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Abstract. Deep learning techniques have been increasingly
used in flood management to overcome the limitations of ac-
curate, yet slow, numerical models and to improve the re-
sults of traditional methods for flood mapping. In this paper,
we review 58 recent publications to outline the state of the
art of the field, identify knowledge gaps, and propose future
research directions. The review focuses on the type of deep
learning models used for various flood mapping applications,
the flood types considered, the spatial scale of the studied
events, and the data used for model development. The results
show that models based on convolutional layers are usually
more accurate, as they leverage inductive biases to better pro-
cess the spatial characteristics of the flooding events. Models
based on fully connected layers, instead, provide accurate re-
sults when coupled with other statistical models. Deep learn-
ing models showed increased accuracy when compared to
traditional approaches and increased speed when compared
to numerical methods. While there exist several applications
in flood susceptibility, inundation, and hazard mapping, more
work is needed to understand how deep learning can assist in
real-time flood warning during an emergency and how it can
be employed to estimate flood risk. A major challenge lies in
developing deep learning models that can generalize to un-
seen case studies. Furthermore, all reviewed models and their
outputs are deterministic, with limited considerations for un-
certainties in outcomes and probabilistic predictions. The au-
thors argue that these identified gaps can be addressed by ex-
ploiting recent fundamental advancements in deep learning

or by taking inspiration from developments in other applied
areas. Models based on graph neural networks and neural
operators can work with arbitrarily structured data and thus
should be capable of generalizing across different case stud-
ies and could account for complex interactions with the nat-
ural and built environment. Physics-based deep learning can
be used to preserve the underlying physical equations result-
ing in more reliable speed-up alternatives for numerical mod-
els. Similarly, probabilistic models can be built by resorting
to deep Gaussian processes or Bayesian neural networks.

1 Introduction

Flooding is one of the most dangerous and frequent natu-
ral hazards, accounting for significant human and economic
losses every year (Jonkman and Vrijling, 2008). Because of
climate change effects, more frequent and intense extreme
precipitation is expected to further increase the severity of
this hazard (Tabari, 2020). To mitigate the impact of floods
on human lives and property, both preventive and emergency
measures are required (European Union, 2007). Emergency
measures are operations carried out just before, during, or
after a flooding event. In those cases, real-time knowledge
of the extent of the flood and the areas in danger is needed
to execute countermeasures (Lendering et al., 2016). Instead,
preventive measures are operations aiming at reducing the
possibility of a certain area being flooded. Those can be de-
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termined by maps that indicate the hazard of floods, i.e., the
potential flood characteristics for an event.

There are the following three main flood maps used for
dealing with such measures: (i) flood extent or inundation
maps determine the observed inundation extent, during or af-
ter the event, and are used for emergency measures, (ii) sus-
ceptibility maps provide a qualitative categorization of the
flood hazard in an area, given its physical characteristics, and
are used for preventive measures, and (iii) flood hazard maps
indicate the spatial distribution of variables that characterize
the flood hazard of a specific event, such as flood depth and
water extent, and are used for both emergency and preventive
measures. Traditionally, inundation maps are obtained via re-
mote sensing analysis (e.g., Lin et al., 2016), susceptibility
maps with multi-criteria decision analysis (MCDA; e.g., Ab-
dullah et al., 2021), and hazard maps with numerical methods
(e.g., Dottori et al., 2022). Despite their wide usability, each
method has its limitations. Remote sensing analysis for flood
inundation requires manual or semi-automated procedures to
improve the results and additional data such as land cover
distribution (e.g., Manavalan, 2017). In addition, traditional
models for flood inundation are not scalable to large amounts
of data in the way that the ones currently produced by world-
wide satellite missions are. MCDA for flood susceptibility is
simple and interpretable, but its results are not accurate for
complex phenomena (Khosravi et al., 2020). Moreover, the
weights assigned to each criterion are subjective and thus bi-
ased by the external choices. Numerical methods for flood
hazard modeling are robust and effective, but fast and accu-
rate flood simulations remain a challenge (Costabile et al.,
2017). There exist several ways to improve the speed of the
simulations, for example, through parallel computing (e.g.,
Zhang et al., 2014; Ming et al., 2020; Glenis et al., 2013) or
simplified models (e.g., Zhao et al., 2021b; Sridharan et al.,
2021). However, parallel computing has high computational
costs, and simplified models are unable to correctly repro-
duce rapidly evolving flows such as in urban floods (Costa-
bile et al., 2017) and dam breaks (Prestininzi, 2008). More-
over, numerical models have intrinsic limitations which de-
pend on the discretization of the governing physical equa-
tions and physical domain.

To overcome these limitations, practitioners and develop-
ers have used data-driven models based on machine learn-
ing. Machine learning (ML) is a branch of artificial intelli-
gence in which a model improves its performance, with re-
spect to some class of tasks, as the available data increases
(Mitchell, 1997). Conventional ML techniques require the
specific feature engineering of raw data before its process-
ing. Deep learning (DL) can, instead, automatically discover
the representations needed for detection or classification in
raw data (LeCun et al., 2015). Nonetheless, data must be
carefully selected according to the task at hand. DL meth-
ods are representation learning methods with multiple lev-
els of representation obtained by composing simple but non-
linear modules that each transform the representation at one
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level (starting with the raw input) into a representation at
a higher and more abstract level (LeCun et al., 2015). The
model can then learn hidden patterns in the data and, con-
sequently, improve its performance. Both ML and DL mod-
els have been applied in the fields of hydraulics and flood
analysis. Mosavi et al. (2018) examined ML models for the
prediction of floods in the short and long term. Sit et al.
(2020) reviewed deep learning models for hydrology and wa-
ter resources, focusing also on the hydrological modeling of
floods. Zounemat-Kermani et al. (2020) reviewed neurocom-
puting for surface water hydrology and hydraulics, including
some applications concerning floods.

The existing reviews mainly focused on the temporal vari-
ability in floods, especially concerning rainfall-runoff mod-
eling, covering only a few instances of flood mapping appli-
cations. But the spatial evolution of flood events is extremely
important to determine affected areas, plan mitigation mea-
sures, and inform response strategies. Yet, there are no com-
prehensive overviews and analyses of DL in flood mapping
to facilitate flood researchers and practitioners. The aim of
this review is thus to advance the emerging field of DL-based
flood mapping by surveying the state of the art, identifying
outstanding research gaps, and proposing fruitful research di-
rections.

A total of 58 papers are analyzed considering two main
parallel yet intertwined directions. On the one hand, we fo-
cused on the flood management application, spatial scale of
study, and type of flood. On the other hand, we examined the
deep learning model, type of training data, and performance
with respect to alternative methods. This strategy provides
insights from a flood management perspective and concur-
rently facilitates reflection on how to successfully apply DL
models. The main insights from this paper can be summa-
rized as follows:

1. We identify common patterns and deduce general con-
siderations based on the presented results, while high-
lighting individual innovative approaches.

2. We compare against traditional methods to further vali-
date the benefits of employing DL models.

3. We identify a series of current knowledge gaps and pro-
pose possible solutions to them, drawing from recent
advancements in DL.

The remainder of this review is organized as follows. In
Sect. 2, we present the background theory on both floods
and deep learning. Then, in Sect. 3, we present the search
methodology and discuss the results based on the reviewed
papers. In Sects. 4 and 5, we present the knowledge gaps and
propose possible future research directions. Finally, conclu-
sions are provided in Sect. 6.
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2 Background

This section is divided in two parts, namely flood manage-
ment and deep learning. In the first part, we present the cat-
egories in which we classify flood management, while in the
latter we describe the main deep learning models used for
flood mapping.

2.1 Flood management

Floods can be defined as an overflow of water in otherwise
dry land. Hence, flood management is a very broad field of
interest; wherever there is water, there is a certain probabil-
ity of being affected by it. While there exist several catego-
rizations of flood management, we focus on types of floods,
applications, and spatial scales.

2.1.1 Types of floods

We can distinguish flooding depending on how, why, and
when it occurs.

River floods are caused by extensive precipitation over
long periods, causing the river to overflow its banks, ul-
timately inundating the neighboring areas. This process
is slow and can last for several days (Serinaldi et al.,
2018).

— Flash floods are caused by short but intense rainfall or
sudden melting of snow (Sikorska et al., 2015). They are
rapid and intense floods, typical of mountain and steep
catchments. Flash floods are usually coupled with other
hazards such as debris flows (Destro et al., 2018) and
landslides (Avila et al., 2016).

— Coastal floods are caused by extreme meteorological
conditions which increase the water level in large bodies
of water, due to a combination of low atmospheric pres-
sure and strong winds. They occur near oceans, seas,
or large lakes, and we also include tsunamis in this cat-
egory, although they are generated by geological phe-
nomena such as earthquakes.

— Urban floods are caused by the failure of drainage from
a sewer system, due to extreme precipitation, resulting
in the overflow of those pipes. Depending on the city po-
sition and topography, these floods can also be affected
by all the other types of floods.

— Dam break and dike breach floods are caused by the
failure of flood protection structures, due to extreme
flood events or management issues. The uncertainty of
if, where, and how a defense will fail further increases
the unexpectedness of these phenomena.

To simplify the categorization, we excluded pluvial flood-
ing, i.e., floods caused by the failure of a drainage system due
to intensive precipitation. The underlying hypothesis is that
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pluvial floods can be addressed as urban floods in urban en-
vironments or river floods if they also feature rainfall-driven
river overflows.

2.1.2 Flood mapping applications

Since we focus on the spatial variability in floods, we distin-
guish among three types of mapping, i.e., flood susceptibility,
flood inundation, and flood hazard.

— Flood inundation maps determine the extent of a flood,
during or after it has occurred (see Fig. 1a). Flood in-
undation maps represent flooded and non-flooded ar-
eas. This application is used for post-flood evacuation,
protection planning, and for damage assessment. These
maps can then also be used as calibration data for other
applications such as flood susceptibility or flood haz-
ard mapping. Flood images are obtained through remote
sensing techniques and processed by histogram-based
models (e.g., Martinis et al., 2009; Manjusree et al.,
2012), threshold models (e.g., Cian et al., 2018), and
machine learning models (e.g., Hess et al., 1995; Ire-
land et al., 2015).

— Flood susceptibility maps determine the tendency to
flooding of a study area based on its physical charac-
teristics (see Fig. 1b). This measure is only qualitative
and does not evaluate any flood variable. However, it
can provide reliable information when no quantitative
data are available and can be used to easily assess ar-
eas at risk at large scales. Flood susceptibility mapping
is performed by considering topographical, geographi-
cal, and meteorological factors (such as altitude, slope,
lithology, land use, and rainfall) and comparing their
spatial distribution with past flood events. This is done
with multivariate analysis (e.g., Tehrany et al., 2014;
Youssef et al., 2016) and multi-criteria decision analysis
(e.g., Kazakis et al., 2015; Mahmoud and Gan, 2018).

— Flood hazard maps measure the water depth and extent
across a flooded area (see Fig. 1c¢). Hazard maps also
consider different return periods of the floods and, thus,
the probability of a certain event. The latter is deter-
mined through a statistical analysis based on the fre-
quency and intensity of floods (Bobée and Rasmussen,
1995). We will also refer to flood hazard when the water
depths are estimated independently of the return peri-
ods. Flood hazard can also provide a measure of the flow
velocities. Flood hazard maps are carried out by numer-
ical models, which simulate flood events by discretizing
the governing equations and the computational domain.
We distinguish between one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D) mod-
els with increasing complexity and, generally, accuracy
(e.g., Horritt and Bates, 2002; Teng et al., 2017).
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Figure 1. Examples of the types of flood maps analyzed for a representative area. Panel (a) shows a possible flood inundation map, panel (b) a
flood susceptibility map, and panel (c) a flood hazard map, as defined in this paper.

Flood damage and flood risk maps (de Moel et al., 2009)
are other examples of mapping applications. However, they
are not described in more details here as no related DL-based
paper was found in the literature. Similarly, the review also
excludes applications which do not result in maps, such as
water level forecasts.

2.1.3 Spatial scale

The importance of flood processes and the resolution of the
flood maps varies with their spatial scale. Following de Moel
et al. (2015), we also distinguish between local, regional, na-
tional, and supra-national scales. The choice between scales
is often subjective, but here follows a rational categorization:

Local scale refers to small study areas, such as towns
or a specific river stretch. If a measure of the study area
is given, we consider it in this category if the area is
smaller than 100 km?.

— Regional scale considers a specific province, watershed,
or large city. Study areas smaller than 100000 km? be-
long to this scale.

— National scale refers to assessments of entire countries
for which consistent (national) data are present. To ex-
clude small countries, the study area must be greater
than 100 000 km?.

— Supra-national scales concern assessments of an entire
continent or the globe.

2.2 Deep learning methods

Deep learning studies how neural networks learn representa-
tions from data through multiple levels of abstraction (LeCun
et al., 2015). A neural network is a non-linear compositional
model formed by a hierarchical layering of parametric func-
tions that take an input variable x and produce an estimate y
of a target representation y as y = f(x;6), where 6 are the
function’s parameters. The purpose of DL is then to calibrate
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those parameters to have the best fit between predicted out-
put and real output. The raw data x are input to the neural
network and the output of each layer serves as input for the
following layer, until the final layer, which coincides with the
estimate y. A neural network with L layers can be expressed
as follows:

y=fr(:0p)0 fr_1(:0p_1)o...0 fi1(x;01),
X = fe(x¢—1;0), for £ =1,...,L,
y=xr, (1)

where fy(-;80¢) is the function at layer ¢, o represents the
composition of functions, @, are the trainable parameters,
and y, is the output layer £. In a network architecture, the lay-
ers between the input and the output layer are called hidden
layers since their output is not shown. Estimating parameters
0, is typically referred to as “learning”, and it is performed
by minimizing a loss function, through back-propagation
(Rumelhart et al., 1986). Depending on the task, neural net-
works can be trained via supervised and unsupervised learn-
ing. Since, in flooding analysis, DL has been mainly ap-
proached via supervised learning, we focus on that learning
process.

Supervised deep learning models identify a mapping from
input to output, given a training set of input—output pairs. For
example, a training set for flood hazard mapping may com-
prise a flood’s rainfall hyetograph as input x and the corre-
sponding maximum flooded area as output y. Thus, the loss
function I (y, y) compares the real output y with the pre-
dicted one 3. The loss function is typically the quadratic loss
for regression problems, where the data are continuous (e.g.,
water depth), or the cross-entropy loss for classification prob-
lems, where the data are categorical (e.g., flooded and non-
flooded areas). As training data, we can have observations
or simulations. Observational data are derived from remote
sensing, flood inventory maps, and measuring stations, while
simulation data are derived from numerical solvers. Once a
model is trained, its goodness of fit is analyzed with a test set
composed of data that the model has not seen. If the model
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performs well for the test set, it is said to generalize or ex-
trapolate well. The ability to generalize is one of the most
important properties of DL and becomes even more impor-
tant in high-dimensional inputs (Balestriero et al., 2021).

2.2.1 Multi-layer perceptron

Among the possible neural network layers, fully connected
ones are the most simple. In a fully connected layer, the layer
propagation rule is given by the following:

X = fe(xg—1,0p) = o (Wexg_1), 2

where x, is the output of the layer ¢, o(-) is a point-
wise non-linearity (e.g., ReLU, o (x) =max{0, x}, or sigmoid,
o(x)= #), Xx¢—1 is the input of the layer ¢, and the train-
ing parameter W is a weight matrix. Multi-layer perceptrons
(MLPs) are composed by sequences of fully connected lay-
ers (Fig. 2a). The expressivity of the network increases with
the dimensions of the hidden layers, as shown in Fig. 2a.
When the dimension of the hidden layers decreases and then
increases, as shown in Fig. 2b, the architecture is called
encoder—decoder (ED). The idea behind this architecture is
that only certain latent representations of the input are useful
to represent the output (e.g., Taormina and Galelli, 2018).

In fully connected layers, the values of the parameters in
W are independent between them, and there is no reuse of
any of them. Thus, the number of learnable parameters is
of the order of the input size, making fully connected layers
inappropriate for inputs of large dimensions. This issue is re-
ferred to as the “curse of dimensionality” and implies that, as
the dimension of the input increases, the amount of training
data needed to learn representations increases exponentially
(LeCun et al., 2015).

To overcome the curse of dimensionality, we need to ex-
ploit the structure in data. In flood analysis, data are usually
structured; for example, neighboring pixels in raster data rep-
resent spatial proximity of nearby close elements, while dis-
charge values in a hydrograph represent temporal proxim-
ities. Neural network layers can thus be defined in a way
to exploit these data structures. These assumptions create
what is known as an inductive bias, which imposes con-
straints on relationships and interactions among inputs in
the learning process, thus prioritizing some solutions over
others (Battaglia et al., 2018), as shown in Table 1. Induc-
tive biases derive from the fundamental geometric princi-
ple of symmetry (Bronstein et al., 2021). The symmetry of
a system is a transformation that leaves a certain property
of said system unchanged. Symmetry results in invariance
and equivariance properties. Invariance implies that transfor-
mations on the input features do not change the output (i.e.,
f(g(x)) = f(x), g(-) being a generic transformation), while
equivariance entails that transformations on the input fea-
tures change the output via an equivalent transformation (i.e.,
f(g(x)) =g (f(x)), g'(-) being a transformation equivalent
to g(-)). We explain the concept of invariance and equiv-
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Table 1. Inductive biases and preferred types of data for different
neural network layers (adapted from Battaglia et al., 2018).

Layer Data type Inductive bias

Unstructured data  —
Grid elements Spatial equivariance
Sequences Temporal equivariance

Fully connected
Convolutional
Recurrent

ariance with an example. Consider a picture with a flooded
area in its top-left corner and one with the same flooded area
shifted in the bottom-right corner. An invariant model would
predict that there is a flooded area in both images, while an
equivariant model would also reflect the change in position of
the flood, i.e., identify that the flood is in the top-left corner
in one case and in the bottom-right corner in the other. In this
case, invariance and equivariance are associated to a spatial
translation, but the same principle applies to other transfor-
mations, such as temporal translation. Inductive biases thus
lead to the reuse of parameters in different parts of the in-
put of each layer. For instance, convolutional kernels can be
used on images of different dimensions, and recurrent layers
can consider time series of variable length. Fully connected
layers, instead, cannot have such inductive bias capabilities.
The main characteristics for each considered layer are syn-
thesized in Table 1. The input data type and the inductive
biases are described for each studied layer.

2.2.2 Convolutional neural network

Convolution is an operation for which every entry of an in-
put matrix is replaced by a spatially weighted average of its
neighboring entries, as shown in Fig. 2d. The weights are
defined by a matrix, called kernel, and are point-wise mul-
tiplied with the neighboring entries. This procedure is then
repeated, using the same kernel, for every entry in the input.
Convolutional layers are a neural network layer that apply
convolution on a input using trainable kernels, i.e., the ker-
nels’ weights are learned during optimization (LeCun and
Bengio, 1995). The propagation rule of layer £ of a convo-
lutional layer is as follows:

xg4+1 = 0 (Kgxxy), 3)

where K, is the kernel function for the ¢ layer, and * is
the convolution operator. Convolutional layers are mostly ap-
plied to images, i.e., two-dimensional spatial grids. For such
inputs, the kernel is a 2D matrix. Convolutional layers have
an inductive bias of translational equivariance, which reflects
the idea that spatially close grid elements influence each
other. This results in the reuse of the same kernel across the
different input parts, and it implies that it matters where a pat-
tern or object is in an image and that the model should be able
to recognize it. Convolutional layers thus perform feature
extraction, identifying relevant characteristics in the input.

Hydrol. Earth Syst. Sci., 26, 4345-4378, 2022
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Figure 2. Deep learning architectures, with (a) a multi-layer perceptron (MLP) composed of a sequence of three fully connected layers. Every
layer is connected to the following one by weights, represented by directed arrows. The values of the input, hidden, and output layers are
represented, respectively, by vectors x¢, x1, and y. (b) An MLP encoder—decoder. The input data x¢ are encoded into a lower dimensional
layer x1 and then decoded into the output y. This structure is also applicable to convolutional and recurrent layers. (¢) A convolutional
neural network (CNN) composed of a convolutional layer and a fully connected layer. The green squares represent an input tensor, the
orange squares represent hidden layers, and the red parallelogram on the right represents the output layer. The small box K represents the
convolutional kernel described in Eq. (3). The final layer depends on the task. (d) Visual explanation of how convolutional kernels work. Each
element of the kernel is multiplied by its matching input value. Then, all values are summed to obtain the convolved output. This process is
repeated across the whole input as the kernel shifts along it. (e) A recurrent neural network (RNN) in compact form (left) and in the unfolded
form (right). The iterative structure of the RNN (left) can be unfolded in time to show how hidden states influence the solution at each time
step (right). The coloring scheme indicates, for each architecture, the input (green), the state (orange), and the output (red).

Moreover, the reuse of parameters allows inductive learning
over images of different sizes or resolutions. Different from
fully connected layers, the number of parameters in a con-
volutional layer depends only on the kernel size because of
this parameter-sharing property (see Fig. 2c). Depending on
the input dimensions, we distinguish 1D convolutional layer
for vector inputs, such as a rainfall hyetograph, 2D convo-
lutional layers for matrix inputs, such as a digital elevation
model (DEM), and 3D convolutional layers for tensor inputs,

Hydrol. Earth Syst. Sci., 26, 4345-4378, 2022

such as stacked satellite images. Since 1D convolution con-
siders translation equivariance on vectors, the inductive bias
is equivalent to temporal equivariance if the vector is a time
series.

Convolutional neural networks (CNNs) are composed of
layers alternating convolution and pooling. Pooling opera-
tion replaces the output at a certain location with a summary
statistic of the nearby features, thus reflecting translational
invariance (Bronstein et al., 2021). They extract a single fea-
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ture, such as the average or maximum value in a certain
neighborhood of a point. Furthermore, pooling reduces the
dimension of the input, speeding up computation. The final
layers of a CNN are typically fully connected when dealing
with classification or regression tasks. This layer allows us
to map the convolved embedding to the number of classes
or to the regressed value, respectively. Instead, if the task is
to perform image segmentation, i.e., classify specific parts of
an image, the final layers are composed of deconvolutional
layers, which perform the inverse operation of convolutional
layers, in an encoder—decoder structure. For details on convo-
lutional layers and CNNs, refer to Goodfellow et al. (2016).

2.2.3 Recurrent neural network

Recurrent layers are used for processing sequential data, such
as time series (Rumelhart et al., 1986). A recurrent layer can
be seen as a non-linear state space model expressing the out-
put at time ¢, y,, as a function of a former hidden state h;
and input x;. The basic formulation for a recurrent layer is as
follows:

hy = c(Wh¢_1+ Uxy),
Yy =0 (Vhy), )

where U, V, and W are trainable weight matrices. As it fol-
lows from (Eq. 4), the hidden state encodes the temporal
memory of previous time instances while the output map-
ping is instantaneous. These matrices are shared across time,
allowing the recurrent layer to exploit the temporal proximi-
ties of sequential data, irrespective of their position. This is,
for instance, the case for discharge hydrographs (e.g., Zhou
et al., 2021). Because there is an inductive bias in temporal
sequences, they allow us to reuse parameters without affect-
ing the performance.

Recurrent neural networks (RNNs) are neural networks
composed of recurrent layers. The iterative structure of the
RNNs can be unfolded in time to show how hidden states
influence the output at each time step (Fig. 2e). However,
the basic recurrent layer in Eq. (4) suffers from the prob-
lem of vanishing and exploding gradients (Hochreiter and
Schmidhuber, 1997). This occurs due to the iterative use of
the same layer which causes the weights to multiply several
times when back-propagating the error, ultimately leading to
vanishing gradients if the weights are small and exploding
gradients if the weights are large. This then constrains the
temporal memory of these networks and limits their capabil-
ity to extract long-term dependencies between the past inputs
and the current output.

This problem is typically solved via the use of long short-
term memory (LSTM) layers (Hochreiter and Schmidhuber,
1997). This variation in recurrent layers also improves the
hidden state mechanism, even allowing it to remember infor-
mation which is temporally distant well. Another common
variation is the gated recurrent unit (GRU; Cho et al., 2014),
which achieves comparable results with the LSTM architec-
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ture while using a simpler formulation. Similar to fully con-
nected and convolutional layers, recurrent layers can be used
in encoder—decoder architectures. This structure can be com-
posed of an RNN which generates a latent representation,
followed by another RNN that decodes it (e.g., Cho et al.,
2014).

The most successful applications of RNNs for flood man-
agement regard tasks related to sequences and time series
analysis, such as rainfall-runoff modeling (e.g., Kratzert
et al., 2019a). While RNNs are preferred over 1D CNNgs, re-
cently the latter started gaining momentum for some time
series learning tasks (e.g., Oord et al., 2016).

3 Review
3.1 Methodology

Papers were retrieved from the Scopus database by com-
bining the keywords “deep learning” or “neural network”
with “flood” or “flooding”. The 3338 publications obtained
were then filtered to include only journal papers from Jan-
uary 2010 until December 2021, in the areas of engineer-
ing, environmental science, and Earth and planetary sciences.
From this reduced list of 1308 papers, we considered the fol-
lowing two major refining criteria: (i) the papers should be
based on the deep learning models presented in Sect. 2.2,
and (ii) the applications must address the spatial variabil-
ity of floods (i.e., not focusing only on the temporal aspects
of flood analysis). This procedure resulted in 46 reviewable
papers. This list was finally extended via a snowball search
that considered cited and citing works, ultimately leading to
58 eligible documents (Fig. 3). We find that the described
methodology selected a representative subset for producing
a thorough review of recent advances and developments in
this field.

The selected papers are listed in Table 2 which reports the
major details, including the flood mapping application, the
type of flood, the DL model, and the spatial scale. General
findings related to these four criteria are first presented in
Sect. 3.2. Specific findings for each application are then pre-
sented in Sects. 3.3 (flood inundation), 3.4 (flood susceptibil-
ity), and 3.5 (flood hazard). These specific sections provide
a more in-depth discussion on the deep learning models em-
ployed, with a focus on the architecture, the input and output
data, and the performance assessment.

3.2 General findings
3.2.1 Flood mapping applications

Figure 4 shows the distribution of papers for each of the ap-
plications considered, i.e., flood inundation, flood suscepti-
bility, and flood hazard. The research community has dedi-
cated efforts to investigate each type of application, although
flood inundation and susceptibility have received the most
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Figure 3. Flowchart of the methodology applied for the paper selection.

attention. While papers on flood inundation are more evenly
distributed across years, applications for flood susceptibility
and, especially, flood hazard have increased in the last few
years. Similar to what was observed in related fields such as
hydrology (e.g., Sit et al., 2020), a strong surge in DL publi-
cations for spatial flood analysis is witnessed between 2018
and 2019. These years identify a turning point for Al in Earth
system sciences driven by the adoption of CNN (striped pat-
terns in Fig. 4) and RNN (dotted patterns) in lieu of tradi-
tional MLP models. The late use of convolutional and recur-
rent models is motivated by their recent popularization and
development, along with a rise in awareness of the ML ad-
vancements, contrary to fully connected layers, that have a
longer application history.

3.2.2 Flood types
Figure 5 shows the types of flood analyzed with respect to
each application. River floods are the most common, with

many applications in inundation and hazard mapping. This
is probably because, for historical reasons, most cities in the
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world are built close to rivers (Kummu et al., 2011). The sci-
entific community has dedicated significant effort to explor-
ing the potential of DL for urban flooding. This is difficult
to model because of the complex topography and the pres-
ence of a drainage system whose dynamics need to be cou-
pled with the overland flood (Lowe et al., 2021). Almost all
papers analyzing flash floods described flood susceptibility
mapping applications. This is expected due to the short du-
ration and the contingent nature of these phenomena, which
limit remote sensing imaging and numerical simulations used
in flood inundation and flood hazard mapping, respectively.
Despite the importance of coastal flooding (Neumann et al.,
2015), only a few papers report the use of DL for coastal
flooding. While other works are available in the literature
(Liitjens et al., 2020, 2021; Bowes et al., 2021), they were not
considered since the employed DL models were not trained
via supervised learning. Some of these works will be dis-
cussed in Sect. 5. Dam break floods are the least analyzed
type, possibly because of their relatively rare occurrence and
complexity.
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Table 2. Deep learning applications for flood mapping. References are classified in terms of flood mapping application, type of flood, deep
learning (DL) model, training data, and spatial scale.

Application Flood type DL model Training data  Spatial scale  Reference(s)
Inundation River MLP Observations ~ Regional Li et al. (2016a, 2015)
CNN Observations  Local Gebrehiwot et al. (2019); Nogueira et al. (2017); Hou et al.
(2021); Ichim and Popescu (2020); Hashemi-Beni and Gebre-
hiwot (2021); Wieland and Martinis (2019)
Regional Sarker et al. (2019); Kang et al. (2018); Nemni et al. (2020);
Isikdogan et al. (2017)
Urban MLP Observations  Local Amini (2010)
Regional Li et al. (2016b)
CNN Observations  Local Peng et al. (2019)
RNN, CNN  Observations  Local Dong et al. (2021)
Coastal CNN Observations  Regional Liu et al. (2019); Isikdogan et al. (2017)
Simulations Regional Muiioz et al. (2021)
Dam break MLP Observations  Regional Syifa et al. (2019)
Susceptibility ~ River MLP Observations  Regional Jahangir et al. (2019); Khoirunisa et al. (2021); Ahmadlou et al.
(2021); Popa et al. (2019); Kia et al. (2012); Ahmed et al.
(2021); Chakrabortty et al. (2021b); Saeed et al. (2021)
CNN Observations  Regional Y. Wang et al. (2020)
National Khosravi et al. (2020)
RNN Observations  Regional Fang et al. (2020a)
Flash MLP Observations  Regional Tien et al. (2020); Ngo et al. (2018); Popa et al. (2019);
Costache et al. (2020); Chakrabortty et al. (2021a)
National Kourgialas and Karatzas (2017)
CNN Observations  Regional Panahi et al. (2021); Liu et al. (2021)
Urban MLP Observations  Local Darabi et al. (2021)
Regional Kalantar et al. (2021)
CNN Observations  Local Zhao et al. (2021c, 2020)
Regional Lei et al. (2021)
Hazard River MLP Simulations Local Chu et al. (2020); Huang et al. (2021a); Xie et al. (2021); Lin
et al. (2020b, a); Jacquier et al. (2021)
CNN Simulations Local Kabir et al. (2020); Hosseiny (2021)
RNN Simulations Regional Zhou et al. (2021); Kao et al. (2021)
Flash CNN Simulations Local Yokoya et al. (2020)
Urban MLP Simulations Local Berkhahn et al. (2019); Chang et al. (2010)
CNN Simulations Regional Guo et al. (2021); Lowe et al. (2021)
Coastal RNN Simulations Local Hu et al. (2019)
Dam break MLP Simulations Local Jacquier et al. (2021)

MLP is the multi-layer perceptron, CNN is the convolutional neural network, and RNN is the recurrent neural network.

3.2.3 Spatial scale

As shown in Fig. 6, most applications consider local and
regional scales. Local scale refers to towns (e.g., Darabi

Lin et al., 2020a; Kabir et al., 2020), or river reaches (e.g.,
Chu et al., 2020; Gebrehiwot et al., 2019). As such, they
are mostly referred to as urban and river floods. The cases

et al., 2021; Berkhahn et al., 2019), small catchments (e.g.,
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sizes vary from very small ones, 165 m? (Hou et al., 2021),
to small towns up to 100 km? (Lin et al., 2020a). Regional-
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Figure 4. Publications by year, type of application, and type of DL model. The increasing trend of the last 5 years has been mostly driven by

the applications in flood susceptibility and flood hazard.
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Figure 5. Distribution of the types of floods per flood application in
the reviewed papers. River and urban floods are the most common,
while flash and coastal floods have fewer occurrences.

scale models consider a catchment (e.g., Popa et al., 2019),
a province (e.g., Y. Wang et al., 2020), or large cities (e.g.,
Lowe et al., 2021; Kalantar et al., 2021). Most works fo-
cus on river floods, while some study flash, urban, and
coastal floods. National-scale models refer to the assess-
ments of entire countries, with only two papers concern-
ing such scales, respectively, for Iran and Greece (Khosravi
et al., 2020; Kourgialas and Karatzas, 2017). Nemni et al.
(2020) and Sarker et al. (2019) consider several study ar-
eas across Africa and Asia and Australia, respectively, but
since the size of each area was smaller than 100 000 km?,
they were marked as regional-scale models. They also do not
fit within the national-scale classification since they do not
encompass whole nations. Supra-national-scale models as-
sessing the entire globe or a continent have not been stud-
ied yet with deep learning models. This seems unexpected,
since ML techniques have already been employed at global

Hydrol. Earth Syst. Sci., 26, 4345-4378, 2022

scales, outperforming traditional techniques, for example, in
the estimation of design floods along river networks (e.g.,
Zhao et al., 2021a). Since DL models have been shown to
outperform ML models, as later outlined in this review, more
models should be used at those scales in future studies.

3.2.4 DL architecture

Figure 4 reports the architecture used for each application,
showing that DL models are mainly based on fully connected
and convolutional layers.

MLP networks are widely used due to their flexibility and
ease of implementation. However, they are usually coupled
with other techniques to reach satisfactory performances.
Stochastic optimization techniques, such as the genetic al-
gorithm, firefly algorithm, and particle swarm optimization
were combined with MLPs to search the optimal model’s
parameters (e.g., Li et al., 2015; Ngo et al., 2018; Kalantar
et al., 2021). Multi-criteria decision analysis models, such
as frequency ratio and analytical hierarchy process, were
also coupled with MLPs to adjust the weights of each in-
put in flood susceptibility (e.g., Kourgialas and Karatzas,
2017; Costache et al., 2020; Popa et al., 2019). Further-
more, k-means clustering was used to categorize the dataset
in classes, to account for different topographical conditions;
then, for each class, an MLP was trained (e.g., Chang et al.,
2010; Huang et al., 2021a). Combining MLPs with such
methods partly compensates the lack of inductive biases;
however, this lack blocks the model from employing exist-
ing structures in the data, ultimately limiting their usability.
Since flooding phenomena have spatial and temporal struc-
tures, we expect MLPs to become progressively less used in
this field, as hinted by the trend in Fig. 4.

CNNs are best suited for processing raster files and im-
ages, thanks to their spatial inductive bias. Since most data
for flood analysis (e.g., elevation data, rainfall distribution
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Figure 6. Distribution of the spatial scale per (a) flood application and (b) type of flood in the reviewed papers. Local and regional scales are

the most used.

fields, and remote sensing image) come in this format, CNNs
have been increasingly employed by the research commu-
nity in the recent years. While most papers consider stan-
dard CNNs, there are a few which employ 1D CNNs (e.g.,
Dong et al., 2021; Guo et al., 2021; Liu et al., 2021) and 3D
CNNs (e.g., Y. Wang et al., 2020; Fang et al., 2020a). 1D
CNNs consider as input a hyetograph or a hydrograph of a
certain event, while 3D CNNs consider raster files stacked
upon each other. Regarding the architecture, different papers
for flood inundation consider an encoder—decoder structure
for image segmentation and classification (e.g., Nemni et al.,
2020; Hashemi-Beni and Gebrehiwot, 2021; Liu et al., 2019).
For such papers, the input is a satellite image of a flood, and
the output is its classification in flooded and non-flooded ar-
eas. This architecture allows the models to increase their per-
formance since they can retain high-frequency details in the
segmented images (Badrinarayanan et al., 2017).

Guo et al. (2021) and Lowe et al. (2021) use a convolu-
tional encoder—decoder structure for flood hazard mapping to
embed a rainfall hyetograph in the latent space. In this way,
they can consider both spatial and temporal data within the
same framework.

RNNs have been mostly employed to model temporally
varying floods, where they can exploit best their sequen-
tial inductive bias. However, they remain the least common
choice of DL architecture for spatial flood analysis. Most
papers apply RNNs on a time series, such as a hyetograph
or a hydrograph (e.g., Kao et al., 2021; Zhou et al., 2021).
Some papers, instead, consider spatial sequentiality by re-
shaping the original raster data into vectors (e.g., Fang et al.,
2020a; Panahi et al., 2021; Lei et al., 2021). For example,
Fang et al. (2020a) extract, for each pixel, its neighboring
pixels in a 3 x 3 window and then convert them into a vec-
tor based on spatial contiguity. However, this operation intro-
duces arbitrariness in the sequential order chosen for arrang-
ing the input pixels, since it is independent of the underlying
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topography. In fact, Panahi et al. (2021) and Lei et al. (2021)
show that these models underperform when compared with
CNNs. Among the different RNN layers, most works con-
sider LSTM units (Kao et al., 2021; Zhou et al., 2021; Fang
et al., 2020a), but simple recurrent units (Panahi et al., 2021;
Huang et al., 2021a) and GRUs (Dong et al., 2021) have also
been employed. Some papers analyzed the potential of RNNs
in combination with other techniques. Kao et al. (2021) use
an encoder—decoder architecture to forecast flood features
based on rainfall patterns. The encoder and the decoder steps
are composed of fully connected layers, while an LSTM is
present in the latent space to process rainfall data. Zhou et al.
(2021) identify representative spatial locations in the study
area. Then, an LSTM is trained to simulate the water levels’
evolution in time at each location. A water surface is ulti-
mately determined by interpolating the water depth at those
points. Dong et al. (2021) combine 1D CNNs and RNNs on
an urban channel network. The model takes as input the chan-
nels’ properties, such as their cross sections, and rainfall and
water level measures, which are taken from sensors in the
network. This input is then given in parallel to a 1D CNN
and to a GRU, whose output is then combined to predict
the temporal evolution of the flood. Hu et al. (2019) deploy
the LSTM model in a lower-dimensional space, obtained via
proper orthogonal decomposition and singular value decom-
position. The model then requires fewer data to be trained.

3.2.5 Performance assessment

This section discusses different approaches for assessing the
performance of the DL models, i.e., how well they match
the outcomes of traditional and machine learning models.
Flood susceptibility and inundation models are compared
with techniques such as frequency ratio (Popa et al., 2019),
a type of MCDA model, the soil conservation service runoff
model (Jahangir et al., 2019), a hydrologic model, and au-
tomatic threshold model (Nemni et al., 2020), a histogram-
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based model. They are also compared with machine learn-
ing techniques, such as support vector machines (e.g., Sarker
et al., 2019; Gebrehiwot et al., 2019; Zhao et al., 2020), ran-
dom forest (e.g., Darabi et al., 2021; Zhao et al., 2020), adap-
tive neuro-fuzzy inference system (Panabhi et al., 2021), deep
boost (e.g., Chakrabortty et al., 2021a; Ahmed et al., 2021),
and radial basis function (Nogueira et al., 2017). DL mod-
els are shown to outperform both traditional and ML models
in terms of the accuracy of the results. Flood hazard mod-
els, instead, are compared against numerical models, since
they act as surrogate models. Thus, their main purpose is to
increase computational speed while maintaining low predic-
tion errors.

There are also a few papers that compared different DL
models. Huang et al. (2021b) compared MLPs with RNNss,
while Fang et al. (2020a) showed that MLPs were out-
performed by the more inductive-biased approaches such
as RNNs, 1D CNNs, and 3D CNNs. Wieland and Marti-
nis (2019) showed that CNNs widely outperform MLPs, as
expected, because of their inductive bias capabilities. Be-
sides accuracy, the number of parameters and the data re-
quirements are important factors when comparing DL mod-
els. A higher number of parameters results in better perfor-
mances but may also lead to overfitting, which is a condi-
tion where the model decreases its performance on the testing
data. Hence, when deployed in similar settings, such a model
would perform drastically worse. Moreover, data are not al-
ways available, leading to possibly unfair comparisons be-
tween models with different data budgets. As such, the same
model may give different outcomes, depending on the con-
sidered case.

In supervised learning, we distinguish between regression
and classification problems, depending on whether the target
values to predict are continuous (e.g., water depth) or discrete
(e.g., flooded vs. non-flooded area), respectively. Depending
on the task, we employ a different set of metrics to evaluate
model performances.

Regression metrics are a function of the differences,
or residuals, between target and predicted values. The
most common metrics include the root mean squared error
(RMSE), the coefficient of determination (R?), and the mean
average error (MAE). RMSE and MAE improve as they ap-
proach zero, while R? improves as it approaches one. In gen-
eral, MAE may be preferred to RMSE since the latter is heav-
ily influenced by the presence of extreme outliers. However,
since both metrics are averaged on a domain, their compari-
son across different works requires careful attention.

Classification tasks can be either binary (e.g., predict
flooded and non-flooded locations) or multi-categorical (e.g.,
classifying between permanent water bodies, buildings, and
vegetated areas), according to the output number of classes.
In the following discussion, we focus on the former, with
concepts extending to the second case. When computing bi-
nary classification metrics, flooded areas are generally repre-
sented as a positive class, while non-flooded areas are gener-
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ally represented as a negative class. The most common met-
rics for flood modeling are accuracy, recall, and precision,
followed by other indices such as the area under the receiver
operator characteristic curve. Accuracy represents the num-
ber of correct predictions over the total. While popular and
easy to implement, this metric is inappropriate for imbal-
anced datasets, where some categories are more represented
than others. For example, if test samples feature an average of
90 % in a non-flooded area, a naive model constantly predict-
ing no flooding would reach 90 % accuracy, despite having
the wrong assumptions. Furthermore, since it may be bet-
ter to overestimate a flooded area than to underestimate it,
one could resort to metrics such as recall that account for
false negatives and thus penalize models that cannot recog-
nize a flooded area correctly. However, when used alone, re-
call can lead to similar issues to those described for accu-
racy, e.g., yielding a perfect score for a model always pre-
dicting the entire domain as flooded. Thus, for an exhaustive
understanding of the model’s performance, one should also
consider metrics accounting for false positives, i.e., where
the model misclassifies non-flooded areas as flooded. There
are several possible metrics, such as the F1 score, the Kappa
score, or the Matthews correlation coefficient, each with their
drawbacks and benefits (e.g., Wardhani et al., 2019; Delgado
and Tibau, 2019; Chicco and Jurman, 2020). A reasonable
choice is the F1 score, which is the geometric mean of recall
and precision, and it thus equally considers both false nega-
tives and false positives. Another good example is the ROC
(receiver operating characteristic) curve that describes how
much a model can differentiate between positive and nega-
tive classes for different discrimination thresholds (Bradley,
1997). The area under the ROC curve (AUC) is often used
to synthesize the ROC as a single value. However, the AUC
loses information on which parts of the dataset the model
performs best. For this reason, one should always interpret
these results carefully, especially when comparing different
studies. Our purpose here is to show that, for the same case
study, DL tends to outperform traditional models.

For surrogate models, the comparison is also performed
in terms of their speed-up, which is determined as the ratio
between the simulation time of the numerical model and the
simulation time of the DL model. For a correct comparison,
the training time of the DL model must be considered as well
in this analysis. However, this was done only by a few pa-
pers (e.g., Guo et al., 2021; Kabir et al., 2020; Jacquier et al.,
2021).

3.3 Deep learning for flood inundation

Flood inundation maps determine the extent of a flood dur-
ing or after its occurrence. We remind the reader that, in this
paper, we refer to flood inundation as the process of map-
ping flooded and non-flooded areas from a picture of a flood.
This classification is usually binary (e.g., Peng et al., 2019;
Nemni et al., 2020), but it can also be extended to include
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Figure 7. Distribution of the comparison metrics per type of ap-
plication. The colors represent the different types of applications,
while the patterns represent the considered metrics.

permanent water bodies (e.g., Sarker et al., 2019), vegetation
(e.g., Ichim and Popescu, 2020), buildings (e.g., Hashemi-
Beni and Gebrehiwot, 2021), and more (e.g., Mufoz et al.,
2021). All types of floods were well represented for this ap-
plication, except for flash floods (Fig. 5). We attribute this to
the limited frequency of observation of most remote sensing
techniques.

Regarding the spatial scale, most papers focused on lo-
cal and regional scales. The availability of remote sensing at
wider scales is increasingly higher (e.g., Observatory, 2021);
however, this seems to be only partially considered. A plau-
sible reason is the limited frequency of observation of the
satellites. High temporal remote sensing imagery has a low
spatial resolution. Few papers tackle this issue by increas-
ing the resolution of the predicted flood maps, via a neural
network, with a technique known as super-resolution (e.g.,
Li et al., 2015, 2016b). Super-resolution enhances the qual-
ity of an input low-resolution image (W. Yang et al., 2019).
These papers show that MLPs improve the accuracy of super-
resolution mapping with respect to other techniques, such
as spatial attraction models. We argue that further improve-
ments of super-resolution could be obtained by employing
CNNs, which lend themselves naturally to such tasks, as
demonstrated by applications in similar fields (Ma et al.,
2019).

3.3.1 DL architecture

As the task of recognizing floods from a picture can be re-
garded as an image segmentation task, most deep learning
models used are based on CNNs. There are also a few earlier
papers that use MLPs (e.g., Li et al., 2016a; Amini, 2010)
because CNNs were not yet adopted by researchers in the
field. Dong et al. (2021) use a combination of RNNs and 1D
CNNs to determine the temporal evolution of flooded and
non-flooded nodes in an urban channel network, as described
previously. In this case, the choice of recurrent and 1D con-
volutional layers is well motivated due to their temporal in-
ductive bias.
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3.3.2 Input and output data

Satellite data are the most used input for flood inundation
applications (e.g., Sarker et al., 2019; Peng et al., 2019;
Nogueira et al., 2017). Other input data sources include un-
manned aerial vehicle data (UAV; e.g., Gebrehiwot et al.,
2019; Ichim and Popescu, 2020), hydrographs (e.g., Hou
et al., 2021), and DEMs (e.g., Hashemi-Beni and Gebrehi-
wot, 2021; Mufioz et al., 2021). Only Dong et al. (2021)
differ from the other papers by considering sensors in the
place of flood pictures. Inundation maps produced by 3D nu-
merical models are also used as target prediction (Mufioz
et al., 2021). The results from the numerical model can be
used as a detailed reference for the DL model. Satellite data
and UAV imagery are both remote sensing data that repre-
sent a flood event seen from above. The main differences
concern the scale, the resolution, and the availability. UAVs
are applicable only for small areas, but their resolution is
higher than satellite data. UAVs can be readily used but may
be unavailable in certain areas. On the other hand, satellite
data are available worldwide but the frequency of observa-
tion can be limiting. Satellites can also struggle to extract
information below clouded areas (e.g., Meraner et al., 2020).
When combining information from different sources, the in-
put data have different resolutions, leading to possible prob-
lems for some deep learning models, which take fixed-size
inputs. One way to integrate different data resolutions is by
data fusion (e.g., Mufioz et al., 2021). This process allows the
creation of more consistent, accurate, and useful information
than that provided by any individual data source.

3.3.3 Performance assessment

As defined in Sect. 3.3, flood inundation mapping determines
which cells of the flood picture are represented as flooded or
not. Thus, the task is regarded as a classification problem, as
confirmed by the metrics used (Fig. 7). The selected papers
often use several metrics (see Table Al in the Appendix),
but for clarity, we consider a single metric for each work.
The metric selection depends on the employed ones and fol-
lows the considerations presented in Sect. 3.2.5, with pref-
erence for metrics such as F1, AUC, or recall, if available.
Deep learning models have consistently shown improved
performances in terms of the selected metrics (Table 3). Li
et al. (2015, 2016b) compare optimization techniques with
and without MLPs for super-resolution-based flooding. They
show that a DL model slightly increases the performances.
This may be because the models are based on MLPs and
thus neglect any spatial structure in the data, which could
be considered, instead, by CNNs. Most CNN models show
noticeable improvements with respect to traditional thresh-
old methods, such as the normalized difference water index
(NDWI) and automatic threshold model (ATM; e.g., Wieland
and Martinis, 2019; Isikdogan et al., 2017; Nemni et al.,
2020), and with respect to machine learning models such
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as random forest (RF) and support vector machine (SVM).
This reflects similar results obtained in image detection tasks
(Badrinarayanan et al., 2017).

3.4 Deep learning for flood susceptibility

Flood susceptibility determines the tendency to flood in a
study area based on its physical characteristics and given a
set of known past flood events. This is done by assigning
to each location a level of susceptibility ranked from low
to high (see Fig. 1b). The susceptibility depends on the dis-
tribution of the inputs, often called flood conditioning fac-
tors, in the function of recorded past flood events. The deep
learning model then computes, for each point in the area, a
score from O (non-flooded) to 1 (flooded). These scores are
finally divided into several classes, generally using the natu-
ral (Jenks) breaks method (e.g., Fang et al., 2020a; Y. Wang
et al., 2020; Khoirunisa et al., 2021), to obtain a susceptibil-
ity map. An exception is given by Jahangir et al. (2019) and
Kia et al. (2012), who train their models to predict discharge
values and then use a geographic information system (GIS)
model for the mapping. In both cases, the model performs
well when the recorded flood events occur in the predicted
high-susceptibility areas.

There exist DL-related applications for all types of floods
(see Fig. 6b). Furthermore, Fig. 6a shows that most of the
works are concerned with regional or wider scales (e.g., Tien
et al., 2020; Panahi et al., 2021; Khosravi et al., 2020). This
is expected, since susceptibility mapping gives a qualitative
estimate of which locations are prone to flooding. Operating
on small scales may thus be limiting, both in terms of data
availability and applicability for prevention strategies. The
data requirements for an accurate estimate would probably
be too high for a small area.

3.4.1 DL architectures

Most papers use MLP and CNN. Models based on MLPs
consider single points or pixels as inputs (Tien et al., 2020;
Ahmadlou et al., 2021; Khoirunisa et al., 2021), while CNNs
consider the whole raster files (Zhao et al., 2020; Khosravi
et al., 2020; Y. Wang et al., 2020). Since MLPs lack induc-
tive bias, they provide less coherent results, meaning that the
variation among neighboring cells can be high. This is par-
tially solved by coupling the MLP architecture with other
statistical techniques, such as frequency ratio (e.g., Darabi
etal., 2021; Popa et al., 2019; Costache et al., 2020). Instead,
CNN s have a spatial inductive bias; thus, they inherently con-
sider the structure of the input, providing more coherent flood
maps (e.g., Khosravi et al., 2020). However, Y. Wang et al.
(2020) and Liu et al. (2021) show that 1D CNNs, which per-
form convolution on the input features for each domain’s cell,
are not suited for this problem, as they do not properly lever-
age any inductive bias. Some works showed that deep be-
lief networks (DBNs), which are an unsupervised variation
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of MLPs, could outperform standard MLPs in flood suscepti-
bility mapping (e.g., Shirzadi et al., 2020; Pham et al., 2021).

3.4.2 Input and output data

The inputs for the deep learning models are several. We dis-
tinguish between the following five input typologies:

1. topographical inputs, which are derived from a digital
elevation model, such as elevation, slope, and aspect;

2. meteorological inputs, related to the hydrological char-
acteristics and derived from measuring stations and
satellites, such as rainfall distribution and frequencys;

3. geological inputs, related to the properties of the soil,
such as lithology and soil type;

4. geographical inputs, related to observable surface char-
acteristics and obtained through remote sensing, such
as land use and normalized difference vegetation index;
and

5. anthropogenic inputs, related to the presence of artificial
environments, such as distance from roads.

Topographical data were the most frequent type of input.
Many papers present a sensitivity analysis to determine
which factors influenced the final results the most. On av-
erage, these were slope, land use, aspect, terrain curvature,
and distance from the rivers (e.g., Khosravi et al., 2020; Fang
et al., 2020a; Popa et al., 2019; Costache et al., 2020). A
complete list of inputs is reported in the Appendix (Fig. B1).
As there are several typologies of inputs, it is important to
design an appropriate model to integrate heterogeneous en-
vironmental information.

As output data, most papers considered a flood inventory
map given by a set of flooded and non-flooded locations.
The flooded locations were derived from measurements and
records taken from remote sensing and stations, while non-
flooded locations were taken randomly from locations with
no previous flood record.

3.4.3 Performance assessment

In flood susceptibility analysis, both classification and re-
gression metrics are adopted (Fig. 7). While classification
metrics are used to identify flooded or non-flooded areas,
the purpose of regression metrics is often omitted unless the
reference target is a discharge hydrograph (Jahangir et al.,
2019; Kia et al., 2012). Both types of metrics are used in
few papers (e.g., Panahi et al., 2021; Khosravi et al., 2020).
Because of the problem’s setup, classification metrics are
more reliable in the performance assessment. Following the
considerations in Sect. 3.2.5, we selected as preferable met-
ric AUC, also because of its frequent availability for flood
susceptibility mapping. For all the papers with comparisons,
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Table 3. Performance of the deep learning and comparison with reference models for flood inundation.

Case study Deep learning ‘ Comparison Reference

size (km?)  Model Metric ‘ Model Metric

2.2 MLP Accuracy =70 % ML Accuracy =57 % Amini (2010)

225 MLP Accuracy =86.1% | SAM Accuracy =83.9% Lietal. (2016b)

3600 MLP+PSO  Accuracy=81.6% | PSO Accuracy=79.7% Lietal. (2016a)

5625 MLP + GA Accuracy =81 % GA Accuracy =79.3% Lietal. (2015)

0.00016 CNN Precision =0.927 - - Hou et al. (2021)

0.01 CNN Accuracy =95.5% | SVM Accuracy =87.4%  Gebrehiwot et al. (2019)

0.9 CNN IoU=84% SVM+RBF IoU=283% Nogueira et al. (2017)

5.2 CNN Accuracy=924% | RG Accuracy =91.8% Hashemi-Beni and Gebrehiwot (2021)
10 CNN Accuracy =96.4% | RF Accuracy =87.3%  Ichim and Popescu (2020)
59.3 CNN F1=0.955 RF F1=0.922 Peng et al. (2019)

59.3 CNN F1=0.90 RF F1=0.84 Wieland and Martinis (2019)
200 CNN F1=0.975 - - Mufioz et al. (2021)

237 CNN F1=0.90 NDWI F1=0.70 Isikdogan et al. (2017)
10895 CNN F1=0.94 M1 F1=0.78 Kang et al. (2018)

23300 CNN F1=0.88 - - Liu et al. (2019)

25000 CNN F1=0.92 ATM F1=0.71 Nemni et al. (2020)

31450 CNN Recall =62.8 % SVM Recall =25 % Sarker et al. (2019)

4600 RNN+CNN F1=0.77 CNN F1=0.734 Dong et al. (2021)

ML is the maximum likelihood, SAM is the spatial attraction mode, PSO is the particle swarm optimization, GA is the genetic algorithm, SVM is the support vector
machine, RBF is the radial basis function, RG is the region growing, RF is the random forest, NDWI is the normalized difference water index, and ATM is the automatic

threshold model.

deep learning models consistently showed improved perfor-
mances with respect to the reference models, with few ex-
ceptions (Table 4). Deep boost (DB) is a machine learn-
ing algorithm, based on deep decision trees (Cortes et al.,
2014), which could slightly outperform MLP in a few works
(Ahmed et al., 2021; Chakrabortty et al., 2021b). Combining
optimization algorithms, such as particle swarm optimiza-
tion, with MLPs, to improve the training, has a limited ef-
fect on the performance improvement (Kalantar et al., 2021;
Ngo et al., 2018). Moreover, CNNs increase the performance
with respect to traditional models more than MLPs. Fang
et al. (2020a) show that encoding spatial sequentiality with
LSTMs works slightly better than 1D CNNs and 3D CNNss;
however, they avoid a comparison with 2D CNNSs.

3.5 Deep learning for flood hazard

Flood hazard predicts the depth, velocity, and extent of
floods. This application produces maps which evaluate, to a
certain event, its maximum inundation (e.g., Guo et al., 2021;
Berkhahn et al., 2019; Lowe et al., 2021) or how it evolves in
time (e.g., Lin et al., 2020a; Zhou et al., 2021). While most
studies consider the probability of different events using re-
turn periods (e.g., Kabir et al., 2020; Guo et al., 2021), there
are a few papers which determine the water depth map for a
single event (e.g., Hu et al., 2019; Chang et al., 2010). How-
ever, no papers were identified that predict the flow veloc-
ities. Since the simulation results are taken as ground-truth
data for training, deep learning models for flood hazard map-
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ping are used as surrogate models in place of numerical mod-
els.

The most-studied types of floods are river and urban
floods. As regards the spatial scale, the models are carried
out at local and regional scales. This is probably due to the
computational burden of performing several simulations at
larger scales to train the deep learning model.

3.5.1 DL architecture

The deep learning models are mainly based on MLPs and
RNN:Ss. In particular, RNNs are applied when a spatiotempo-
ral estimation of the water depths is performed. CNNs were
initially discarded but have been used more in recent years
(e.g., Guo et al., 2021; Lowe et al., 2021; Kabir et al., 2020).
Hu et al. (2019) and Jacquier et al. (2021) use an LSTM and
an MLP, respectively, in combination with a reduced order
modeling framework. In the first case, the DL model is ap-
plied on the reduced space, while in the latter DL is used as
surrogate for the decomposition method.

3.5.2 Input and output data

The inputs are hyetographs, which represent the rainfall pre-
cipitation or intensity in time (e.g., Berkhahn et al., 2019;
Kao et al., 2021; Guo et al., 2021), or hydrographs, which
represent the discharge in time (e.g., Chu et al., 2020; Zhou
etal., 2021; Lin et al., 2020a). Other inputs such as the DEM
and the roughness coefficient, also used for numerical mod-
els, are sometimes considered as additional inputs (e.g., Guo
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Table 4. Performance of the deep learning and comparison with reference models for flood susceptibility.

Case study Deep learning Comparison Reference

size (km?)  Model Metric ‘ Model Metric

27 MLP +ensemble AUC=0.847 | RF AUC=0.821 Darabi et al. (2021)

132 MLP R?=0.802 - - Khoirunisa et al. (2021)
147 MLP + PSO AUC =0.98 MLP AUC =0.96 Kalantar et al. (2021)

207 MLP R2=0.82 SCS R2=0.71 Jahangir et al. (2019)

465 MLP AUC=0.917 | PSO AUC=0.929 Chakrabortty et al. (2021b)
1128 MLP AUC=0.901 | DB AUC=0.917 Ahmed et al. (2021)

1465 MLP AUC=0.960 | SVM AUC=0.936 Tien et al. (2020)

1510 MLP AUC=0.970 | SVM AUC=0.960 Ngo et al. (2018)

2600 MLP + AHP AUC=0.953 | MLP+FR AUC=0.942 Costache et al. (2020)
4673 MLP AUC=0.93 DB AUC=0.96 Chakrabortty et al. (2021b)
5264 MLP + FR AUC =0.97 FR AUC=0.937 Popaetal. (2019)

12050 MLP AUC=0974 | - - Ahmadlou et al. (2021)
132000 MLP R%2=0.98 - - Kourgialas and Karatzas (2017)
131 CNN AUC=0.90 RF AUC=0.78 Zhao et al. (2020)

605 CNN AUC=0.84 RNN AUC=0.82 Lei et al. (2021)

1543 CNN AUC=0.937 | SVM AUC=0.883 Y. Wang et al. (2020)
12000 CNN AUC=0.832 | ANFIS AUC=0.70 Panahi et al. (2021)
1649195 CNN AUC=0.75 - - Khosravi et al. (2020)
90016 CNN + FMV AUC=00912 | SVM-FMV AUC=0.898 Liuetal. (2021)

1543 LSTM AUC=0.965 | 3D CNN AUC=0.956 Fang et al. (2020a)

PSO is the particle swarm optimization, SCS is the soil conservation system model, SVM is the support vector machine, AHP is the analytic hierarchy
process, RF is the random forest, FR is the frequency ratio, DB is the deep boost, ANFIS is the adaptive neuro-fuzzy inference system, and FMV is the

fuzzy membership value.

et al., 2021; Chang et al., 2010; Huang et al., 2021b). Lowe
et al. (2021) performed a forward selection to identify rel-
evant topographic variables, showing that aspect and local
depressions improve the model’s prediction for urban floods.

The output is a water depth map. For the datasets, it is ob-
tained via numerical models based on the 2D shallow water
equations. 1D, 1D-2D, and 3D models are also used (Kao
et al., 2021; Chang et al., 2010; Hu et al., 2019). The main
reason why numerical models are used is to simulate events
that have never occurred or have never been observed, such
as floods with high return periods. Even though observed
data were not employed, they could be used in future re-
search to corroborate the transferability of such methods.
When training only on the predictions of numerical models,
the results of the deep learning models are limited in terms
of accuracy by the numerical models’ one, i.e., if the numer-
ical model does not represent reality then neither will the DL
model. Thus, when the model is deployed on real data, there
may also be some generalization issues caused by the differ-
ence between the training and testing data. The inclusion of
real measured data may thus also improve the accuracy with
respect to numerical models.

3.5.3 Performance assessment

In flood hazard, regression metrics are used to evaluate the
water depth, while classification metrics are used to evaluate
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the flood extent, as done for flood inundation (Fig. 7). While
for flood susceptibility and inundation DL models were used
to improve the performances, in flood hazard their main fo-
cus is to improve the speed, while still maintaining reason-
ably low errors with respect to the numerical predictions.
This is highlighted in Table 5, for all papers which provide
information on computational times of both numerical and
deep learning models. However, the comparison of speed-up
across different papers is often unrealistic, since it depends
on the number of performed numerical simulations and on
the type of numerical model. A similar consideration persists
for the error scores, as they depend on the scale of the case
study and on its resolution. Moreover, the real error of mod-
els trained on numerical results depends on that of the under-
lying numerical simulator. Hence, the latter must be reliable
to have trustworthy predictions in real scenarios. A final re-
mark regards the loss function employed in the training of
the DL models. The minimization of the squared errors does
not guarantee that the solution will have physical meaning.
For flood hazard mapping, a possible solution is then to en-
force the conservation of the mass or momentum equations
by adding such terms in the loss function. This provides ad-
ditional biases on the predicted solution and was shown to
increase its performance in representing the numerical mod-
els (e.g., Zhang et al., 2021).
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Table 5. Performance of the deep learning and comparison with numerical models for flood hazard.

Case study  Deep learning Numerical ~Comparison Speed-up  Reference

size (km2) model model measure

0.6 MLP 2D RMSE =0.0013m 1000 % Berkhahn et al. (2019)

7.7 MLP 2D RMSE=0.16m 100x Chu et al. (2020)

21 MLP + clustering 2D RMSE <0.3m - Huang et al. (2021a)
for 99.7 % of domain

31 MLP 1D-2D MAE =0.06 m 1000 x Chang et al. (2010)

92 MLP 2D RMSE <0.3m - Lin et al. (2020a)
for 82 % of domain

92 MLP 2D MSE < 0.2m? Lin et al. (2020b)
for 91 % of domain

- MLP 4+ ROM 2D RE=2.8% 33x Jacquier et al. (2021)

10 CNN 2D MAE =0.0012m - Hosseiny (2021)

10.5 CNN 2D MAE < Im 2000x Guo et al. (2021)
for 93 % of domain

14.5 CNN 2D RMSE=0.11m 38x Kabir et al. (2020)

72 CNN 2D RMSE=0.22m - Yokoya et al. (2020)

400 CNN 2D RMSE =0.08 m - Lowe et al. (2021)

18.5 LSTM + ROM 3D RMSE=0.01m 1500 % Hu et al. (2019)

271 LST™M 2D RMSE =0.08 m - Kao et al. (2021)

1479 RNN 2D RMSE =0.056 m 21x Zhou et al. (2021)

ROM is the reduced order modeling, and MSE is the mean squared error.

4 Knowledge gaps

We identified knowledge gaps regarding the applications in
flood management, usability, generalization, modeling lim-
itations, and data availability. Some other minor gaps were
shown in the previous section. Based on these gaps, future
research directions are proposed in Sect. 5.

4.1 Flood applications and usability

Deep learning has proven useful for assessing flood-prone
areas from the location of past events, identifying flooded
areas from remote sensing images, and working as a sur-
rogate model for numerical simulations. However, there are
still several other applications within this field that could ben-
efit from deep learning models. In particular, we address two
flood management applications, i.e., flood risk and real-time
flood warning. We also define two desired types of maps, i.e.,
flood arrival time maps and probabilistic hazard maps. Then,
we discuss dam and dike breach flood events.

Flood risk combines the probability that a certain event
occurs with the associated consequences, such as economic
impacts or loss of life. The expected annual loss is a com-
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mon measure obtained from flood risk assessment and de-
pends on (i) flood hazard, given by event-specific flood char-
acteristics, such as water depth and flow velocity, (ii) expo-
sure, related to the elements at risk, such as buildings and
critical infrastructure, and (iii) vulnerability, i.e., the inabil-
ity of a system to withstand the effects of the event, given,
for example, by intensity—damage curves. Flood risk maps
are obtained by combining flood hazard maps with damage
models. Other approaches are based on MCDA, since the ex-
act flood magnitude and damage are uncertain (de Brito and
Evers, 2016). This is done by incorporating various factors
that determine flood risk, such as hazard, the performance
of defenses, topography, and exposure. However, MCDA is
based on expert knowledge and is thus subjective. DL mod-
els solve this issue and can also yield a higher accuracy,
as shown for flood susceptibility mapping. Thus, DL-based
approaches could provide alternative methods for assessing
flood risk. In addition to the inputs used for flood susceptibil-
ity, such as elevation and land use, flood risk mapping may
require also other inputs such as population density, spatial
estimates of economic value, and building types. Up until
now, only Chen et al. (2021) combined DL and flood risk
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assessment. They showed that ML and DL approaches can
estimate flood risk at regional scale but do not compare their
results against other methods, such as MCDA. One drawback
of their approach is that the resulting maps were qualitative,
while quantitative results should be preferable for risk assess-
ment.

Real-time flood warning is another application that has not
been widely addressed. This is needed by local authorities
to inform the public of when and where a flood may occur.
While several papers mention real-time prediction, most can
be used only after the event has occurred, since they require
as input the complete hyetograph or hydrograph of the event.
There are a few examples based on RNNs which could fore-
cast floods in near-real time using sensors (Kao et al., 2021)
and rainfall distribution (Dong et al., 2021). However, few
situations are covered and, thus, more research should fo-
cus on filling this gap. An alternative method is to predict
the rainfall in real time and then retrieve the corresponding
water depth map by using a similarity measure on a large
dataset of previous simulations (Chang et al., 2020). How-
ever, such a solution may be challenging because of the large
storage requirements. Using DL for surrogate modeling in-
stead showed substantial speed improvements, thus allowing
for real-time simulations and forecasts. Similar achievements
have already been obtained for rainfall nowcasting, where the
deep learning models can accurately forecast the near-future
rainfall (e.g., Shi et al., 2015; Ravuri et al., 2021).

Arrival time maps estimate the time employed by a flood
to reach a certain water depth threshold. They can encode
both spatial and temporal information in the same map. So,
for a practitioner, they carry at one place detailed information
not only on where to intervene but also when to execute mit-
igation measures. Despite these promises, they have seldom
been used in flood management; consequently, they have also
not been exploited with DL methods. Using DL for arrival
map estimation may be a promising direction to identify crit-
ical infrastructure and set up corresponding evacuation plans
in real time. This is because DL has shown the potential for
surrogate modeling (see Table 5) and because arrival maps
can be obtained from flood hazard maps taken over different
time intervals of a flood event. This application may be par-
ticularly important for exceptional flood events, such as dike
breaches and dam breaks, where little forecast can be made
until a failure initiates (Yakti et al., 2018).

Probabilistic hazard mapping captures the model uncer-
tainty related to its inputs and outputs. As pointed out by
Di Baldassarre et al. (2010), uncertainties can result in deter-
ministic maps which are only spuriously accurate. But prob-
abilistic maps can account for the uncertainties by assign-
ing a probability of flooding to each domain element. This
analysis is generally carried out with probabilistic methods
such as Monte Carlo simulations (e.g., Papaioannou et al.,
2017). However, since they require a vast amount of simu-
lations, only simpler numerical models are used. DL models
could be used as surrogates to speed up computation and im-
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prove the accuracy of the simpler models. Nonetheless, brute
force simulations, such as Monte Carlo, may require up to
hundreds of thousands of simulations to obtain a satisfac-
tory measure of the uncertainty (Kalos and Whitlock, 2009).
Thus, we need models that can intrinsically work with prob-
abilistic input distributions of parameters.

Dam break and dike breach floods concern a relevant cate-
gory of flood events that has been poorly approached with
deep learning models. The motivation is probably related
to the rarity of such events and the complexity of the phe-
nomena. However, their catastrophic and unexpected effects
make their modeling necessary in several situations. More-
over, the effect of flood defenses’ failure is often disregarded,
also because the location and modality of possible failures
are uncertain. A common way to include the failure of struc-
tures is to investigate all possible combinations of locations
and boundary conditions, but it can be constrictive both for
time and storage capacities. Probabilistic hazard mapping
may be a relevant application to include the uncertainty in the
failure probability of the flood defense (Domeneghetti et al.,
2013).

4.2 Generalization

Generalization refers to the capacity of a model to extrap-
olate from a training dataset into unseen testing data. This
means that a DL model can correctly predict scenarios un-
used in its development. This property is particularly relevant
because training requires data, model setup, and time. In the
context of flood modeling, there are two main generaliza-
tion objectives: (i) boundary conditions, e.g., different rain-
fall events, and (ii) topographical changes, i.e., different case
studies. However, the transference between different areas is
challenging for DL models because of the difference in in-
put and output data. In fact, except for flood inundation map-
ping, most reviewed papers focused on generalizing different
boundary conditions (e.g., Guo et al., 2021; Berkhahn et al.,
2019). Instead, only a few papers tested the model on areas
not considered during training. Lowe et al. (2021) could gen-
erate flood hazard maps for unseen areas within the same
study region as the training dataset, as there was little vari-
ability in inputs and outputs. Zhao et al. (2021c) instead pre-
trained a model for flood susceptibility on an urban area and
then used it for another similar area. They showed that pre-
training improves predictions with respect to a model trained
from scratch, both in cases of low and high data availability.
These works show that such approaches are in their infancy
and have been tested on limited datasets. A DL model which
cannot generalize to new areas has to be trained every time
for a new study case. Thus, it may have limited advantages
over a hydraulic model, since it requires more effort, data,
and time. Instead, a general DL model which can generalize
to new areas could emphasize the advantages over numeri-
cal models. This concept was experimented also for rainfall-
runoff modeling where DL models outperformed state-of-
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the-art alternatives in the prediction of ungauged basins in
new study areas (Kratzert et al., 2019b).

4.3 Modeling limitations

Complex interactions with the natural and built environment,
such as dikes or buildings, are difficult to include in deep
learning models. Kabir et al. (2020) showed that flood de-
fenses can be included if they are present in the simulations
used for training and testing. However, no solution presented
so far can directly include new flood defenses in it. Building
can be statically included as well in the DEM (e.g., Lowe
et al., 2021), but bridges and other hydraulic structures that
influence the behavior of the floods may be harder to include,
due to their strong influence on the flow path.

4.4 Data availability

Deep learning models usually require large quantities of data
to achieve good performances. While simulations can pro-
vide potentially limitless data, observed data are scarce and
depend on the study area. Simulations may also encounter
instability issues depending on the numerical schemes and
study area. Remote sensing has provided large quantities
of data since its vast development in the past decades, but
satellite data are still limited by their frequency of obser-
vations and dependency on favorable meteorological condi-
tions. Also, UAVs cannot cover wide areas at once. Precip-
itation and water depth data are available only in a few lo-
cations where the measuring stations are present. Thus, new
data sources are needed to overcome these limitations.

Another issue, which emerges also from Sect. 3.2.5, is the
lack of a unified framework to compare different approaches
with each other. This can be achieved by creating flood-based
benchmark datasets for each mapping application. For flood
inundation, some datasets have been already used across dif-
ferent works (e.g., Bonafilia et al., 2020). However, works on
both flood susceptibility and hazard mapping consider differ-
ent datasets, focusing on different geographic areas or flood
types. One possibility could then be to unify different case
studies in a single dataset, for each application, allowing us
to assess the validity of a model more objectively. For flood
susceptibility, case studies with the same input availability
could be merged in a dataset with many flood types, scales,
and geographical areas. A similar reasoning could be made
for flood hazard mapping, selecting, for each case study, ini-
tial and boundary conditions for specific return periods.

5 Future research directions

The present review shows that flood practitioners still need to
be up to date with the latest and most successful deep learn-
ing models. We suggest that the outstanding identified issues
can be approached by resorting to deep learning state-of-the-
art advancements to our field. As such, we propose future re-
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Figure 8. The irregular geometrical structure of the mesh allows
capturing information in a more efficient way than regular grids by
following the properties of the underlying system (figure taken from
Ferreira et al., 2015).

search directions to transfer this knowledge and address the
above-identified gaps.

5.1 Mesh-based deep learning

Current deep learning models lack generalization across dif-
ferent case studies, meaning that they can work exclusively
for a specific purpose or area. They also cannot represent
complex interactions with the natural and built environment.
Both issues may depend on the regular grids used in the
reviewed papers, which are unable to follow the geometric
properties of irregular inputs, as illustrated in Fig. 8. Hence,
the model cannot exploit many data patterns, ultimately lim-
iting its generalizability and, for the same motivation, being
unable to account for the irregular geometrical structures.
Unstructured meshes may solve this problem by discretiz-
ing the domain more flexibly (Mavriplis, 1997). A mesh is a
structure composed of a collection of nodes, edges, and faces
used to discretize a continuous domain. Meshes are com-
monly used for numerical simulations in many physical sys-
tems (e.g., Ferraro et al., 2020; Bomers et al., 2019). Their
flexible definition allows to increase the resolution where
needed and coarsen it otherwise, ultimately decreasing the
computational time and improving efficiency (Candy, 2017).
Moreover, they are equivalent to regular grids if the mesh is
structured. Thus, the following principles could also be trans-
ferred to rasters, if needed. Unstructured meshes, nonethe-
less, inherit similar problems as those typical of numeri-
cal models, such as mesh generation and the need to ex-
plicitly define how each node is connected. Standard DL
models, such as CNNs, cannot be applied on meshes. There
are currently several lines of work which, instead, can use
meshes as a learning framework. They are here referred to
as mesh-based neural networks. The two highly promising
mesh-based approaches for flood applications are geometric
deep learning and physics-based deep learning.

5.1.1 Geometric deep learning

Geometric deep learning provides a generic framework to
work with any type of data by enforcing symmetries with
respect to transformations, such as translations and rotations
(Bronstein et al., 2017). Symmetries result in inductive bi-
ases, which address the curse of dimensionality by decreas-
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ing the required training data (e.g., R. Wang et al., 2020)
and enabling the processing of different data types, such
as meshes. From a flooding perspective, symmetries can be
understood and motivated by referring to the example in
Sect. 2.2.1. For instance, analogous to the translation, the ro-
tation of a domain should result in an equivalent rotation of
the predictions. Among the several geometric deep learning
models which can work with meshes, graph neural networks
(GNNps) are the most developed ones. Graphs are structures
defined by a set of nodes and edges and can be considered as
the underlying skeleton of a mesh. GNNs allow us to model
data on graphs by considering how the elements are con-
nected (Wu et al., 2021; Gama et al., 2020). They take as in-
put the information encoded in the nodes, in the edges, and in
the graph structure, and then process it with neural networks
in a similar manner to the CNNs and RNNs with grid ele-
ments and sequential data, respectively. For example, nodes
can carry information on the elevation of a point or its bound-
ary conditions, while edges may encode the spatial distance
between nodes. Several variations in GNNs exist that give
more importance to certain parts of the data by weighting
information from different neighbors (Wu et al., 2021; Isufi
etal.,2021). There already exist promising works which sim-
ulate fluid dynamics with mesh-based GNNs, with increased
generalization, accuracy, and stability, with respect to CNNs
(e.g., Pfaff et al., 2020; Lino et al., 2021). However, GNNs
consider only pairwise geometrical properties as connections
between nodes, thus neglecting the mesh structure. Recent
developments focused on extending the GNN framework to
include it. Mesh convolutional neural networks adapt GNNs
to include a representation of the local geometry, which pre-
serves the angles between edges (De Haan et al., 2020; Zhou
et al., 2020). Simplicial neural networks (Yang et al., 2021;
Ebli et al., 2020) and cell complex neural networks (Bodnar
et al., 2021; Hajij et al., 2020), instead, generalize GNNs to
higher-order structures. They can also consider information
on triangular and polyhedral elements, which can represent,
for example, a flooded area or a volume. This inclusion of
the mesh properties in such approaches may further enhance
the power of GNNs. Even though they are still in their in-
fancy, their potential for learning on meshes could reveal to
be useful also for flood modeling in future research.

5.1.2 Physics-based deep learning

While promising, the aforementioned approaches ignore any
underlying physical laws present in flood modeling and let
the model figure them out. But these physical laws provide
additional inductive biases; hence, we could include them in
modeling to enhance the performance. Physics-based neural
networks and neural operators are approaches that account
for them.

Physics-informed neural networks (PINNs) employ phys-
ical laws to constrain the model solution (Raissi et al., 2019).
The idea is to parameterize a partial differential equation
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(PDE) solution with a neural network, while keeping the
same physical formulation. Then, each partial derivative in
the equations is determined via automatic differentiation.
Many works have shown the capabilities of PINNs to fol-
low the underlying PDEs in fluid dynamics (e.g., Mao et al.,
2020; X. Yang et al., 2019). This is relevant also in flood
modeling where PDEs such as shallow water equations or the
Navier—Stokes equations are employed (e.g., Mahesh et al.,
2022). However, PINNs can only be trained for a specific
boundary condition (e.g., a specific rain event) and can sub-
sequently only simulate that specific event (Kovachki et al.,
2021).

Neural operators, instead, can learn the mappings between
function spaces, i.e., they learn a whole family of equations
(Kovachki et al., 2021). In other words, they can approxi-
mate any differential operator. Moreover, since neural oper-
ators learn a mapping between infinite-dimensional spaces,
they are invariant with respect to the chosen discretization.
Thus, their solution is transferable to any mesh resolution.
While many approaches have been proposed, such as Deep-
ONets (Lu et al., 2019) or multipole graph neural operator (Li
et al., 2020), Fourier neural operators (FNOs) have currently
achieved the best results (Li et al., 2021). In general, the idea
is to extract features from the input function, process them
in the function space, and, finally, map them to the output
function. In FNOs, the function space is given by the Fourier
space, which allows us to use fast Fourier transforms, pro-
viding faster approximations of the integral operator. Results
show that FNOs improve the speed of several PDEs by up to
3 orders of magnitude. Jiang et al. (2021) used FNOs for sim-
ulating sea surface height, showing increased performance
with respect to CNNs and noticeable speed-up compared to
the numerical simulator. Consequently, they could also be
used in flood management to overcome computational speed
limitations while preserving the underlying physics, allowing
also for a more reliable real-time flood warning. Thanks to
the inductive biases given by the physical laws, both physics-
based neural networks and neural operators also require less
data.

5.2 Probabilistic deep learning

Uncertainties in floods are often determined via probabilis-
tic hazard mapping. These maps show the inundation depths
and extents together with their confidence intervals and are
traditionally obtained with Monte Carlo simulations (e.g.,
Domeneghetti et al., 2013). To avoid brute-force simulations
and provide uncertainty guarantees, certain deep learning
models can consider uncertainty in the model inputs. An ex-
ample of these models is deep Gaussian processes (DGPs).
DGPs are models composed by the stacking of Gaussian pro-
cesses (GPs), in a similar fashion to neural networks (Dami-
anou and Lawrence, 2013). A GP is a collection of random
variables whose joint distribution is a Gaussian (Rasmussen,
2003). They benefit from the properties of normal distribu-
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tions, and thus, their output can be obtained analytically. The
advantage of DGPs over GPs is that they can extract patterns
in data better, thanks to their increased complexity. DGPs
can determine the distribution of the output and could, there-
fore, be used in probabilistic hazard modeling to determine
the range of variation in the predicted flood hazard map. No
example of DGPs used for flood mapping exists yet. How-
ever, GPs have been used for the statistical estimation of the
correlation between flooding and sea level rise (Vandenberg-
Rodes et al., 2016).

Along with those related to the model’s input, uncertain-
ties are also present in the model’s prediction. To account
for this kind of uncertainty, we can use Bayesian neural net-
works (BNNs). BNNs are models with stochastic compo-
nents trained using Bayesian inference. They assign prior
distributions to the model parameters to provide an estimate
of the model’s confidence on the final prediction (Blundell
et al., 2015). If, for different parameter sampling, the output
is unvaried, then the model has a good confidence on the pre-
diction, and vice versa, if different parameters give different
results. Jacquier et al. (2021) used BNNs to determine the
confidence intervals in flood hazard maps, providing a mea-
sure of the model’s reliability.

5.3 Data augmentation

Even though remote sensing and measuring stations pro-
vide noticeable amounts of data, several parts of the world
still lack enough data to deploy deep learning models. New
satellite missions and added sensor networks throughout the
world increasingly provide new data sources (e.g., van de
Giesen et al., 2014). But here we focus on how DL itself can
be one solution for data scarcity.

The flexibility of DL partially overcomes data scarcity by
facilitating the use of a wider variety of data sources. For
instance, several papers already employ cameras to detect
floods and measure the associated water depth (e.g., Van-
daele et al., 2021; Jafari et al., 2021; Moy De Vitry et al.,
2019). Structural monitoring with cameras can provide re-
liable data sources where they were previously hard to ob-
tain, such as in urban environments. Social media informa-
tion can also be used to identify flood events and flooded
areas, via tweets or posted pictures (e.g., Rossi et al., 2018;
Pereira et al., 2020). In this case, the information’s validity
and reliability must be considered before its use for real ap-
plication. Moreover, the heterogeneity of the sources of these
data needs to be carefully taken into account when deploying
a DL model.

Another approach can be to generate artificial data to sup-
plement scarce data. This can be done using generative ad-
versarial networks (GANSs), which create new data from a
given dataset (Goodfellow et al., 2014). GANs are composed
of two neural networks, named a generator and discrimina-
tor, whose purpose is, respectively, to generate new data and
to detect if the given data are real or fake. A trained GAN
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can produce new fake but plausible data, facilitating data
augmentation, i.e., providing more training samples. Inter-
esting applications of GANs could overcome some limita-
tions of satellite data (Liitjens et al., 2020, 2021), predict
flood maps (Hofmann and Schiittrumpf, 2021) or meteoro-
logical forecasts (Ravuri et al., 2021), and create realistic
scenarios of flood disasters for projected climate change vari-
ations (Schmidt et al., 2019). GANSs could also be used to
generate a plausible urban drainage system or topography for
cities that do not have any sewer construction plan or in ar-
eas where only low-resolution data are available (e.g., Fang
et al., 2020b).

However, GANs are difficult to train (Goodfellow, 2016).
Variational autoencoders (VAEs) are another type of gener-
ative model which can overcome this issue. Different from
standard autoencoders, VAEs model the latent space with
probability distributions that aim to ensure good generative
properties to the model (Kingma and Welling, 2013). Once
the model is trained, new synthetic data can be generated by
taking new samples from the latent distributions. Nonethe-
less, because of the model’s definition, the predictions are
less precise than GANs. As such, VAEs and GANs offer a
tradeoff between the reality of the prediction and the avail-
ability of training data.

6 Conclusions

This paper presented a review of current applications of deep
learning models for flood mapping. The chosen search crite-
ria yielded a total of 58 papers published between 2010 and
2021. From our analysis, we conclude that there are common
patterns across works that can be summarized as follows:

— Flood inundation, susceptibility, and hazard mapping
were investigated using deep learning models. Flood in-
undation considers, as the main data, images of floods,
mostly taken via satellite. The main and most accurate
deep learning models were CNNs. In flood susceptibil-
ity, deep learning models consider several inputs, with
the most important being slope, land use, aspect, ter-
rain curvature, and distance from the rivers. The main
deep learning model used were MLPs, often in combi-
nation with other statistical techniques, although CNN's
provided more accurate results. Deep learning for flood
hazard mapping generally involves developing surro-
gates of numerical models that estimate water depths
in a study area. For this application, there are no deep
learning model preferences. However, RNNs are prefer-
able for spatiotemporal simulations.

— MLPs and CNNs were the most common type of deep
learning model considered in flood mapping, while
RNNs were used less often. To overcome their lack of
inductive biases and achieve good accuracy, MLPs are
often coupled with other statistical techniques. On the
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other hand, thanks to their spatial and temporal induc-
tive biases, CNNs and RNNs were found to regularly
outperform other models.

— Most papers dealt with river and urban floods, while
only a few works described applications for flash,
coastal, and dam break floods. Case studies were mainly
addressed at local or regional scales, arguably due to
the availability of high-resolution data. Conversely, the
community should further investigate the suitability of
deep learning models for flood applications at larger
scales.

— Concerning the development data, we found that mod-
els producing susceptibility and inundation maps rely
on the availability of real flood observations. Instead,
DL-based surrogate models for hazard mapping require
target data from numerical simulations.

In terms of comparison with traditional and machine learn-
ing approaches, we found the following:

— Regardless of the application, results show that deep
learning solutions outperform traditional approaches
and other machine learning techniques.

— Deep learning models used for surrogate modeling pro-
vide significant speed-up (up to 3 orders of magnitude)
while maintaining sufficient accuracy.

This review did not consider works featuring ML methods
alone. Therefore, further research is needed to thoroughly
compare ML against DL methods, especially with respect to
explainability, generalization ability, and data requirements.
This review also outlined several knowledge gaps which can
be addressed via deep learning to improve the state of the
art of flood mapping. To solve these gaps, we proposed the
following possible solutions based on recent advances in fun-
damental machine learning research:

— Flood risk could be addressed in a similar manner to that
of flood susceptibility by using physical and economical
characteristics to obtain a risk map. Flood arrival time
maps can provide both spatial and temporal information
of a flood event and may be obtained similarly as for
flood hazard maps.

— Current deep learning models struggle to generalize
across different case studies and regions, implying that a
new model must be created each time. Further problems
occur when modeling the complex interactions with the
natural and built environment. While some of the re-
viewed papers provide initial suggestions to tackle these
issues, the community should invest more efforts in this
direction. A possible solution to these problems is to use
novel deep learning architectures that include meshes
as learning frameworks. Mesh-based neural networks,
such as graph neural networks and neural operators, can
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consider arbitrarily shaped domains and thus provide
the required flexibility to generalize across case studies
and model the effects of complex interactions.

— Physics-based deep learning provides a reliable frame-
work for flood modeling, since it considers the un-
derlying physical equations. Probabilistic hazard map-
ping can take advantage of deep Gaussian processes or
Bayesian neural networks to determine the uncertainties
associated with the model and its inputs.

— Deep learning necessitates large quantities of data
which are difficult to collect in several areas of the
world. New data sources such as camera pictures and
videos or social media information can potentially be
used thanks to deep learning models. Moreover, genera-
tive models, such as GANs and VAEs, can be employed
to produce synthetic data for such data-scarce regions,
based on training data collected elsewhere.

While our review draws insights for future research di-
rections from the machine learning literature, further under-
standing may emerge from a broader review, including deep
learning applications across other water-related and natural-
hazard-related fields, and featuring a bibliometric analysis
(Donthu et al., 2021; Fazeli-Varzaneh et al., 2021). This ap-
proach may facilitate cross-fertilization between sister disci-
plines, especially with respect to the successful implemen-
tation of advanced deep learning methods for spatial analy-
sis. We expect deep learning to be a promising tool to im-
prove and speed up flood mapping. Nonetheless, deep learn-
ing models are black box models, meaning that the underly-
ing operations are unknown. Thus, their deployment in real
emergencies has to be done with caution. As deep learning
for flood mapping is still novel, we advise its use in criti-
cal situations to be always validated by traditional models
and expert knowledge until robust and corroborated models
are available. The above concern highlights the main chal-
lenge that deep learning models for flood management need
to face. However, deep learning models are still in their in-
fancy and carry the large potential to aid researchers for
many applications, especially where traditional models can-
not provide sufficient accuracy or speed. In particular, deep-
learning-based flood mapping approaches could provide an
added value for regions with limited data or limited resources
to invest in setting up time-consuming hydraulic models.
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Appendix A: Comparison metrics
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Figure A1. Distribution of the comparison metrics in the reviewed papers per type of application. AUC is the area under the ROC curve, CSI
is the critical success index, FAR is the false alarm ratio, MAE is the mean average error, MRE is the mean relative error, MSE is the mean
squared error, NPV is the negative predictive value, NSE is the Nash—Sutcliffe efficiency, RMSE is the root mean squared error, and RZ is
the coefficient of determination.

Appendix B: Flood susceptibility inputs
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Figure B1. Distribution of the inputs for flood susceptibility for the 23 reviewed papers. The inputs are categorized in topographical, meteo-
rological, geographical, geological, and anthropogenic factors. Inputs which were considered only once were discarded from this graph. CI
is the convergence index, CN is the curve number, DD is the drainage density, DEM is the digital elevation model, DRI is the distance from
rivers, DRO is the distance from roads, FAV is the flow accumulation value, NDVI is the normalized difference vegetation index, SPI is the
stream power index, STX is the sediment transport index, and TWI is the topographic wetness index.
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Appendix C: Reviewed papers
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Table C1. A brief description of the reviewed papers, following the same ordering as in Table 2.

Reference

Brief description

Liet al. (2015)

An MLP combined with genetic algorithm is used for super-resolution mapping of wetland
inundation. Images are taken from Landsat remote sensing for two areas in China and Australia.

Li et al. (2016a)

An MLP optimized with particle swarm optimization is used for super-resolution mapping.
Images are taken from Landsat remote sensing for two areas in China and Australia.

Nogueira et al. (2017)

Satellite image patches, collected from eight flooding events, are classified in flooded and non-
flooded areas using a CNN.

Gebrehiwot et al. (2019)

A set of images taken from unmanned aerial vehicles is used for flood inundation mapping
using a CNN. The dataset is composed of three study areas in North Carolina, USA, with a total
of 100 images.

Ichim and Popescu (2020)

A combination of five different CNN-based models is used for flood inundation mapping. A
set of 2000 images derived from UAVs in a Romanian rural region is classified into flooded,
vegetation, and non-flooded areas.

Hou et al. (2021)

A flood propagation experiment in a small-scale laboratory is used to develop a CNN model
for inundation mapping. The dataset is composed of a sequence of 1930 images detected from
cameras.

Hashemi-Beni and Gebrehiwot (2021)

An encoder—decoder CNN is developed for flood inundation mapping. The study area is the
same as Gebrehiwot et al. (2019).

Wieland and Martinis (2019)

An encoder—decoder CNN model is trained to identify five classes (water, land, snow, shadow,
and cloud) from Landsat and Sentinel-2 satellite images.

Kang et al. (2018)

A CNN model is developed for flood detection from satellite images for three study areas in
China.

Sarker et al. (2019)

A CNN model is trained to predict flood extent from Landsat satellite images across Australia.

Nemni et al. (2020)

A CNN model is trained to predict flood extent from Sentinel-1 synthetic aperture radar (SAR)
imagery. The United Nations Satellite Centre (UNOSAT) flood dataset, which covers flood
events from Africa and East Asia, is used for the model development.

Isikdogan et al. (2017)

A CNN model is trained to identify five classes (water, land, snow, shadow, and cloud) from
Landsat satellite images.

Amini (2010)

High-resolution images are classified into five categories with an MLP. The study area is located
in an Iranian city.

Li et al. (2016b)

An MLP is developed for super-resolution mapping. Images are taken from Landsat remote
sensing for two areas in China and Australia.

Peng et al. (2019)

A CNN which considers pre- and post-flood satellite images is used for urban flood detection.
The study area is in Texas, USA, and considers two hurricane events.

Dong et al. (2021)

A combination of 1D CNN and GRU is used for prediction of flood inundation in urban area in
Texas, USA. The dataset is composed by a channel sensor network. Given information on the
temporal evolution of water depth and precipitation, for each sensor, the model predicts which
nodes will be flooded.

Liu et al. (2019)

A CNN which considers pre- and post-flood SAR images is used for coastal flood detection.
The study area is in Texas, USA, and considers six pairs of satellite images for a hurricane
event.

Mufioz et al. (2021)

A CNN model is developed for compound flood mapping for the Atlantic coast of USA. The
model takes as input Landsat and SAR satellite data, along with a DEM of the study areas, and
combines them with data fusion. The model distinguishes then between several categories, such
as flooded areas and vegetation.
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Table C1. Continued.

Reference

Brief description

Syifa et al. (2019)

An MLP which considers pre- and post-flood satellite images is used for flood inundation map-
ping after a dam break in Brazil.

Khoirunisa et al. (2021)

An MLP is developed to obtain a flood susceptibility map for a Taiwanese city, using nine flood
conditioning factors. The model is then compared with SOBEK, a 2D hydraulic model. The
data are given by 307 flood events collected between 2015 and 2019.

Jahangir et al. (2019)

An MLP is employed in a river basin in Iran to predict discharges, using seven flood condition-
ing factors. The discharges are then converted into a flood susceptibility map via a GIS software.
The data are given by hydrometric stations in the basin.

Ahmadlou et al. (2021)

Several MLP architectures are presented for the development of two flood susceptibility maps
in Iran and India using, respectively, 9 and 12 flood conditioning factors. The datasets are com-
posed of 147 and 300 flood events, respectively.

Popa et al. (2019)

A combination of MLP with a frequency ratio is used to determine flash flood and river flood
potential indexes for a Romanian catchment, using, respectively, 14 and 13 flood conditioning
factors. The datasets are composed, respectively, of 168 and 172 flood locations.

Kia et al. (2012)

An MLP is employed in a river basin in Malaysia to predict discharges, which are then converted
into a flood susceptibility map via GIS. The model considers seven flood conditioning factors.

Ahmed et al. (2021)

There are two MLP models developed to obtain a flood susceptibility map for a catchment
in Bangladesh, using 12 flood conditioning factors. The data are given by 521 flood events
collected during 2019.

Chakrabortty et al. (2021b)

There are two MLP models developed to obtain a flood susceptibility map for a catchment
in India, using 15 flood conditioning factors. The models are then used estimate future flood
susceptibility scenarios by considering rainfall variations due to climate change.

Saeed et al. (2021)

An MLP model is developed to obtain a flood susceptibility map for a basin in Pakistan, using
nine flood conditioning factors.

Y. Wang et al. (2020)

There are three CNN models, based on 1D, 2D, and 3D convolutional layers proposed for a
region in China using 13 flood conditioning factors. The dataset is based on 108 historical flood
events. The model is also compared with support vector machine.

Khosravi et al. (2020)

A national-scale flood susceptibility map is developed for Iran, using a CNN. The model uses
10 flood conditioning factors and a dataset composed of 2769 flood events.

Fang et al. (2020a)

An LSTM model is developed for flood susceptibility in a Chinese county. The model uses 11
flood conditioning factors and a dataset of 108 flood events. The model is also compared with
MLP, 1D CNN, and 3D CNN.

Tien et al. (2020)

An MLP, based on nine flash flood conditioning factors, is developed for a province in Vietnam.
The dataset contains 732 flood events.

Ngo et al. (2018)

A combination of MLP with the firefly algorithm optimization technique is proposed for flash
flood susceptibility in a Vietnamese region. The model considers 12 flood conditioning factors
and a dataset of 654 flooded areas.

Costache et al. (2020)

There are two MLP models, combined with analytical hierarchy process and frequency ratio,
respectively, developed for flash flood susceptibility mapping in a catchment in Romania. The
model considers 10 flood conditioning factors and 178 flooded locations.

Chakrabortty et al. (2021a)

There are two MLP models developed to obtain a flash flood susceptibility map for a catchment
in India, using 14 flood conditioning factors.

Kourgialas and Karatzas (2017)

A national-scale flash flood susceptibility map is obtained with an MLP for Greece. The model
considers seven flood conditioning factors and a dataset of 600 flood events.
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Table C1. Continued.

Reference Brief description

Panahi et al. (2021) There are two models, CNN and RNN, developed for flash flood susceptibility in a province in
Iran. The model considers nine flood conditioning factors and a dataset of 143 flood events.

Liu et al. (2021) A 1D CNN model combined with fuzzy membership value is proposed for flood susceptibility
mapping for a basin in China, using nine flood conditioning factors. The dataset is based on 485
flood locations. The model is also compared with a support vector machine.

Darabi et al. (2021) An MLP ensemble model is used for urban flood susceptibility mapping in a Iranian city. The
model uses six flood conditioning factors and a dataset of 118 flooded locations.

Kalantar et al. (2021)  There are three MLP models, one of which optimized with particle swarm optimization, devel-
oped for flood susceptibility mapping in a urban catchment in Australia. The model considers
13 flood conditioning factors and 128 flooded locations.

Zhao et al. (2020) There are two CNN models used to assess urban flood susceptibility for a Chinese catchment.
The model considers nine flood conditioning factors and 202 flooded locations. The model is
also compared with support vector machine and random forest.

Zhao et al. (2021c¢) A pre-trained CNN model, taken from Zhao et al. (2020), is deployed in two urban areas, with
data-rich and data-scarce scenarios.

Lei et al. (2021) There are two models, CNN and RNN, developed for urban flood susceptibility in Seoul, South
Korea. The model considers 10 flood conditioning factors and a dataset of 295 flood events.

Chu et al. (2020) An MLP is used to estimate the water depth for a river reach in Australia. The dataset is gener-
ated using a 2D hydrodynamic model, TUFLOW, and considers 10 flood events.

Lin et al. (2020b) An MLP is used to estimate the water depth and extent for a river reach in a German city.
The dataset is generated using a 2D hydrodynamic model, HEC-RAS, and considers 180 flood
events.

Lin et al. (2020a) An MLP is used to forecast water depth and flood extent for a river reach in a German city. The

dataset is the same as in Lin et al. (2020b).

Huang et al. (2021a)  There are two models, MLP and RNN, developed for water depth estimation for a USA river.
Before being given as input to the models, the data are clustered based on slope, drainage area,
and hydrologic length. The dataset is generated using a 2D hydrodynamic model and considers
20 flood events.

Xie et al. (2021) There are three MLPs used to estimate the water depth for a river reach in Australia (also
considered by Chu et al. (2020)). The dataset is generated using a 2D hydrodynamic model,
TUFLOW, and considers nine flood events.

Jacquier et al. (2021) A combination MLP with reduced-order modeling is applied to a river and a dam break flood
simulations. Moreover, the model provides uncertainty estimates using ensembles and Bayesian
neural networks. The dataset is obtained using a 2D hydrodynamic model, CuteFlow.

Kabir et al. (2020) A 1D CNN model is used to predict a flood hazard map, from a discharge hydrograph, for a river
reach in England. The dataset is generated using a 2D hydrodynamic model, LISFLOOD-FP,
and considers 10 flood events. The model is also compared with a support vector regression.

Hosseiny (2021) An encoder—decoder CNN is used for flood mapping in a river reach in the USA. The dataset is
generated using a 2D hydrodynamic model, iRIC, and considers seven flood events.

Guo et al. (2021) An encoder—decoder CNN is used for flood mapping in three catchments, i.e., two in Switzer-
land and one in Portugal. The dataset is generated using a cellular automata flood model, CAD-
DIES, and considers 18 flood events.
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Table C1. Continued.

Reference

Brief description

Zhou et al. (2021)

An LSTM model is used to predict the temporal evolution of water depth in few representative
locations along an Australian river. The water depths are then interpolated to obtain a flood
hazard map. The dataset is generated using a 2D hydrodynamic model, TUFLOW, and considers
74 flood events.

Kao et al. (2021)

A stacked encoder—decoder LSTM is used to determine flood hazard maps in time from pre-
cipitation. The study area is located in Taiwan. The dataset is generated using a storm water
management model, HEC-1, plus a 2D hydrodynamic model, and considers 24 flood events.

Chang et al. (2010)

An MLP is developed to forecast 1 h ahead flood hazard maps in a Taiwanese county. The data
are also pre-processed by clustering. The dataset is generated using a storm water management
model, HEC-1, plus a 2D hydrodynamic model, and considers 120 flood events.

Yokoya et al. (2020)

An encoder—decoder CNN is used for flash flood and debris flow mapping in Japan. The dataset
is generated using a 2D hydrodynamic model coupled with a debris flow module and considers
160 flood events. The model is then trained to estimate flood depths and debris flows from pre-
and post-flood event images.

Berkhahn et al. (2019)

An MLP is used to predict maximum water levels for two urban areas. The dataset is generated
using a coupled sewer—surface model, HE 2D, and considers 64 flood events.

Lowe et al. (2021)

An encoder—decoder CNN is used for flood mapping in a urban area in Denmark. The dataset
is generated using a 2D hydrodynamic model, MIKE 21, and considers 53 flood events.

Hu et al. (2019)

An LSTM model is developed to simulate a tsunami in Japan. The model is trained in a lower
dimensional space to reduce the problem’s complexity. The dataset is obtained using a 3D hy-
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drodynamic model, Fluidity, and consists of 100 snapshots of a modeled tsunami event.
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