P. A., Martínez, L., del Val, L., Bosch, D., and Carrera, J.: Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer, Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, 2020.
Pendergrass, A. G. and Knutti, R.:
The Uneven Nature of Daily Precipitation and Its Change, Geophys. Res. Lett., 45, 11,980-11,988, https://doi.org/10.1029/2018GL080298, 2018.
Puertos del Estado: PORTUS, Puertos del Estado [data set], https://portus.puertos.es/?locale=es#/, last access: 1 September 2020.
Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C.:
Modeling of the daily rainfall-runoff relationship with artificial neural network, J. Hydrol., 285, 96–113, https://doi.org/10.1016/j.jhydrol.2003.08.011, 2004.
Ramos, N. F., Folch, A., Fernàndez-Garcia, D., Lane, M., Thomas, M., Gathenya, J. M., Wara, C., Thomson, P., Custodio, E., and Hope, R.:
Evidence of groundwater vulnerability to climate variability and economic growth in coastal Kenya, J. Hydrol., 586, 124920, https://doi.org/10.1016/j.jhydrol.2020.124920, 2020.
Riba, O.:
Les rieres del Maresme: Consideracions sobre aspectes geomorfològics, hidrològics i sedimentològics, Quad. d'Ecologia Apl., 14, 123–151, 1997.
Robinson, C. E., Xin, P., Santos, I. R., Charette, M. A., Li, L., and Barry, D. A.:
Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean, Adv. Water Resour., 115, 315–331, https://doi.org/10.1016/j.advwatres.2017.10.041, 2018.
Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., and Weinstein, Y.:
Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea, P. Natl. Acad. Sci. USA, 112, 3926–3930, https://doi.org/10.1073/pnas.1419049112, 2015.
Rodellas, V., Garcia-Orellana, J., Trezzi, G., Masqué, P., Stieglitz, T. C., Bokuniewicz, H. J., Cochran, J. K., and Berdalet, E.:
Using the radium quartet to quantify submarine groundwater discharge and porewater exchange, Geochim. Cosmochim. Ac., 196, 58–73, https://doi.org/10.1016/j.gca.2016.09.016, 2017.
Rodellas, V., Cook, P. G., McCallum, J., Andrisoa, A., Meulé, S., and Stieglitz, T. C.:
Temporal variations in porewater fluxes to a coastal lagoon driven by wind waves and changes in lagoon water depths, J. Hydrol., 581, 124363, https://doi.org/10.1016/j.jhydrol.2019.124363, 2020.
Rodellas, V., Stieglitz, T. C., Tamborski, J. J., Beek, P. Van, Andrisoa, A., and Cook, P. G.: Conceptual uncertainties in groundwater and porewater fl uxes estimated by radon and radium mass balances, Limnol. Oceanogr., 66, 1237–1255, https://doi.org/10.1002/lno.11678, 2021.
Rufí-Salís, M., Garcia-Orellana, J., Cantero, G., Castillo, J., Hierro, A., Rieradevall, J., and Bach, J.:
Influence of land use changes on submarine groundwater discharge, Environ. Res. Commun., 1, 031005, https://doi.org/10.1088/2515-7620/ab1695, 2019.
Santos, I. R., Eyre, B. D., and Huettel, M.:
The driving forces of porewater and groundwater flow in permeable coastal sediments: A review, Estuar. Coast. Shelf S., 98, 1–15, https://doi.org/10.1016/j.ecss.2011.10.024, 2012.
Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., Tamborski, J. J., Cho, H., Dimova, N., Sugimoto, R., Bonaglia, S., Li, H., Hajati, M.-C., and Li, L.: Submarine groundwater discharge impacts on coastal nutrient biogeochemistry, Nat. Rev. Earth Environ., 2, 307–323, https://doi.org/10.1038/s43017-021-00152-0, 2021.
Sawyer, A. H., Shi, F., Kirby, J. T., and Michael, H. A.:
Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary, J. Geophys. Res.-Oceans, 118, 1749–1758, https://doi.org/10.1002/jgrc.20154, 2013.
Sawyer, A. H., Lazareva, O., Kroeger, K. D., Crespo, K., Chan, C. S., Stieglitz, T., and Michael, H. A.:
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary, Limnol. Oceanogr., 59, 997–1010, https://doi.org/10.4319/lo.2014.59.3.0997, 2014.
Schumacher, R. S.: Heavy Rainfall and Flash Flooding, in: Oxford Research Encyclopedia of Natural Hazard Science, edited by: Cutter, S. L., Oxford University Press, Oxford, 1–40, ISBN 9780199389407, https://doi.org/10.1093/acrefore/9780199389407.013.132, 2017.
Servei Meteorològic de Catalunya: Catàleg de dades, https://www.meteo.cat/wpweb/serveis/cataleg-de-serveis/dades-meteorologiques/, last access: 1 September 2020.
Spiteri, C., Slomp, C. P., Regnier, P., Meile, C., and Van Cappellen, P.:
Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems, J. Contam. Hydrol., 92, 87–108, https://doi.org/10.1016/j.jconhyd.2007.01.002, 2007.
Spiteri, C., Slomp, C. P., Charette, M. A., Tuncay, K., and Meile, C.:
Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling, Geochim. Cosmochim. Ac., 72, 3398–3412, https://doi.org/10.1016/j.gca.2008.04.027, 2008a.
Spiteri, C., Slomp, C. P., Tuncay, K., and Meile, C.:
Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients, Water Resour. Res., 44, 1–18, https://doi.org/10.1029/2007WR006071, 2008b.
Stigter, T. Y., Nunes, J. P., Pisani, B., Fakir, Y., Hugman, R., Li, Y., Tomé, S., Ribeiro, L., Samper, J., Oliveira, R., Monteiro, J. P., Silva, A., Tavares, P. C. F., Shapouri, M., Cancela da Fonseca, L., and El Himer, H.:
Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean, Reg. Environ. Change, 14, 41–56, https://doi.org/10.1007/s10113-012-0377-3, 2014.
Sugimoto, R., Honda, H., Kobayashi, S., Takao, Y., Tahara, D., Tominaga, O., and Taniguchi, M.:
Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan), Estuar. Coast., 39, 13–26, https://doi.org/10.1007/s12237-015-9986-7, 2016.
Sun, Y. and Torgersen, T.:
The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation, Mar. Chem., 62, 299–306, https://doi.org/10.1016/S0304-4203(98)00019-X, 1998.
Tait, D. R., Erler, D. V., Santos, I. R., Cyronak, T. J., Morgenstern, U., and Eyre, B. D.:
The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon, Mar. Chem., 166, 36–47, https://doi.org/10.1016/j.marchem.2014.08.004, 2014.
Tamborski, J. J., Cochran, J. K., and Bokuniewicz, H. J.:
Application of 224Ra and 222Rn for evaluating seawater residence times in a tidal subterranean estuary, Mar. Chem., 189, 32–45, https://doi.org/10.1016/j.marchem.2016.12.006, 2017a.
Tamborski, J. J., Cochran, J. K., and Bokuniewicz, H. J.:
Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: Terrestrial vs. marine sources, Geochim. Cosmochim. Ac., 218, 40–57, https://doi.org/10.1016/j.gca.2017.09.003, 2017b.
Tamborski, J. J., van Beek, P., Conan, P., Pujo-Pay, M., Odobel, C., Ghiglione, J. F., Seidel, J. L., Arfib, B., Diego-Feliu, M., Garcia-Orellana, J., Szafran, A., and Souhaut, M.:
Submarine karstic springs as a source of nutrients and bioactive trace metals for the oligotrophic Northwest Mediterranean Sea, Sci. Total Environ., 732, 1–14, https://doi.org/10.1016/j.scitotenv.2020.139106, 2020.
Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T. C., Kim, G., Moosdorf, N., and Burnett, W. C.:
Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects, Front. Environ. Sci., 7, 1–26, https://doi.org/10.3389/fenvs.2019.00141, 2019.
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., and MacDonald, A. M.:
Evidence of the dependence of groundwater resources on extreme rainfall in East Africa, Nat. Clim. Change, 3, 374–378, https://doi.org/10.1038/nclimate1731, 2013.
Uddameri, V., Singaraju, S., and Hernandez, E. A.:
Temporal variability of freshwater and pore water recirculation components of submarine groundwater discharges at Baffin Bay, Texas, Environ. Earth Sci., 71, 2517–2533, https://doi.org/10.1007/s12665-013-2902-1, 2014.
Valiela, I., Costa, J., Foreman, K., Teal, J. M., Howes, B., and Aubrey, D.:
Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters, Biogeochemistry, 10, 177–197, https://doi.org/10.1007/BF00003143, 1990.
Van Meter, K. J., Van Cappellen, P., and Basu, N. B.:
Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico, Science (80-.), 360, 427–430, https://doi.org/10.1126/science.aar4462, 2018.
Webster, I. T., Hancock, G. J., and Murray, A. S.:
Modelling the effect of salinity on radium desorption from sediments, Geochim. Cosmochim. Ac., 59, 2469–2476, https://doi.org/10.1016/0016-7037(95)00141-7, 1995.
Weinstein, Y., Yechieli, Y., Shalem, Y., Burnett, W. C., Swarzenski, P. W., and Herut, B.:
What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean?, Environ. Sci. Technol., 45, 5195–5200, https://doi.org/10.1021/es104394r, 2011.
Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A.:
Seawater intrusion processes, investigation and management: Recent advances and future challenges, Adv. Water Resour., 51, 3–26, https://doi.org/10.1016/j.advwatres.2012.03.004, 2013.
WHO: Guidelines for Drinking-water Quality, 4th edtion, http://www.who.int (last access: 3 April 2021), 2011.
Wilson, A. M., Moore, W. S., Joye, S. B., Anderson, J. L., and Schutte, C. A.: Storm-driven groundwater flow in a salt marsh, Water Resour. Res., 47, W02535, https://doi.org/10.1029/2010WR009496, 2011.
Wilson, A. M., Evans, T. B., Moore, W. S., Schutte, C. A., and Joye, S. B.:
What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh, Water Resour. Res., 51, 4198–4207, https://doi.org/10.1002/2014WR015984, 2015.
Wong, W. W., Applegate, A., Poh, S. C., and Cook, P. L. M.:
Biogeochemical attenuation of nitrate in a sandy subterranean estuary: Insights from two stable isotope approaches, Limnol. Oceanogr., 65, 3098–3113, https://doi.org/10.1002/lno.11576, 2020.
Yu, X., Xin, P., Lu, C., Robinson, C. E., Li, L., and Barry, D. A.:
Effects of episodic rainfall on a subterranean estuary, Water Resour. Res., 53, 5774–5787, https://doi.org/10.1002/2017WR020809, 2017.
Zhao, S., Xu, B., Yao, Q., Burnett, W. C., Charette, M. A., Su, R., Lian, E., and Yu, Z.:
Nutrient-rich submarine groundwater discharge fuels the largest green tide in the world, Sci. Total Environ., 770, 144845, https://doi.org/10.1016/j.scitotenv.2020.144845, 2021.
Short summary
Rainwater infiltrates aquifers and travels a long subsurface journey towards the ocean where it eventually enters below sea level. In its path towards the sea, water becomes enriched in many compounds that are naturally or artificially present within soils and sediments. We demonstrate that extreme rainfall events may significantly increase the inflow of water to the ocean, thereby increasing the supply of these compounds that are fundamental for the sustainability of coastal ecosystems.
Rainwater infiltrates aquifers and travels a long subsurface journey towards the ocean where it...