Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4345-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4345-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio
CORRESPONDING AUTHOR
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Elvin Isufi
Department of Intelligent Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
Sebastian Nicolaas Jonkman
Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Riccardo Taormina
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
Roberto Bentivoglio, Sebastiaan Nicolas Jonkman, Elvin Isufi, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5582, https://doi.org/10.5194/egusphere-2025-5582, 2025
Short summary
Short summary
Obtaining probabilistic flood maps with numerical models is very time-consuming. Deep learning models can speed this up, but their predictions are hard to verify without reference data, and they ignore structures like dikes or canals. This work introduces a mass-based validation measure to assess prediction plausibility and adapts a graph-based model to include hydraulic structures, enabling realistic, large-scale probabilistic flood mapping in the Netherlands.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614, https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary
Short summary
Deep Learning methods have been increasingly used in flood mapping as an alternative to traditional modeling techniques. While promising results have been obtained, our review shows significant challenges in building Deep Learning models that can generalize across multiple scenarios, account for complex interactions, and provide probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in Deep Learning.
Laurie van Gijzen, Alexander M. Bakker, and Sebastiaan N. Jonkman
EGUsphere, https://doi.org/10.5194/egusphere-2025-5801, https://doi.org/10.5194/egusphere-2025-5801, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Future sea level rise will likely challenge many low-lying deltas in the world. A possible mitigation strategy discharging the incoming river discharge with large pump-sluice stations. In this study we determine the required pump and sluice capacity by including the new concept of operational discharge capacity. We found that including operational discharge capacity led to an significant increase in flood frequency, making it crucial to account for in the design of pump-sluice stations.
Roberto Bentivoglio, Sebastiaan Nicolas Jonkman, Elvin Isufi, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5582, https://doi.org/10.5194/egusphere-2025-5582, 2025
Short summary
Short summary
Obtaining probabilistic flood maps with numerical models is very time-consuming. Deep learning models can speed this up, but their predictions are hard to verify without reference data, and they ignore structures like dikes or canals. This work introduces a mass-based validation measure to assess prediction plausibility and adapts a graph-based model to include hydraulic structures, enabling realistic, large-scale probabilistic flood mapping in the Netherlands.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Tim Hans Martin van Emmerik, Tim Willem Janssen, Tianlong Jia, Thank-Khiet L. Bui, Riccardo Taormina, Hong-Q. Nguyen, and Louise Jeanne Schreyers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2270, https://doi.org/10.5194/egusphere-2024-2270, 2024
Preprint archived
Short summary
Short summary
Plastic pollution has negative effects on the environment. Tropical rivers around the world suffer from both plastic pollution and invasive water hyacinths. Water hyacinths grow rapidly and form dense floating mats. Using drones, cameras and AI, we show that along the Saigon river, Vietnam, the majority of floating plastic pollution is carried by water hyacinths. Better understanding water hyacinth-plastic trapping supports improving pollution monitoring and management strategies.
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024, https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Short summary
A coupled statistical–hydrodynamic model framework is employed to quantitatively evaluate the sensitivity of compound flood hazards to the relative timing of peak storm surges and rainfall. The findings reveal that the timing difference between these two factors significantly affects flood inundation depth and extent. The most severe inundation occurs when rainfall precedes the storm surge peak by 2 h.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614, https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary
Short summary
Deep Learning methods have been increasingly used in flood mapping as an alternative to traditional modeling techniques. While promising results have been obtained, our review shows significant challenges in building Deep Learning models that can generalize across multiple scenarios, account for complex interactions, and provide probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in Deep Learning.
Cited articles
Abdullah, M. F., Siraj, S., and Hodgett, R. E.: An Overview of Multi-Criteria
Decision Analysis (MCDA) Application in Managing Water-Related Disaster
Events: Analyzing 20 Years of Literature for Flood and Drought Events, Water,
13, 1358, https://doi.org/10.3390/w13101358, 2021. a
Ahmadlou, M., Al-Fugara, A., Al-Shabeeb, A., Arora, A., Al-Adamat, R., Pham,
Q., Al-Ansari, N., Linh, N., and Sajedi, H.: Flood susceptibility mapping and
assessment using a novel deep learning model combining multilayer perceptron
and autoencoder neural networks, J. Flood Risk Manage., 14, e12683,
https://doi.org/10.1111/jfr3.12683, 2021. a, b, c, d
Ahmed, N., Hoque, M. A.-A., Arabameri, A., Pal, S. C., Chakrabortty, R., and
Jui, J.: Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh
using deep boost, deep learning neural network, and artificial neural
network, Geocarto Int., 1–22, https://doi.org/10.1080/10106049.2021.2005698, 2021. a, b, c, d, e
Amini, J.: A method for generating floodplain maps using IKONOS images and
DEMs, Int. J. Remote Sens., 31, 2441–2456,
https://doi.org/10.1080/01431160902929230, 2010. a, b, c, d
Ávila, A., Justino, F., Wilson, A., Bromwich, D., and Amorim, M.: Recent
precipitation trends, flash floods and landslides in southern Brazil,
Environ. Res. Lett., 11, 114029, https://doi.org/10.1088/1748-9326/11/11/114029,
2016. a
Badrinarayanan, V., Kendall, A., and Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, 39, 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615, 2017. a, b
Balestriero, R., Pesenti, J., and LeCun, Y.: Learning in High Dimension Always
Amounts to Extrapolation, arXiv [preprint], https://doi.org/10.48550/arXiv.2110.09485, 2021. a
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,
Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A.,
Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli,
P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R.: Relational
inductive biases, deep learning, and graph networks, arXiv [preprint], 1–40, https://doi.org/10.48550/arXiv.1806.01261, 2018. a, b
Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D.: Weight
uncertainty in neural network, in: International Conference on Machine
Learning, PMLR, 1613–1622, 2015. a
Bobée, B. and Rasmussen, P. F.: Recent advances in flood frequency
analysis, Rev. Geophys., 33, 1111–1116, 1995. a
Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar, G. F., and Bronstein, M.: Weisfeiler and Lehman go cellular: CW networks, Advances in Neural Information Processing Systems, 34, 2625–2640, 2021. a
Bomers, A., Schielen, R. M., and Hulscher, S. J.: The influence of grid shape
and grid size on hydraulic river modelling performance, Environ. Fluid
Mech., 19, 1273–1294, https://doi.org/10.1007/s10652-019-09670-4, 2019. a
Bonafilia, D., Tellman, B., Anderson, T., and Issenberg, E.: Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, 835–845, https://doi.org/10.1109/CVPRW50498.2020.00113, 2020. a
Bowes, B. D., Tavakoli, A., Wang, C., Heydarian, A., Behl, M., Beling, P. A.,
and Goodall, J. L.: Flood mitigation in coastal urban catchments using
real-time stormwater infrastructure control and reinforcement learning,
J. Hydroinfo., 23, 529–547, 2021. a
Bradley, A. P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms, Pattern Recog., 30, 1145–1159, 1997. a
Bronstein, M. M., Bruna, J., Lecun, Y., Szlam, A., and Vandergheynst, P.:
Geometric Deep Learning: Going beyond Euclidean data, IEEE Signal
Proc. Mag., 34, 18–42, https://doi.org/10.1109/MSP.2017.2693418, 2017. a
Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P.: Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges,
arXiv [preprint], https://doi.org/10.48550/arXiv.2104.13478, 2021. a, b
Candy, A. S.: A consistent approach to unstructured mesh generation for
geophysical models, arXiv [preprint], https://doi.org/10.48550/arXiv.1703.08491, 2017. a
Chakrabortty, R., Chandra Pal, S., Rezaie, F., Arabameri, A., Lee, S., Roy, P.,
Saha, A., Chowdhuri, I., and Moayedi, H.: Flash-flood hazard susceptibility
mapping in Kangsabati River Basin, India, Geocarto Int., 1–23, https://doi.org/10.1080/10106049.2021.1953618,
2021a. a, b, c
Chang, D.-L., Yang, S.-H., Hsieh, S.-L., Wang, H.-J., and Yeh, K.-C.:
Artificial intelligence methodologies applied to prompt pluvial flood
estimation and prediction, Water, 12, 3552, https://doi.org/10.3390/w12123552, 2020. a
Chen, J., Huang, G., and Chen, W.: Towards better flood risk management:
Assessing flood risk and investigating the potential mechanism based on
machine learning models, J. Environ. Manage., 112810, https://doi.org/10.1016/j.jenvman.2021.112810, 2021. a
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genom., 21, 1–13, 2020. a
Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, in: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, Association for Computational Linguistics, 103–111, 2014. a, b
Cian, F., Marconcini, M., and Ceccato, P.: Normalized Difference Flood Index
for rapid flood mapping: Taking advantage of EO big data, Remote Sens. Environ., 209, 712–730, https://doi.org/10.1016/j.rse.2018.03.006,
2018. a
Cortes, C., Mohri, M., and Syed, U.: Deep boosting, in: International
conference on machine learning, PMLR, 1179–1187, 2014. a
Costabile, P., Costanzo, C., and Macchione, F.: Performances and limitations
of the diffusive approximation of the 2-d shallow water equations for flood
simulation in urban and rural areas, Appl. Numer. Math., 116,
141–156, https://doi.org/10.1016/j.apnum.2016.07.003, 2017. a, b
Damianou, A. and Lawrence, N. D.: Deep gaussian processes, in: Artificial
intelligence and statistics, PMLR, 207–215, 2013. a
Darabi, H., Rahmati, O., Naghibi, S., Mohammadi, F., Ahmadisharaf, E.,
Kalantari, Z., Torabi Haghighi, A., Soleimanpour, S., Tiefenbacher, J., and
Tien Bui, D.: Development of a novel hybrid multi-boosting neural network
model for spatial prediction of urban flood, Geocarto Int., https://doi.org/10.1080/10106049.2021.1920629, 2021. a, b, c, d, e, f
de Brito, M. M. and Evers, M.: Multi-criteria decision-making for flood risk management: a survey of the current state of the art, Nat. Hazards Earth Syst. Sci., 16, 1019–1033, https://doi.org/10.5194/nhess-16-1019-2016, 2016. a
De Haan, P., Weiler, M., Cohen, T., and Welling, M.: Gauge equivariant mesh
CNNs anisotropic convolutions on geometric graphs, arXiv, https://doi.org/10.48550/arXiv.2003.05425, 2020. a
de Moel, H., van Alphen, J., and Aerts, J. C. J. H.: Flood maps in Europe – methods, availability and use, Nat. Hazards Earth Syst. Sci., 9, 289–301, https://doi.org/10.5194/nhess-9-289-2009, 2009. a
de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., and
Ward, P. J.: Flood risk assessments at different spatial scales, Mitig. Adapt. Strat. Gl., 20, 865–890, 2015. a
Delgado, R. and Tibau, X.-A.: Why Cohen’s Kappa should be avoided as
performance measure in classification, PloS One, 14, e0222916, https://doi.org/10.1371/journal.pone.0222916, 2019. a
Destro, E., Amponsah, W., Nikolopoulos, E. I., Marchi, L., Marra, F.,
Zoccatelli, D., and Borga, M.: Coupled prediction of flash flood response
and debris flow occurrence: Application on an alpine extreme flood event,
J. Hydrol., 558, 225–237, https://doi.org/10.1016/j.jhydrol.2018.01.021,
2018. a
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., and Beven, K. J.:
Flood-plain mapping: a critical discussion of deterministic and probabilistic
approaches, J. Sci. Hydrol., 55, 364–376, 2010. a
Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic flood hazard mapping: effects of uncertain boundary conditions, Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, 2013. a, b
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., and Lim, W. M.: How to
conduct a bibliometric analysis: An overview and guidelines, J. Business Res., 133, 285–296, 2021. a
Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: A new dataset of river flood hazard maps for Europe and the Mediterranean Basin, Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, 2022. a
Ebli, S., Defferrard, M., and Spreemann, G.: Simplicial Neural Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.03633, 2020. a
European Union: Directive 2007/60/EC of the European Counil and European
Parliment of 23 October 2007 on the assessment and management of flood
risks, Official Journal of the European Union, 27–34,
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0060&from=EN (last access: 20 February 2022),
2007. a
Fang, Z., Yang, T., and Jin, Y.: DeepStreet: A deep learning powered urban
street network generation module, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.04365,
2020b. a
Fazeli-Varzaneh, M., Bettinger, P., Ghaderi-Azad, E., Kozak, M., Mafi-Gholami,
D., and Jaafari, A.: Forestry Research in the Middle East: A Bibliometric
Analysis, Sustainability, 13, 8261, https://doi.org/10.3390/su13158261, 2021. a
Ferraro, D., Costabile, P., Costanzo, C., Petaccia, G., and Macchione, F.: A
spectral analysis approach for the a priori generation of computational grids
in the 2-D hydrodynamic-based runoff simulations at a basin scale, J. Hydrol., 582, 124508, https://doi.org/10.1016/j.jhydrol.2019.124508, 2020. a
Ferreira, L. A., Fonseca, A. R., Lima, N. Z., Mesquita, R. C., and Salgado,
G. C.: Graphical interface for electromagnetic problem solving using meshless
methods, Journal of Microwaves, Optoelectron. Elec. Appl., 14, SI–54 to SI, 2015. a
Gama, F., Isufi, E., Leus, G., and Ribeiro, A.: Graphs, convolutions, and neural networks: From graph filters to graph neural networks, IEEE Signal Processing Magazine, 37, 128–138, 2020. a
Glenis, V., McGough, A. S., Kutija, V., Kilsby, C., and Woodman, S.: Flood
modelling for cities using Cloud computing, J. Cloud Comput., 2, 1–14, 2013. a
Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1701.00160, 2016. a
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y.: Generative adversarial nets, Adv. Neural Info. Proc. Syst., 27, https://doi.org/10.48550/arXiv.1406.2661, 2014. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
http://www.deeplearningbook.org (last access: 8 August 2022), 2016. a
Hajij, M., Istvan, K., and Zamzmi, G.: Cell complex neural networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.00743, 2020. a
Hess, L., Melack, J., Filoso, S., and Wang, Y.: Delineation of inundated area
and vegetation along the Amazon floodplain with the SIR-C synthetic aperture
radar, IEEE T. Geosci. Remote, 33, 896–904,
https://doi.org/10.1109/36.406675, 1995. a
Hofmann, J. and Schüttrumpf, H.: floodGAN: Using Deep Adversarial Learning
to Predict Pluvial Flooding in Real Time, Water, 13, https://doi.org/10.3390/w13162255, 2021. a
Horritt, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical models for
predicting river flood inundation, J. Hydrol., 268, 87–99,
https://doi.org/10.1016/S0022-1694(02)00121-X, 2002. a
Hosseiny, H.: A deep learning model for predicting river flood depth and
extent, Environ. Modell. Softw., 145, 105186, https://doi.org/10.1016/j.envsoft.2021.105186, 2021. a, b, c
Huang, P. C., Hsu, K. L., and Lee, K. T.: Improvement of Two-Dimensional
Flow-Depth Prediction Based on Neural Network Models By Preprocessing
Hydrological and Geomorphological Data, Water Resour. Manage., 35, 1079–1100, https://doi.org/10.1007/s11269-021-02776-9, 2021b. a, b
Ireland, G., Volpi, M., and Petropoulos, G. P.: Examining the Capability of
Supervised Machine Learning Classifiers in Extracting Flooded Areas from
Landsat TM Imagery: A Case Study from a Mediterranean Flood, Remote Sens.,
7, 3372–3399, https://doi.org/10.3390/rs70303372, 2015. a
Isufi, E., Gama, F., and Ribeiro, A.: EdgeNets: Edge varying graph neural
networks, IEEE T. Pattern Anal., https://doi.org/10.1109/TPAMI.2021.3111054,
2021. a
Jacquier, P., Abdedou, A., Delmas, V., and Soulaïmani, A.: Non-intrusive
reduced-order modeling using uncertainty-aware Deep Neural Networks and
Proper Orthogonal Decomposition: Application to flood modeling, J. Comput. Phys., 424, 109854, https://doi.org/10.1016/j.jcp.2020.109854, 2021. a, b, c, d, e, f, g
Jafari, N., Li, X., Chen, Q., Le, C.-Y., Betzer, L., and Liang, Y.: Real-time
water level monitoring using live cameras and computer vision techniques,
Comput. Geosci., 147, https://doi.org/10.1016/j.cageo.2020.104642, 2021. a
Jiang, P., Meinert, N., Jordão, H., Weisser, C., Holgate, S., Lavin, A.,
Lütjens, B., Newman, D., Wainwright, H., Walker, C., and Barnard, P.: Digital Twin
Earth–Coasts: Developing a fast and physics-informed surrogate model for
coastal floods via neural operators, arXiv [preprint], https://doi.org/10.48550/arXiv.2110.07100, 2021. a
Jonkman, S. and Vrijling, J.: Loss of life due to floods, J. Flood
Risk Manage., 1, 43–56, https://doi.org/10.1111/j.1753-318x.2008.00006.x, 2008. a
Kang, W., Xiang, Y., Wang, F., Wan, L., and You, H.: Flood Detection in
Gaofen-3 SAR Images via Fully Convolutional Networks, Sensors, 18, 2915,
https://doi.org/10.3390/s18092915, 2018. a, b, c
Kalos, M. H. and Whitlock, P. A.: Monte carlo methods. John Wiley & Sons, 2009. a
Kazakis, N., Kougias, I., and Patsialis, T.: Assessment of flood hazard areas
at a regional scale using an index-based approach and Analytical Hierarchy
Process: Application in Rhodope-Evros region, Greece, Sci. Total
Environ., 538, 555–563,
https://doi.org/10.1016/j.scitotenv.2015.08.055, 2015. a
Kingma, D. P. and Welling, M.: Auto-encoding variational bayes, arXiv [preprint], https://doi.org/10.48550/arXiv.1312.6114, 2013. a
Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart,
A., and Anandkumar, A.: Neural operator: Learning maps between function
spaces, arXiv [preprint], https://doi.org/10.48550/arXiv.2108.08481, 2021. a, b
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.:
NeuralHydrology – Interpreting LSTMs in Hydrology, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 347–362,
https://doi.org/10.1007/978-3-030-28954-6_19, 2019a. a
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting
the Power of Machine Learning, Water Resour. Res., 55,
11344–11354, https://doi.org/10.1029/2019WR026065, 2019b. a
Kummu, M., De Moel, H., Ward, P. J., and Varis, O.: How close do we live to
water? A global analysis of population distance to freshwater bodies, PloS
One, 6, e20578, https://doi.org/10.1371/journal.pone.0020578, 2011. a
LeCun, Y. and Bengio, Y.: Convolutional Networks for Images, Speech and Time Series , The MIT Press , 255–258, 1995. a
Lei, X., Chen, W., Panahi, M., Falah, F., Rahmati, O., Uuemaa, E., Kalantari,
Z., Ferreira, C. S. S., Rezaie, F., Tiefenbacher, J. P. and Lee, S.: Urban flood
modeling using deep-learning approaches in Seoul, South Korea, J. Hydrol., 601, 126684, https://doi.org/10.1016/j.jhydrol.2021.126684,2021. a, b, c, d, e
Lendering, K., Jonkman, S., and Kok, M.: Effectiveness of emergency measures
for flood prevention, J. Flood Risk Manage., 9, 320–334, 2016. a
Li, L., Chen, Y., Xu, T., Liu, R., Shi, K., and Huang, C.: Super-resolution
mapping of wetland inundation from remote sensing imagery based on
integration of back-propagation neural network and genetic algorithm, Remote
Sens. Environ., 164, 142–154,
https://doi.org/10.1016/j.rse.2015.04.009, 2015. a, b, c, d, e, f
Li, L., Chen, Y., Xu, T., Huang, C., Liu, R., and Shi, K.: Integration of
Bayesian regulation back-propagation neural network and particle swarm
optimization for enhancing sub-pixel mapping of flood inundation in river
basins, Remote Sens. Lett., 7, 631–640,
https://doi.org/10.1080/2150704X.2016.1177238, 2016a. a, b, c, d
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart,
A., and Anandkumar, A.: Neural operator: Graph kernel network for partial
differential equations, arXiv [preprint], https://doi.org/10.48550/arXiv.2003.03485, 2020. a
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart,
A., and Anandkumar, A.: Fourier Neural Operator for Parametric Partial
Differential Equations, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.08895, 2021. a
Lin, L., Di, L., Yu, E. G., Kang, L., Shrestha, R., Rahman, M. S., Tang, J.,
Deng, M., Sun, Z., Zhang, C., et al.: A review of remote sensing in flood
assessment, in: 2016 Fifth International Conference on Agro-Geoinformatics
(Agro-Geoinformatics), IEEE, 1–4, 2016. a
Lin, Q., Leandro, J., Wu, W., Bhola, P., and Disse, M.: Prediction of Maximum
Flood Inundation Extents With Resilient Backpropagation Neural Network: Case
Study of Kulmbach, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00332, 2020b. a, b, c, d
Lino, M., Cantwell, C., Bharath, A. A., and Fotiadis, S.: Simulating Continuum
Mechanics with Multi-Scale Graph Neural Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2106.04900, 2021. a
Liu, J., Wang, J., Xiong, J., Cheng, W., Sun, H., Yong, Z., and Wang, N.:
Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods
for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets,
Remote Sens., 13, 4945, https://doi.org/10.3390/rs13234945, 2021. a, b, c, d, e
Lu, L., Jin, P., and Karniadakis, G. E.: DeepONet: Learning nonlinear operators
for identifying differential equations based on the universal approximation
theorem of operators, CoRR, abs/1910.03193,
http://arxiv.org/abs/1910.03193 (last access date: 18 August 2022), 2019. a
Lütjens, B., Leshchinskiy, B., Requena-Mesa, C., Chishtie, F.,
Díaz-Rodriguez, N., Boulais, O., Piña, A., Newman, D., Lavin, A.,
Gal, Y., et al.: Physics-informed gans for coastal flood visualization, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.08103, 2020. a, b
Lütjens, B., Leshchinskiy, B., Requena-Mesa, C., Chishtie, F.,
Díaz-Rodríguez, N., Boulais, O., Sankaranarayanan, A., Piña,
A., Gal, Y., Raïssi, C., et al.: Physically-Consistent Generative
Adversarial Networks for Coastal Flood Visualization, arXiv [preprint], https://doi.org/10.48550/arXiv.2104.04785, 2021. a, b
Ma, X., Hong, Y., Song, Y., and Chen, Y.: A super-resolution
convolutional-neural-network-based approach for subpixel mapping of
hyperspectral images, IEEE J. Sel. Top. Appl., 12, 4930–4939, 2019. a
Mahesh, R. B., Leandro, J., and Lin, Q.: Physics Informed Neural Network for
Spatial-Temporal Flood Forecasting, in: Climate Change and Water Security,
edited by Kolathayar, S., Mondal, A., and Chian, S. C., Springer
Singapore, Singapore, 77–91, 2022. a
Mahmoud, S. H. and Gan, T. Y.: Multi-criteria approach to develop flood
susceptibility maps in arid regions of Middle East, J. Cleaner
Prod., 196, 216–229,
https://doi.org/10.1016/j.jclepro.2018.06.047, 2018. a
Manavalan, R.: SAR image analysis techniques for flood area mapping-literature
survey, Earth Sci. Inf., 10, 1–14, 2017. a
Manjusree, P., Kumar, L. P., Bhatt, C. M., Rao, G. S., and Bhanumurthy, V.:
Optimization of threshold ranges for rapid flood inundation mapping by
evaluating backscatter profiles of high incidence angle SAR images,
Int. J. Dis. Risk Sci., 3, 113–122, 2012. a
Mao, Z., Jagtap, A. D., and Karniadakis, G. E.: Physics-informed neural
networks for high-speed flows, Comput. Meth. Appl. Mech. Eng., 360, 112789, https://doi.org/10.1016/j.cma.2019.112789,
2020. a
Martinis, S., Twele, A., and Voigt, S.: Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Nat. Hazards Earth Syst. Sci., 9, 303–314, https://doi.org/10.5194/nhess-9-303-2009, 2009. a
Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, Sci. Rep., 10, 1–10, 2020. a
Mavriplis, D.: Unstructured grid techniques, Annu. Rev. Fluid Mech.,
29, 473–514, 1997. a
Meraner, A., Ebel, P., Zhu, X. X., and Schmitt, M.: Cloud removal in Sentinel-2
imagery using a deep residual neural network and SAR-optical data fusion,
ISPRS J. Photo. Remote Sens., 166, 333–346, 2020. a
Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real-Time Flood
Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical
Weather Predictions, Water Resour. Res., 56, e2019WR025583,
https://doi.org/10.1029/2019WR025583, 2020. a
Mitchell, T. M.: Machine Learning, McGraw-Hill, 1997. a
Mosavi, A., Ozturk, P., and Chau, K.-W.: Flood Prediction Using Machine
Learning Models: Literature Review, Water, 10, 1536, https://doi.org/10.3390/w10111536, 2018. a
Moy de Vitry, M., Kramer, S., Wegner, J. D., and Leitão, J. P.: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network, Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019, 2019. a
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
coastal population growth and exposure to sea-level rise and coastal
flooding-a global assessment, PloS One, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015. a
Ngo, P. T. T., Hoang, N. D., Pradhan, B., Nguyen, Q. K., Tran, X. T., Nguyen,
Q. M., Nguyen, V. N., Samui, P., and Bui, D. T.: A novel hybrid swarm
optimized multilayer neural network for spatial prediction of flash floods in
tropical areas using sentinel-1 SAR imagery and geospatial data, Sensors, 18, 3704, https://doi.org/10.3390/s18113704, 2018. a, b, c, d, e
Nogueira, K., Fadel, S. G., Dourado, I. C., De O. Werneck, R., Muñoz,
J. A., Penatti, O. A., Calumby, R. T., Li, L. T., Dos Santos, J. A., and
Da S. Torres, R.: “Exploiting ConvNet Diversity for Flooding Identification”, in IEEE Geoscience and Remote Sensing Letters, Vol. 15, no. 9, 1446–1450, Sept. 2018, https://doi.org/10.1109/LGRS.2018.2845549, 2017. a, b, c, d, e
Observatory, D. F.: Space-based Measurement, Mapping, and Modeling of Surface
Water, https://floodobservatory.colorado.edu/, last access: 11 November 2021. a
Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K.: Wavenet: A generative
model for raw audio, arXiv [preprint], https://doi.org/10.48550/arXiv.1609.03499, 2016. a
Papaioannou, G., Vasiliades, L., Loukas, A., and Aronica, G. T.: Probabilistic
flood inundation mapping at ungauged streams due to roughness coefficient
uncertainty in hydraulic modelling, Adv. Geosci., 44, 23–34,
2017. a
Pereira, J., Monteiro, J., Silva, J., Estima, J., and Martins, B.: Assessing
flood severity from crowdsourced social media photos with deep neural
networks, Multimedia Tools Appl., 79, 26197–26223, https://doi.org/10.1007/s11042-020-09196-8,
2020. a
Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W.: Learning
Mesh-Based Simulation with Graph Networks, International Conference on
Learning Representations (ICLR), https://doi.org/10.48550/arXiv.2010.03409, 2020. a
Pham, B. T., Luu, C., Van Phong, T., Trinh, P. T., Shirzadi, A., Renoud, S.,
Asadi, S., Van Le, H., von Meding, J., and Clague, J. J.: Can deep learning
algorithms outperform benchmark machine learning algorithms in flood
susceptibility modeling?, J. Hydrol., 592, 125615, https://doi.org/10.1016/j.jhydrol.2020.125615, 2021. a
Prestininzi, P.: Suitability of the diffusive model for dam break simulation:
Application to a CADAM experiment, J. Hydrol., 361, 172–185, 2008. a
Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys., 378, 686–707, https://doi.org/10.1016/j.jcp.2018.10.045, 2019. a
Rasmussen, C. E.: Gaussian processes in machine learning, in: Summer school on
machine learning, Springer, 63–71, 2003. a
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P.,
Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., et al.: Skillful
Precipitation Nowcasting using Deep Generative Models of Radar, arXiv [preprint], https://doi.org/10.48550/arXiv.2104.00954, 2021. a, b
Rossi, C., Acerbo, F., Ylinen, K., Juga, I., Nurmi, P., Bosca, A., Tarasconi,
F., Cristoforetti, M., and Alikadic, A.: Early detection and information
extraction for weather-induced floods using social media streams,
Int. J. Dis. Risk Reduct., 30, 145–157,
https://doi.org/10.1016/j.ijdrr.2018.03.002, 2018. a
Saeed, M., Li, H., Ullah, S., Rahman, A.-u., Ali, A., Khan, R., Hassan, W.,
Munir, I., and Alam, S.: Flood Hazard Zonation Using an Artificial Neural
Network Model: A Case Study of Kabul River Basin, Pakistan, Sustainability,
13, 13953, https://doi.org/10.3390/su132413953, 2021. a, b
Schmidt, V., Luccioni, A., Mukkavilli, S. K., Balasooriya, N., Sankaran, K.,
Chayes, J., and Bengio, Y.: Visualizing the consequences of climate change
using cycle-consistent adversarial networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1905.03709,
2019. a
Serinaldi, F., Loecker, F., Kilsby, C. G., and Bast, H.: Flood propagation and
duration in large river basins: a data-driven analysis for reinsurance
purposes, Nat. Hazards, 94, 71–92, https://doi.org/10.1007/s11069-018-3374-0,
2018. a
Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., and Woo, W. C.:
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting, Adv. Neural Info. Proc. Syst., 2015,
802–810, 2015. a
Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J. J., Khosravi, K.,
Pham, B. T., Ahmad, B. B., and Bui, D. T.: A novel ensemble learning based on
Bayesian Belief Network coupled with an extreme learning machine for flash
flood susceptibility mapping, Eng. Appl. Art. Intel., 96, 103971, https://doi.org/10.1016/j.engappai.2020.103971, 2020. a
Sikorska, A. E., Viviroli, D., and Seibert, J.: Flood-type classification in
mountainous catchments using crisp and fuzzy decision trees, J Am. Water Resour. Assoc., 5, 2–2,
https://doi.org/10.1111/j.1752-1688.1969.tb04897.x, 2015. a
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, I.: A
comprehensive review of deep learning applications in hydrology and water
resources, Water Sci. Technol., 82, 2635–2670,
https://doi.org/10.2166/wst.2020.369, 2020. a, b
Sridharan, B., Bates, P. D., Sen, D., and Kuiry, S. N.: Local-inertial shallow
water model on unstructured triangular grids, Adv. Water Res.,
152, 103930, https://doi.org/10.1016/j.advwatres.2021.103930, 2021. a
Taormina, R. and Galelli, S.: Deep-learning approach to the detection and
localization of cyber-physical attacks on water distribution systems, J. Water Res. Plan. Manage., 144, 04018065, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000983, 2018. a
Tehrany, M. S., Lee, M.-J., Pradhan, B., Jebur, M. N., and Lee, S.: Flood
susceptibility mapping using integrated bivariate and multivariate
statistical models, Environ. Earth Sci., 72, 4001–4015, 2014. a
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., and Kim, S.:
Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis, Environ. Modell. Softw., 90, 201–216,
https://doi.org/10.1016/j.envsoft.2017.01.006, 2017. a
Tien, D., Hoang, N.-D., Martínez-álvarez, F., Ngo, P.-T. T., Viet,
P., Dat, T., Samui, P., and Costache, R.: A novel deep learning neural
network approach for predicting flash flood susceptibility: A case study at
a high frequency tropical storm area, Sci. Total Environ., 701,
134413, https://doi.org/10.1016/j.scitotenv.2019.134413, 2020. a, b, c, d, e
van de Giesen, N., Hut, R., and Selker, J.: The trans-African
hydro-meteorological observatory (TAHMO), Wiley Interdisciplinary Reviews,
Water, 1, 341–348, 2014. a
Vandaele, R., Dance, S. L., and Ojha, V.: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning, Hydrol. Earth Syst. Sci., 25, 4435–4453, https://doi.org/10.5194/hess-25-4435-2021, 2021. a
Vandenberg-Rodes, A., Moftakhari, H. R., AghaKouchak, A., Shahbaba, B.,
Sanders, B. F., and Matthew, R. A.: Projecting nuisance flooding in a warming
climate using generalized linear models and Gaussian processes, J. Geophys. Res.-Oceans, 121, 8008–8020,
https://doi.org/10.1002/2016JC012084, 2016. a
Wang, R., Walters, R., and Yu, R.: Incorporating symmetry into deep dynamics
models for improved generalization, arXiv [preprint], https://doi.org/10.48550/arXiv.2002.03061,
2020. a
Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulistyono, A. D., and
Lestantyo, P.: Cross-validation metrics for evaluating classification
performance on imbalanced data, in: 2019 international conference on
computer, control, informatics and its applications (ic3ina),
IEEE, 14–18, 2019. a
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.: A Comprehensive
Survey on Graph Neural Networks, IEEE T. Neur. Net. Lear., 32, 4–24, https://doi.org/10.1109/TNNLS.2020.2978386, 2021. a, b
Xie, S., Wu, W., Mooser, S., Wang, Q., Nathan, R., and Huang, Y.: Artificial
neural network based hybrid modeling approach for flood inundation modeling,
J. Hydrol., 592, 125605, https://doi.org/10.1016/j.jhydrol.2020.125605, 2021. a, b
Yakti, B. P., Adityawan, M. B., Farid, M., Suryadi, Y., Nugroho, J., and
Hadihardaja, I. K.: 2D modeling of flood propagation due to the failure of
way Ela natural dam, in: MATEC Web of Conferences, Vol. 147, EDP Sciences,
https://doi.org/10.1051/matecconf/201814703009, 2018. a
Yang, M., Isufi, E., and Leus, G.: Simplicial Convolutional Neural Networks, ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8847–8851, https://doi.org/10.1109/ICASSP43922.2022.9746017, 2022. a
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and Liao, Q.: Deep
learning for single image super-resolution: A brief review, IEEE T. Multimedia, 21, 3106–3121, 2019. a
Yang, X. I. A., Zafar, S., Wang, J.-X., and Xiao, H.: Predictive
large-eddy-simulation wall modeling via physics-informed neural networks,
Phys. Rev. Fluids, 4, 034602, https://doi.org/10.1103/PhysRevFluids.4.034602,
2019. a
Yokoya, N., Yamanoi, K., He, W., Baier, G., Adriano, B., Miura, H., and Oishi,
S.: Breaking limits of remote sensing by deep learning from simulated data
for flood and debris-flow mapping, IEEE T. Geosci. Remote, https://doi.org/10.1109/TGRS.2020.3035469, 2020. a, b, c
Youssef, A. M., Pradhan, B., and Sefry, S. A.: Flash flood susceptibility
assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and
multivariate statistical models, Environ. Earth Sci., 75, 1–16, https://doi.org/10.1007/s12665-015-4830-8, 2016. a
Zhang, S., Xia, Z., Yuan, R., and Jiang, X.: Parallel computation of a
dam-break flow model using OpenMP on a multi-core computer, J. Hydrol., 512, 126–133, 2014. a
Zhang, Z., Flora, K., Kang, S., Limaye, A. B., and Khosronejad, A.: Data-driven
prediction of turbulent flow statistics past bridge piers in large-scale
rivers using convolutional neural networks, Water Resour. Res., 58, e2021WR030163, https://doi.org/10.1029/2021WR030163, 2021. a
Zhao, G., Bates, P., Neal, J., and Pang, B.: Design flood estimation for global river networks based on machine learning models, Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021, 2021a. a
Zhao, G., Balstrøm, T., Mark, O., and Jensen, M. B.: Multi-Scale
Target-Specified Sub-Model Approach for Fast Large-Scale High-Resolution 2D
Urban Flood Modelling, Water, 13, 259, https://doi.org/10.3390/w13030259,
2021b. a
Zhao, G., Pang, B., Xu, Z., Cui, L., Wang, J., Zuo, D., and Peng, D.: Improving
urban flood susceptibility mapping using transfer learning, J. Hydrol., 602, 126777,
https://doi.org/10.1016/j.jhydrol.2021.126777, 2021c. a, b, c
Zhou, Y., Wu, C., Li, Z., Cao, C., Ye, Y., Saragih, J., Li, H., and Sheikh, Y.:
Fully convolutional mesh autoencoder using efficient spatially varying kernels. Advances in Neural Information Processing Systems, 33, 9251–9262, 2020.
Zhou, Y., Wu, C., Li, Z., Cao, C., Ye, Y., Saragih, J., Li, H. and Sheikh, Y., 2020. Fully convolutional mesh autoencoder using efficient spatially varying kernels. Advances in Neural Information Processing Systems, 33, pp.9251-9262. a
Zounemat-Kermani, M., Matta, E., Cominola, A., Xia, X., Zhang, Q., Liang, Q.,
and Hinkelmann, R.: Neurocomputing in surface water hydrology and hydraulics:
A review of two decades retrospective, current status and future prospects,
J. Hydrol., 588, 125085,
https://doi.org/10.1016/j.jhydrol.2020.125085, 2020. a
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Deep learning methods have been increasingly used in flood management to improve traditional...