Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4345-2022
https://doi.org/10.5194/hess-26-4345-2022
Review article
 | 
25 Aug 2022
Review article |  | 25 Aug 2022

Deep learning methods for flood mapping: a review of existing applications and future research directions

Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina

Related authors

Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2024-2621,https://doi.org/10.5194/egusphere-2024-2621, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Deep Learning Methods for Flood Mapping: A Review of Existing Applications and Future Research Directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614,https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024,https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
A systematic review of climate change science relevant to Australian design flood estimation
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024,https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Technical Note: Resolution enhancement of flood inundation grids
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024,https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Floods and droughts: a multivariate perspective
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023,https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Technical note: Statistical generation of climate-perturbed flow duration curves
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023,https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary

Cited articles

Abdullah, M. F., Siraj, S., and Hodgett, R. E.: An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events, Water, 13, 1358, https://doi.org/10.3390/w13101358, 2021. a
Ahmadlou, M., Al-Fugara, A., Al-Shabeeb, A., Arora, A., Al-Adamat, R., Pham, Q., Al-Ansari, N., Linh, N., and Sajedi, H.: Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks, J. Flood Risk Manage., 14, e12683, https://doi.org/10.1111/jfr3.12683, 2021. a, b, c, d
Ahmed, N., Hoque, M. A.-A., Arabameri, A., Pal, S. C., Chakrabortty, R., and Jui, J.: Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network, Geocarto Int., 1–22, https://doi.org/10.1080/10106049.2021.2005698, 2021. a, b, c, d, e
Amini, J.: A method for generating floodplain maps using IKONOS images and DEMs, Int. J. Remote Sens., 31, 2441–2456, https://doi.org/10.1080/01431160902929230, 2010. a, b, c, d
Ávila, A., Justino, F., Wilson, A., Bromwich, D., and Amorim, M.: Recent precipitation trends, flash floods and landslides in southern Brazil, Environ. Res. Lett., 11, 114029, https://doi.org/10.1088/1748-9326/11/11/114029, 2016. a
Download
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.