Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4265-2022
https://doi.org/10.5194/hess-26-4265-2022
Research article
 | 
18 Aug 2022
Research article |  | 18 Aug 2022

Impact of cry wolf effects on social preparedness and the efficiency of flood early warning systems

Yohei Sawada, Rin Kanai, and Hitomu Kotani

Related authors

Technical Note: Benefits of Bayesian estimation of model parameters in a large hydrological model ensemble
Yohei Sawada and Shinichi Okugawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-4984,https://doi.org/10.5194/egusphere-2025-4984, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Global assessment of socio-economic drought events at the subnational scale: a comparative analysis of combined versus single drought indicators
Sneha Kulkarni, Yohei Sawada, Yared Bayissa, and Brian Wardlow
Hydrol. Earth Syst. Sci., 29, 4341–4370, https://doi.org/10.5194/hess-29-4341-2025,https://doi.org/10.5194/hess-29-4341-2025, 2025
Short summary
Ensemble Kalman filter in geoscience meets model predictive control
Yohei Sawada
EGUsphere, https://doi.org/10.48550/arXiv.2403.06371,https://doi.org/10.48550/arXiv.2403.06371, 2024
Preprint archived
Short summary
A signal-processing-based interpretation of the Nash–Sutcliffe efficiency
Le Duc and Yohei Sawada
Hydrol. Earth Syst. Sci., 27, 1827–1839, https://doi.org/10.5194/hess-27-1827-2023,https://doi.org/10.5194/hess-27-1827-2023, 2023
Short summary
Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022,https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary

Cited articles

Albertini, C., Mazzoleni, M., Totaro, V., Iacobellis, V., Di Baldassarre, G.: Socio-Hydrological Modelling: The Influence of Reservoir Management and Societal Responses on Flood Impacts, Water, 12, 1384, https://doi.org/10.3390/w12051384, 2020. 
Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S., and Blöschl, G.: The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model, Water Resour. Res., 55, 1312–1336, https://doi.org/10.1029/2018WR024128, 2019. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 
Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di Baldassarre, G.: Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems, Hydrolog. Sci. J., 62, 880–891, https://doi.org/10.1080/02626667.2016.1273527, 2017. 
Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009. 
Download
Short summary
Although flood early warning systems (FEWS) are promising, they inevitably issue false alarms. Many false alarms undermine the credibility of FEWS, which we call a cry wolf effect. Here, we present a simple model that can simulate the cry wolf effect. Our model implies that the cry wolf effect is important if a community is heavily protected by infrastructure and few floods occur. The cry wolf effects get more important as the natural scientific skill to predict flood events is improved.
Share