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Abstract. To improve the efficiency of flood early warn-
ing systems (FEWS), it is important to understand the inter-
actions between natural and social systems. The high level
of trust in authorities and experts is necessary to improve
the likeliness of individuals to take preparedness actions re-
sponding to warnings. Despite many efforts to develop the
dynamic model of human and water in socio-hydrology, no
socio-hydrological models explicitly simulate social collec-
tive trust in FEWS. Here, we develop the stylized model
to simulate the interactions of flood, social collective mem-
ory, social collective trust in FEWS, and preparedness ac-
tions responding to warnings by extending the existing socio-
hydrological model. We realistically simulate the cry wolf
effect in which many false alarms undermine the credibility
of the early warning systems and make it difficult to induce
preparedness actions. We found that (1) considering the dy-
namics of social collective trust in FEWS is more important
in the technological society with infrequent flood events than
in the green society with frequent flood events; and (2) as the
natural scientific skill to predict flood events is improved, the
efficiency of FEWS gets more sensitive to the behavior of
social collective trust, so that forecasters need to determine
their warning threshold by considering the social aspects.

1 Introduction

The number of severe flood events is expected to increase
in many regions due to climate change (Hirabayashi et al.,
2013, 2021). Based on the advances of weather forecasting

(e.g., Bauer et al., 2015; Miyoshi et al., 2016; Sawada et
al., 2019) and hydrodynamic modeling (e.g., Yamazaki et
al., 2011; Trigg et al., 2016), flood early warning systems
(FEWS) have become a promising tool to efficiently miti-
gate the damage of severe floods. However, to maximize the
potential of FEWS, it is crucially important to understand
the interactions between flood and social systems. The like-
liness of individuals to take preparedness actions responding
to flood warnings strongly depends on the individual’s risk
perception, which is controlled by the complex interaction
between natural hazards and stakeholders (Wachinger et al.,
2013).

In the literature of weather forecasting, the “cry wolf ef-
fect” has been intensively investigated as an important in-
teraction between weather prediction and social systems. In
Aesop’s fable, “The Boy who Cried Wolf”, a young boy re-
peatedly tricks neighboring villagers into believing that a
wolf is attacking the sheep. When a wolf actually appears
and the young boy seriously calls for help, the villagers no
longer trust the warning and fail to protect their sheep. Many
false alarms undermine the credibility of the early warn-
ing systems. The cry wolf effect on mitigation and protec-
tion actions against meteorological disasters has been in-
vestigated in economics, sociology, and psychology. Many
previous studies have found and quantified the cry wolf ef-
fects in meteorological disasters. Simmons and Sutter (2009)
performed econometric analysis of a disaster database and
revealed that tornadoes that occurred in areas with higher
false alarm ratio killed and injured more people. Ripberger et
al. (2015) performed a web-based questionnaire survey and
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revealed that subjective perceptions of warning systems’ ac-
curacy are systematically related to trust in a weather agency
and stated responses to warnings. Trainor et al. (2015) per-
formed large-scale telephone interviews and revealed the sig-
nificant relationship between actual false alarm ratio and be-
havioral responses to tornado warnings. Jauernic and van den
Broeke (2017) revealed that the odds of students initialing
sheltering decreases nearly 1 % for every 1 % increase in
perceived false alarm ratio based on their online question-
naire survey of 640 undergraduate students. Roulston and
Smith (2004) found that the warning threshold of the ac-
tual weather warning systems can be justified only if the
cry wolf effects were considered. This finding implies that
many forecasters believe the existence of the cry wolf effects,
and the design of early warning systems is affected by how
the cry wolf effects are considered. It should be noted that
while these previous works supported the cry wolf effect as
an important factor to be considered for the design of warn-
ing systems, some studies discussed the myth of cry wolf ef-
fects, implying that they do not exist. For example, LeClerc
and Joslyn (2015) performed a psychological experiment in
which participants decided whether to apply salt brine to a
town’s roads to prevent icing according to weather forecast-
ing. In their experiment, the effects of false alarms are so
small that they found no evidence suggesting lowering false
alarm ratio significantly increases compliance with weather
warnings. Lim et al. (2019) performed an online question-
naire survey and found no significant relationship between
actual false alarm ratio and responses to warnings. In addi-
tion, they found that the increase of perceived false alarm
ratio enhanced protective behavior, which contradicted the
other works. Although Trainor et al. (2015) supported the
existence of the cry wolf effects, they also found that there
is a wide variation in public definition of false alarms, and
actual false alarm ratio does not predict perception of false
alarm ratio. Although the existence of the cry wolf effect is
still debatable due mainly to the lack of field data and the
ambiguity of the quantification of the public perception of
false alarms, the current evidence suggests the importance
of understanding the effect of false alarms on behavioral re-
sponses to warning in order to design efficient flood early
warning systems.

Socio-hydrology is an emerging research field contribut-
ing to understanding the interactions between flood and so-
cial systems (Sivapalan et al., 2012, 2014; Di Baldassarre
et al., 2019). The primary approach of socio-hydrology is
to develop the dynamic model of water and human. Many
socio-hydrological models used social preparedness as a key
driver of human–water interactions (e.g., Di Baldassarre et
al., 2013; Viglione et al., 2014; Ciullo et al., 2017; Yu et al.,
2017; Albertini et al., 2020). The pioneering work of Girons
Lopez et al. (2017) revealed the effect of social prepared-
ness on the efficiency of FEWS. Their main finding is that
social preparedness is an important factor for flood loss mit-
igation especially when the accuracy of the forecasting sys-

tem is limited. However, to our best knowledge, the existing
socio-hydrological models simulated social preparedness as
a function of social collective memory or personal experience
of past disasters, and they considered no effect of trust in au-
thorities and experts. Therefore, the cry wolf effect cannot
be analyzed in the existing models. The systematic review
of Wachinger et al. (2013) indicated that both personal ex-
perience of past disasters and trust in authorities and experts
have substantial impact on risk perception. It is crucially im-
portant to include the social collective trust in FEWS in the
socio-hydrological model to improve the design of FEWS
considering social system dynamics.

The aim of this study is to develop the stylized model of
the responses of social systems to FEWS as a simple exten-
sion of Girons Lopez et al. (2017). By modeling the dynam-
ics of social collective trust in FEWS as a function of the
recent success and failure of the forecasting system, we real-
istically simulate the cry wolf effect. By analyzing our newly
developed model, we provide useful implication to maximize
the potential of FEWS considering social system dynamics.

2 Model

Here, we slightly modified the model proposed by Girons
Lopez et al. (2017). For brevity, the detailed explanation of
equations shared with Girons Lopez et al. (2017) is omitted
in this paper. See Gironz Lopez et al. (2017) and references
therein for the complete description, including empirical ev-
idence which supports each equation.

A synthetic time series of river discharge is generated. Fol-
lowing Girons Lopez et al. (2017), a simple bivariate gamma
distribution, 0, is used:

Q∼ 0(κcθc), (1)

where Q is maximum annual flow [L3 T−1]. The bivariate
gamma distribution is characterized by shape κc and scale θc.

This maximum annual flow, Q, is forecasted. In our
model, the ensemble flood forecasting system (e.g., Cloke
and Pappenberger, 2009) is installed, and the probabilistic
forecast can be issued. The forecast probability distribution,
F , is calculated by the following:

F ∼N(Q+N
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)
is truncated to 1.0×10−6

to prevent from obtaining negative values of variance. While
Girons Lopez et al. (2017) change µm in their simulation, we
set µm = 0 assuming the forecast is unbiased. While Girons
Lopez et al. (2017) used the bivariate gamma distribution to
model the prediction precision, we used the Gaussian distri-
bution to make it easier to interpret results. Although this
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Table 1. Summary of the outcomes of the flood early warning sys-
tem. Loss by each outcome is also shown (see also Sect. 2).

Q< δ Q≥ δ

P < π True negative: 0 False negative: DQ
P ≥ π False positive: C True positive: C+Dr

simplification of the forecasting system unrealistically as-
signs non-zero probability to negative values of discharge,
it does not affect the process dynamics since the model evo-
lution depends only on whether forecasted discharge is above
the damage threshold, as we explain in the next paragraph.

There is a damage threshold [L3 T−1], δ, which is the
proxy of levee height. When Q> δ, flood occurs. The fore-
cast system calculates the probability of river discharge ex-
ceeding δ, and issues a warning if this probability of ex-
ceedance, P , is larger than a predefined probability thresh-
old, π . Table 1 summarizes four different outcomes of fore-
casting: true positive, false positive, false negative, and true
negative. When forecasters choose lower π , they issue many
warnings with low forecasted probability of flooding, which
inevitably increases false alarms. When forecasters choose
higher π , they can reduce the number of false alarms by is-
suing the smaller number of warnings, which inevitably in-
creases missed events.

Based on these four different outcomes shown in Table 1,
damages and costs are calculated. Flood damage is assumed
to be negligible when river discharge is smaller than a dam-
age threshold (i.e., Q< δ). When Q≥ δ, the damage func-
tion is defined as a simple exponential function, which is of-
ten used in the socio-hydrological literature (e.g., Di Baldas-
sarre et al., 2013):

DQ =

{
0 (Q < δ)

1− e−
Q−δ
β (Q≥ δ)

, (3)

whereDQ is damage [.], β is a model parameter [L−3 T]. If a
flood event is successfully forecasted and a warning is issued
(i.e., P ≥ π ), this damage is mitigated by preparedness ac-
tions such as evacuation and safekeeping of assets. Note that
preparedness actions which are not triggered by FEWS were
not considered in this stylized model to focus only on the im-
pact of social preparedness on the efficiency of FEWS. How
much damage can be mitigated depends on social prepared-
ness, Pr [.]. The mitigated damage (called residual damage
in Girons Lopez et al., 2017), Dr [.], is calculated by the fol-
lowing:

Dr =DQe
−Pr ln( 1

α0
)
, (4)

where α0 is a model parameter [.] which determines the min-
imum possible damage. In summary, the flood damage [.],

D, can be described by Eq. (5):

D =


0 (Q < δ)

1− e−
Q−δ
β (Q≥ δ and P < π)(

1− e−
Q−δ
β

)
e
−Pr ln

(
1
α0

)
(Q≥ δ and P ≥ π)

. (5)

Whenever a warning is issued, the cost [.], C, arises from
mitigation and protection actions. Whenever a warning is is-
sued, C is included in the total loss. Following Girons Lopez
et al. (2017), we assumed that the cost is calculated by

C =

{
0 P < π

ηQ P ≥ π
, (6)

where η is a parameter [L−3 T]. Note that this cost has been
found to be negligibly small compared with avoidable dam-
age. For instance, Schroter et al. (2008) showed that the
cost C is approximately 2 % of avoidable damage. In previ-
ous works, this cost was often neglected (e.g., Pappenberger
et al., 2015; Hallegatte, 2012). Although Gironz Lopez et
al. (2017) assumed there are significant costs of mitigation
and protection actions, we will discuss how differently their
model and our newly proposed model work with no mitiga-
tion costs (i.e., η = 0) and with the original settings of Gironz
Lopez et al. (2017).

The dynamics of social preparedness, Pr , in this study is
different from Girons Lopez et al. (2017). We assumed that
the social preparedness consisted of social collective memory
and social collective trust in FEWS,

Pr(t)= γE(t)+ (1− γ )T (t), (7)

where E(t) and T (t) are social collective memory [.] and
social collective trust [.] in FEWS at time t , respectively.
γ is a model parameter [.] that weights E(t) and T (t). So-
cial collective memory is shared knowledge and information
about past flood disasters that occurred in a community. In
many socio-hydrological models, social collective memory
is driven by the recency of past flood experience. Following
Girons Lopez et al. (2017), the dynamics of social collective
memory is described by the following:

E(t + 1)=
{
E(t)− λE(t) (D = 0)
E(t)+χD (D > 0) , (8)

where λ and χ are model parameters [.]. When E becomes
larger than 1, it is truncated to 1.

Social collective trust is defined as shared knowledge and
perception of the reliability of information issued from au-
thorities. We assumed that social collective trust in FEWS
is affected by the recent accuracy of FEWS. Previous stud-
ies pointed out that the recent forecast accuracy and false
alarm ratio affected the performance of preparedness actions
(Simmons and Sutter, 2009; Trainor et al., 2015; Ripberger
et al., 2015; Jauernic and van den Broeke, 2017). In the con-
trolled experiment of LeClerc and Joslyn (2015), medium-
range trust ratings are increased by decreased false alarm lev-
els. Their experiments revealed that trust ratings are based
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on the pattern of forecasts and observations over the previ-
ous month. It is reasonable to assume that trust in FEWS in-
creases (decreases) when prediction succeeds (fails). We pro-
pose the following simple equation to describe the dynamics
of social collective trust in FEWS:

T (t + 1)=


T (t) for true negative
T (t)+ τTP for true positive
T (t)− τFN for false negative
T (t)− τFP for false positive

, (9)

where τTP, τFN, and τFP are positive parameters [.]. When T
becomes larger than 1, it is truncated to 1. When T becomes
smaller than 0, it is truncated to 0. By changing the value
of these parameters, we can change the sensitivity of social
collective trust in FEWS to the accuracy of FEWS. We will
analyze the behavior of our model associated with several
different combinations of these three parameters.

In our Eqs. (7–9), we can consider both social collective
memory and social collective trust to analyze behavioral re-
sponses to warnings. For instance, please assume that a se-
vere flood occurs and substantially damages a community,
and this flood event cannot be predicted. In this case, social
collective memory increases due to the large damage (Eq. 8).
This increase of social collective memoryE(t) contributes to
increasing social preparedness towards the next severe flood
event (Eq. 7). However, the failure of predicting this flood
event decreases social collective trust in FEWS and authori-
ties related to warning systems (Eq. 9), which negatively im-
pacts to the capability of a community to deal with the next
flood event by decreasing social preparedness (Eq. 7).

If social preparedness is determined only by social collec-
tive memory as Girons Lopez et al. (2017) proposed, small
social collective memory directly results in insufficient so-
cial preparedness actions. In our proposed model, high so-
cial collective trust in FEWS can induce social preparedness
actions even if a community loses past flood experiences to
some extent (Eq. 7). However, if a weather agency repeat-
edly issues false alarms, social collective trust in FEWS de-
creases (Eq. 9), which negatively impacts on social prepared-
ness (Eq. 7). Therefore, the dynamics of social preparedness
in our proposed model is greatly different from Girons Lopez
et al. (2017).

The additive form of the Eq. (7) implies that prepared-
ness actions are taken even if either social collective memory
E(t) or social collective trust T (t) goes to zero. Note that
E(t)≈ 0 does not mean that a community does not know the
existence of a flood event, while it means most citizens have
never experienced water levels above damage thresholds by
themselves. Many disasters prevention measures such as ed-
ucation, evaluation drills, and FEWS are designed to let peo-
ple take preparedness actions even if they have no personal
experiences of flood disasters. Forecasters expect that people
take preparedness actions based on information from their
trusted authorities even if they have never experienced dam-
ages themselves. To evaluate the effectiveness of these mea-

Table 2. Fixed model parameters.

Description Equation Values

κc shape of the bivariate gamma
distribution to generate river
discharge time series

(1) 2.5

θc scale of the bivariate gamma
distribution to generate river
discharge time series

(1) 0.08

µm mean of prediction error (2) 0

β parameter of the damage func-
tion

(3) 0.2

α0 minimum residual damage frac-
tion

(4) 0.2

λ social collective memory decay
rate

(8) 0.028

χ psychological shock magnitude (8) 1.0

sures, Pr(t)= 0 with E(t)= 0 is not an appropriate behav-
ior of the model, although the effectiveness of FEWS highly
depends on E(t) as Girons Lopez et al. (2017) found. There-
fore, we chose the additive form of the Eq. (7) rather than the
other simple alternatives such as multiplicative forms.

Many of the model parameters are fixed in our analysis.
Table 2 summarizes the description and values of the fixed
parameters. These parameters are not focused on in our anal-
ysis, and we chose their values from the previous works.
The values of κc, θc, α0, and χ are same as Girons Lopez
et al. (2017). We set µm = 0 assuming the forecast is unbi-
ased (see also Eq. 2 and its description). Our specified β is
within the range proposed by Girons Lopez et al. (2017). In
addition, the results of Girons Lopez et al. (2017) indicated
that this parameter is not sensitive to relative loss. We set
λ assuming that social collective memory has 25-year half-
life, which is within the range of previously quantified val-
ues (e.g., Fanta et al., 2019; Barendrecht et al., 2019). Some
parameters are changed in our analysis to check their sen-
sitivity to the performance of FEWS. Those parameters are
explained in the next section.

3 Experiment design

3.1 Metrices

We used several metrices to evaluate the performance of
FEWS. The purpose of FEWS is to reduce the total loss (D+
C). We used the relative loss as Girons Lopez et al. (2017)
did. The relative loss, Lr, is defined by Eq. (10):

Lr =
LFEWS

LnoFEWS
. (10)
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We performed the long-term (1000-year) numerical simu-
lation by solving Eqs. (1–9) and calculated the total loss,
LFEWS. We also performed the simulation without FEWS in
which flood damage is always calculated by Eq. (3) and D
is always equal to DQ. The total loss of this additional sim-
ulation is defined as LnoFEWS. The relative loss measures the
efficiency of FEWS.

In addition to relative loss, we used hit rate, false alarm ra-
tio, and threat score to evaluate the prediction accuracy which
is not related to social system dynamics. They are defined by
Eqs. (11–13):

hit rate=
OTP

OTP+OFN
(11)

false alarm ratio=
OFP

OFP+OTP
(12)

threat score=
OTP

OTP+OFP+OFN
, (13)

where OTP, OFN, and OFP are the total number of true posi-
tive, false negative, and false positive events, respectively.

3.2 Simulation settings

We firstly compared the original model proposed by Girons
Lopez et al. (2017) with our modified model. When we set
γ = 1 in Eq. (7), our model reduces to Girons Lopez et
al. (2017) since we have no contributions of social collective
trust in FEWS to social preparedness. In this paper, this orig-
inal model is hereafter called the GL (Gironz Lopez) model.
On the other hand, when we set γ = 0.5 in Eq. (7), our model
considers both social collective memory and social collec-
tive trust in FEWS with same weights to calculate social
preparedness. There is no existing knowledge about the rel-
ative importance of social collective memory and social col-
lective trust. Assuming the same weights gives us the most
straightforward interpretation of the contributions of social
collective trust and memory to social preparedness and the
total loss by floods, since we do not need to consider asym-
metric contributions of the two factors in Eq. (7). Therefore,
γ = 0.5 is appropriate to analyze the essential behavior of
our proposed model. This new model with γ = 0.5 is here-
after called the SKK (Sawada, Kanai, and Kotani) model.
The behavior of the models with the different γ is also dis-
cussed in the supplement material.

In Experiment 1, the time series of state variables of the
two models are compared to demonstrate how differently the
SKK and GL models work. The parameter variables in Ex-
periment 1 are shown in Table 3. The initial conditions of E
and T are randomly chosen and set to 0.49 and 0.77, respec-
tively.

We mainly focused on the relationship between relative
loss and a predefined probability threshold, π . This warning
threshold is important for forecasters to determine whether
they require general citizens to take preparedness actions.
In Experiment 2, we used the same damage threshold, δ, as

Table 3. Model parameters in Experiment 1.

Description Equation Values

σm standard deviation of
prediction error

(2) 0.075

µv mean of prediction pre-
cision

(2) 0.15

σv standard deviation of
prediction precision

(2) 0.075

δ damage threshold (3, 5) 0.35

π predefined probability
threshold

(5, 6) 0.40

η cost parameter (6) 0.02

γ parameter controlling
weights of social col-
lective memory and
trust

(7) 1 (GL model)
0.5 (SKK model)

τTP increment of trust for
true positive

(9) 0.1

τFN increment of trust for
false negative

(9) 0.1

τFP increment of trust for
false positive

(9) 0.1

Girons Lopez et al. (2017), and compared the relationship
between relative loss and predefined probability thresholds
in the GL model with that in the SKK model under the differ-
ent prediction skills and the cost parameter η. The settings of
the parameters in Experiment 2 can be found in Table 4. The
prediction skill is controlled by σm, µv , and σv . The greater
values of these parameters provide inaccurate prediction. We
prepared two sets of the parameter for relatively accurate and
inaccurate prediction systems (see Table 4). Following the
settings of Girons Lopez et al. (2017), we set η = 0.1. In
addition, we also performed the numerical simulation with
η = 0 (i.e., negligible costs of mitigation and protection ac-
tions), which is more consistent to the published literature
than the original settings (see Sect. 2).

In Experiment 3, we also compared the GL and SKK mod-
els under different damage thresholds, δ. In socio-hydrology,
previous works focused on the difference between “green”
and “technological” society (Ciullo et al., 2017). In green so-
ciety, risk is dealt with mainly by non-structural measures.
In this society, the flood protection level is so low that many
flood events occur, which increases social collective memory
of flood events. In technological society, the flood protection
level is so high that risk can be dealt with by structural mea-
sures and non-structural measures. Since flood events occur
less frequently in the technological society, the high level of
social collective memory cannot be maintained. By changing

https://doi.org/10.5194/hess-26-4265-2022 Hydrol. Earth Syst. Sci., 26, 4265–4278, 2022
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Table 4. Model parameters in Experiment 2.

Description Equation Values

exp2.1 exp2.2 exp2.3 exp2.4 exp2.5 exp2.6

σm standard deviation
of prediction error

(2) 0.05 0.075 0.05 0.05 0.075 0.05

µv mean of prediction
precision

(2) 0.05 0.15 0.05 0.05 0.15 0.05

σv standard deviation
of prediction preci-
sion

(2) 0.025 0.075 0.025 0.05 0.075 0.025

δ damage threshold (3, 5) 0.35 0.35 0.35 0.35 0.35 0.35

η cost parameter (6) 0 0 0.1 0 0 0.1

γ parameter control-
ling weights of
social collective
memory and trust

(7) 1
(GL model)

1
(GL model)

1
(GL model)

0.5
(SKK model)

0.5
(SKK model)

0.5
(SKK model)

τTP increment of trust
for true positive

(9) 0.1 0.1 0.1 0.1 0.1 0.1

τFN increment of trust
for false negative

(9) 0.1 0.1 0.1 0.1 0.1 0.1

τFP increment of trust
for false positive

(9) 0.1 0.1 0.1 0.1 0.1 0.1

Table 5. Model parameters in Experiment 3.

Description Equation Values

exp3.1 exp3.2 exp3.3 exp3.4

σm standard deviation of prediction
error

(2) 0.05 0.05 0.05 0.05

µv mean of prediction precision (2) 0.05 0.05 0.05 0.05

σv standard deviation of prediction
precision

(2) 0.025 0.025 0.025 0.025

δ damage threshold (3, 5) 0.20 0.20 0.45 0.45

η cost parameter (6) 0.02 0.02 0.02 0.02

γ parameter controlling weights of
social collective memory and trust

(7) 1 (GL model) 0.5 (SKK model) 1 (GL model) 0.5 (SKK model)

τTP increment of trust for true positive (9) 0.1 0.1 0.1 0.1

τFN increment of trust for false
negative

(9) 0.1 0.1 0.1 0.1

τFP increment of trust for false
positive

(9) 0.1 0.1 0.1 0.1
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the damage threshold, we analyzed how differently the GL
and SKK models behave in the different society. The settings
of the parameters in Experiment 3 can be found in Table 5.
From the original value of the damage threshold proposed by
Girons Lopez et al. (2017) (i.e., δ = 0.35), we decreased and
increased δ to simulate the green and technological societies,
respectively (see Table 5).

In Experiment 4, we analyzed only the SKK model. The
primary purpose of this Experiment 4 is to find the optimal
predefined probability threshold, which minimizes relative
loss, in not only different society and prediction accuracy
but also different combinations of parameters related to the
dynamics of social collective trust in FEWS (i.e., τTP,τFN,
and τFP in Eq. 9). The settings of the parameters in Experi-
ment 4 can be found in Table 6. We analyzed how the optimal
warning threshold is changed by changing τFN and τFP (see
Table 6).

In Experiments 2–4, we performed the 250-member
Monte Carlo simulation by randomly perturbing a predefined
probability threshold, π , and the initial conditions of social
collective memory and social collective trust in FEWS. We
used the same random seed to generate 250-member Monte
Carlo simulation in each experiment, so that the differences
between experiments do not depend on random processes.
We analyzed the sensitivity of the efficiency of FEWS to pre-
defined probability thresholds.

4 Results

Figure 1 shows the time series of social preparedness of the
GL and SKK models in Experiment 1 (see Table 3). The pur-
pose of Fig. 1 is to demonstrate how differently the SKK and
GL models work by showing the time series. While Fig. 1
shows the subset of the entire time series to clearly demon-
strate the differences between two models, the entire time
series can be found in Fig. S1 in the Supplement. In the GL
model (Fig. 1a), social preparedness (black line) increases
when flood occurs (red and green bars) and is not affected by
false alarms (blue bars). In the SKK model (Fig. 1b), false
alarms negatively impact social preparedness by reducing so-
cial collective trust in FEWS (pink line). From t = 430 to
t = 440, consecutive false alarms substantially decrease so-
cial collective trust in FEWS and social preparedness, so that
the damage of severe flood at t = 452 in the SKK model is
larger than that in the GL model despite the accurate warning
being issued. It is the cry wolf effect.

Figure 2a shows the relationship between relative loss and
predefined probability thresholds simulated by the GL model
in Experiment 2 (see Table 4). We firstly assumed that there
is no cost of the mitigation and protection action, and is the
relatively accurate prediction system (Experiment 2.1; see
Table 4). In this case, FEWS can minimize the relative loss
with the extremely small predefined probability thresholds
(blue line). When we degrade the prediction skill (Experi-

ment 2.2; see Table 4), forecasters still maintain the same
level of relative loss by setting low (or zero) predefined prob-
ability thresholds, issuing many false alarms (orange line). It
is apparently unrealistic. In the framework of the GL model,
this unrealistic model’s behavior can be eliminated by set-
ting the high cost of the mitigation and protection action re-
sponding to the issued warning. When we assume the high
cost of preparedness actions (Experiment 2.3; see Table 4),
the small predefined probability threshold induces high rela-
tive loss (green line). Forecasters need to avoid issuing false
alarms when the cost which should be paid with false alarms
is large. Note that the total costs of mitigation and protection
actions with η = 0.1 in Experiment 2.3 is comparable to the
total flood damages. As discussed above, this high cost of
mitigation and protection actions was not supported by pre-
vious works, although Girons Lopez et al. (2017) used this
parameter.

The SKK model can give a different explanation of the
avoidance of false alarms. Figure 2b shows the relationship
between relative loss and predefined probability thresholds
simulated by the SKK model in Experiment 2 (see Table 4).
Although we assumed no cost and an accurate prediction sys-
tem (Experiment 2.4; see Table 4), forecasters need to avoid
issuing false alarms by the relatively high predefined prob-
ability thresholds to minimize relative loss (blue line). Due
to the cry wolf effect found in Fig. 1b, forecasters need to
decrease the number of false alarms to mitigate the damage
of flooding even if there was no cost of false alarms. In other
words, forecasters in the SKK model need to pay “implicit
cost” of false alarms because false alarms induce not only the
cost of mitigation and protection actions for nothing at the
current time, but also the increase of damages of the future
floods by reducing the social collective trust and prepared-
ness. Considering that the previous works indicated that the
cost of mitigation and protection actions is negligibly small
(i.e., it is realistic to assume η = 0), the SKK model repro-
duces the relationship between warning thresholds and to-
tal losses more realistically than the GL model. When we
degrade the prediction accuracy (Experiment 2.5; see Ta-
ble 4), relative loss is more sensitive to predefined proba-
bility thresholds (orange line) because the selection of the
threshold is more important to accurately detect flood events
and reduce the number of false alarms when the prediction is
more inaccurate and uncertain. When we consider the high
cost of mitigation and protection actions (Experiment 2.6;
see Table 4), small predefined probability thresholds further
increase relative loss (green line).

Figure S2 shows how γ in the Eq. (7) affects the relation-
ship between relative loss and predefined probability thresh-
old. When the contribution of social collective trust to social
preparedness increases (i.e., γ gets smaller), the “implicit
cost” of false alarms induced by relatively small predefined
probability thresholds increases. Figure S2 also shows that
moderate changes of γ from the default setting of the SKK
model (i.e., 0.5) do not qualitatively change the relationship
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Table 6. Model parameters in Experiment 4.

Description Equation Values

σm standard deviation of prediction
error

(2) 0.05 (accurate forecast)
0.075 (inaccurate forecast)

µv mean of prediction precision (2) 0.05 (accurate forecast)
0.15 (inaccurate forecast)

σv standard deviation of prediction
precision

(2) 0.025 (accurate forecast)
0.075 (inaccurate forecast)

δ damage threshold (3, 5) 0.20 (green society)
0.45 (technological society)

η cost parameter (6) 0.02

γ parameter controlling weights
of social collective memory and
trust

(7) 1 (GL model)

[τTPτFNτFP] increment of trust for true pos-
itive, false negative, and false
positive

(9) [0.1, 0.1, 0.1] (blue lines in Fig. 4a–h)
[0.1, 0.1, 0.8] (orange lines in Fig. 4a–h)
[0.1, 0.8, 0.1] (green lines in Fig. 4a–h)

Figure 1. Time series of (a) the GL model and (b) the SKK model of Experiment 1 (see Sect. 3 and Table 2 for model parameters). Black,
purple, and pink lines are social preparedness, half of social collective memory, and half of social collective trust in FEWS, respectively.
Since social preparedness is identical to social collective memory and social collective trust is not considered in the GL model, there are
no purple and pink lines in (a). Note that the sum of half of social collective memory and half of social collective trust in FEWS is social
preparedness in (b). Blue, red, and green bars show total loss by the outcomes of false positive, false negative, and true positive, respectively
(see Table 2).

between relative loss and predefined probability threshold.
In addition, the qualitative behavior of our SKK model is ro-
bust to different discharge time series (Fig. S3). Figure S3
reveals that the uncertainty induced by different discharge
time series is comparable to that quantified by 250 Monte
Carlo simulations with different initial conditions and fore-
cast outcomes.

Figure 3a compares the GL and SKK models in the green
society. In the previous Experiments 1 and 2, the damage
threshold, δ, is set to 0.35, which is same as Girons Lopez
et al. (2017). In Experiments 3.1 and 3.2 (see Table 5), the
damage threshold is reduced to 0.20 so that the number of
flood events increases. In this case, the GL and SKK models
behave similarly. Figure 3c shows time-averaged social col-
lective memory, social collective trust in FEWS, and social
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Figure 2. The relationship between relative loss and predefined probability thresholds in (a) the GL model and (b) the SKK model in
Experiment 2. In (a), blue, orange, and green lines show the results of Experiments 2.1, 2.2, and 2.3, respectively. In (b), blue, orange, and
green lines show the results of Experiments 2.4, 2.5, and 2.6, respectively. Each dot shows the result of the individual Monte Carlo simulation
and we smoothed them by Gaussian process regression. See also Table 4 for detailed parameter settings.

preparedness as functions of predefined probability thresh-
olds. In the green society, frequent flood events make social
collective memory high. In addition, it is easy to maintain the
high social collective trust in FEWS since there are many op-
portunities to gain trust when flood frequently occurs. There-
fore, both social collective memory and social collective trust
in FEWS are large in the green society. Although the GL
model neglects the social collective trust in FEWS to calcu-
late social preparedness, the social preparedness of both GL
and SKK models is high.

On the other hand, the GL and SKK models work more
differently in the technological society than the green soci-
ety. The damage threshold, δ, is increased to 0.45 in Experi-
ments 3.3 and 3.4 (see Table 5), so that the number of flood
events is smaller than Girons Lopez et al. (2017). Figure 3b
indicates that the relationship between relative loss and pre-
defined probability thresholds in the GL model is substan-
tially different from that in the SKK model. The SKK model
produces smaller relative loss than the GL model when the
appropriate predefined probability threshold is chosen. The
sensitivity of relative loss to predefined probability thresh-
olds is larger in the technological society than the green soci-
ety. Figure 3d indicates that it is difficult to maintain the high
level of social collective memory in the technological soci-
ety, so that considering social collective trust in FEWS can
increase social preparedness. In addition, the choice of a pre-
defined probability threshold is more important to maintain
the high level of social collective trust in the technological
society than the green society. These behaviors of the mod-
els can be found when damage threshold is further increased
to 0.6, although the 1000-year averaged statistics are strongly
affected by random processes due to the insufficient number

of disaster events within the 1000-year computation period
(not shown).

In Experiment 4, we further analyze the SKK model to
discuss the optimal predefined probability threshold and to
provide the useful implication for the design of FEWS in the
various kind of social systems. We have three sets of param-
eters in Eq. (9) (see also Table 6). The first set of parame-
ters is same as Experiments 1–3. Changes in social collec-
tive trust by false negative and false positive are the same
(τFN = τFP). In the second set of parameters, we assume so-
cial collective trust substantially decreases by false positive
(false alarms) (τFN < τFP): [τTPτFNτFP] = [0.1,0.1,0.8]. In
the third set of parameters, we assume social collective trust
substantially decreases when forecasters miss a flood event
(τFN > τFP): [τTPτFNτFP] = [0.1,0.8,0.1]. The blue, orange,
and green lines in Fig. 4a–d show that the optimal predefined
probability threshold depends on how social collective trust
is affected by false alarms and missed events. When social
collective trust is affected by false alarms more substantially
than missed events (orange lines), forecasters need to have
relatively high predefined probability thresholds to maintain
the high level of social collective trust (see Fig. 4e–h) and
minimize relative loss. Figure 4a–d also shows that the dif-
ferences of optimal predefined probability thresholds in three
sets of parameters become larger as forecasts become accu-
rate. The optimal predefined thresholds are bounded by the
range in which the high threat scores can be obtained (see
Fig. 4i–l). Thus, more accurate prediction systems make it
more important to change the predefined probability thresh-
old according to the dynamics of social collective trust. It
implies that forecasters need to prioritize the meteorologi-
cally accurate forecasting by maximizing threat scores. Then,
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Figure 3. (a–b) The relationship between relative loss and predefined probability thresholds in (a) the green society and (b) the technological
society. In (a), blue and green lines show the results of Experiments 3.1 and 3.2, respectively. In (b), blue and green lines show the results
of Experiments 3.3 and 3.4, respectively. (c, d) The relationship between time-averaged social preparedness and predefined probability
thresholds in (c) the green society and (d) the technological society. Black, purple, and pink lines show time-averaged social preparedness,
social collective memory, and social collective trust in FEWS. Each dot shows the result of the individual Monte Carlo simulation, and we
smoothed them by Gaussian process regression.

they have room for improvement to change their warning
thresholds based on the dynamics of social collective trust
in FEWS.

5 Discussion and conclusions

In this study, we included the dynamics of social collective
trust in FEWS into the existing socio-hydrological model.
By formulating social preparedness as a function of social
collective trust and social collective memory, we realistically
simulate the cry wolf effect in which many false alarms un-
dermine the credibility of the early warning systems. Please
note that the previous version of the model proposed by
Girons Lopez et al. (2017) cannot do it. Although our model
is simple and stylized, we can provide practically useful im-

plications to improve the design of FEWS. First, consider-
ing the dynamics of social collective trust in FEWS is more
important in the technological society with infrequent flood
events than in the green society with frequent flood events. It
implies that weather agencies need more efforts to be trusted
by general citizens to induce their preparedness actions when
a community is more heavily protected by flood protection
infrastructures such as levees and dams. Second, as the natu-
ral scientific skill to predict floods is improved, the efficiency
of FEWS gets more sensitive to the behavior of social collec-
tive trust, so that forecasters need to determine their warning
threshold by considering the social aspects. Considering the
recent advances of the skill to predict extreme hydrometeoro-
logical events, it implies that it is becoming more important
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Figure 4. Results of Experiment 4. (a–d) The relationship between relative loss and predefined probability thresholds in (a) the green society
with accurate forecasts, (b) the green society with inaccurate forecasts, (c) the technological society with accurate forecasts, and (d) the
technological society with inaccurate forecasts. Increments of trust for true positive, false negative, and false positive are set to 0.1, 0.1, and
0.1 (blue lines), 0.1, 0.1, and 0.8 (orange lines), and 0.1, 0.8, and 0.1 (green lines). See Table 6 for detailed model parameters’ settings. (e–h)
Same as (a–d) but for time-averaged social collective trust in FEWS. (i–l) Same as (a–d) but for threat score (black lines), hit rate (purple
lines), and false alarm ratio (pink lines). Each dot shows the result of individual Monte Carlo simulation, and we smoothed them by Gaussian
process regression.

for forecasters to take social dynamics responding to weather
forecasts into consideration.

Although our model is the small extension of Girons
Lopez et al. (2017), the implication of our study is com-
pletely different from Girons Lopez et al. (2017). Girons
Lopez et al. (2017) mainly focused on the influence of the
recency of flood experience on social preparedness and the
efficiency of FEWS. Since their social preparedness is deter-
mined only by the flood experiences and they did not con-
sider social collective trust in FEWS and weather agencies,
the outcome of prediction did not directly influence the peo-
ple’s behavior in the model of Girons Lopez et al. (2017). By

formulating social preparedness as a function of both social
collective memory and trust, we could evaluate the effects of
missed events and false alarms on preparedness actions. We
contributed to connecting the modeling approaches of sys-
tem dynamics in socio-hydrology to the existing literature
about complex human behaviors against disaster warnings
such as cry wolf effects in economics, sociology, and psy-
chology (e.g., Simmons and Sutter, 2009; Ripberger et al.,
2015; Trainor et al., 2015; LeClerc and Joslyn, 2015; Jauer-
nic and van den Broeke, 2017; Lim et al., 2019).

Our findings of the optimal predefined probability thresh-
olds are similar to Roulston and Smith (2004). Roulston and
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Smith (2004) developed the simple model to optimize pre-
defined probability thresholds considering the damage, cost,
and imperfect compliance with forecasting (i.e., the cry wolf
effect). They also revealed that it is necessary to choose high
warning thresholds if intolerance of false alarms of the so-
ciety is high. However, there are substantial differences be-
tween our study and the previous cost–loss analysis such as
Roulston and Smith (2004). First, Roulston and Smith (2004)
developed the static model in which the cry wolf effect is
treated exogenously, while our model is the dynamic model
in which the cry wolf effect is endogenously simulated.
Therefore, our model can consider the temporal change in
the design and accuracy of FEWS, the flood protection level,
and social systems, which may be the significant advantage
to analyze the actual socio-hydrological phenomena. Second,
by fully utilizing the previous achievements of Girons Lopez
et al. (2017), we can also consider social collective mem-
ory of past disasters, which is not considered by Roulston
and Smith (2004). This feature of our model can reveal that
the social collective memory also contributes to the optimal
predefined probability thresholds. Similar to Roulston and
Smith (2004), our stylized model has a potential to help fore-
casters determine the optimal warning threshold if it can be
appropriately calibrated by empirical data.

Our stylized model and findings are consistent with the
previous works. In our model, the subjective perception of
warning systems’ accuracy controls social collective trust in
a weather agency and preparedness actions, which is consis-
tent to Ripberger et al. (2015). Our simulation results reveal
that more actual false alarms hamper preparedness actions
and induce more damages, which is consistent to the findings
of Simmons and Sutter (2009) and Trainor et al. (2015). The
behavior of the optimal warning threshold is similar to Roul-
ston and Smith (2004). While the GL model realistically sim-
ulates the behavior of the optimal warning threshold only if
unrealistically high costs of mitigation and protection actions
are assumed, our stylized model needs no costs of mitigation
and protection actions to realistically simulate the behavior
of the optimal warning threshold. Our stylized model is more
consistent with the previous works in which the costs of mit-
igation and protection actions responding to warnings were
found to be negligibly small (e.g., Schroter et al., 2008; Hal-
legatte, 2012; Pappenberger et al., 2015). Our results justify
the optimal warning thresholds which balance false alarms
with missed events, and imply that forecasters believe the
existence of cry wolf effects, although it does not necessarily
mean that cry wolf effects exist.

However, the major limitation of this study is that our
modeling of social collective trust is simple and is not fully
supported by empirical data. We assumed that social collec-
tive trust in FEWS is affected only by the outcome of FEWS
in our stylized model although there are many other factors
which affect social collective trust in FEWS, such as social
activities and education. Although intuition and theory sug-
gest that many false alarms reduce the preparedness actions

responding to warnings, the existence of the cry wolf effect
in the weather-related disasters is still debatable (see a com-
prehensive review of Lim et al., 2019). Simmons and Sut-
ter (2009) indicated that the recent false alarms negatively
impacted the preparedness actions, so that we modeled the
change in social collective trust by the recent forecast out-
come. However, Ripberger et al. (2015) could not find the
statistically significant short-term effect of false alarms, al-
though they found the statistically significant cry wolf ef-
fect using the long-term data. It should be noted that most
of the previous studies related to the cry wolf effect focused
on tornado disasters, and the systematic econometric anal-
yses have not been implemented for flood disasters, which
makes it difficult to validate our proposed model. The ef-
fect of social collective memory on catastrophic disasters in
the actual society is also debatable (e.g., Fanta et al., 2019).
As Mostert (2018) suggested, it is crucially important to per-
form case study analyses, obtain empirical data, and integrate
those data into the dynamic model to deepen our understand-
ing of the hypothesis of the models (e.g., Roobavannan et al.,
2017; Ciullo et al., 2017; Barendrecht et al., 2019; Sawada
and Hanazaki, 2020).

As discussed above, systematic econometric analyses and
field surveys on cry wolf effects have not been implemented
for flood disasters, so it is important to design such kinds of
analyses. Our modeling work provides useful implications
for the design of future field analyses. First, our results show
that the sensitivity of relative loss to predefined probability
threshold is small around its optimal value in many cases. In
many field surveys such as Simmons and Sutter (2009) and
Trainor et al. (2015), pairs of false alarm ratio and damage in
many regions of one country are collected and compared to
show the increase of false alarm ratio increases damage. As-
suming that nationwide criteria of issuing warnings are near-
optimal, our study implies that the detectable signal of cry
wolf effects in this approach is weak. Our modeling work
implies that it is difficult to quantify cry wolf effects using
time–mean performance of warnings and damages. It may
be the reason why several field surveys contradict with each
other, and the negative effect of false alarm ratio cannot be
found in some surveys (Lim et al., 2019). We recommend an-
alyzing the temporal change in behaviors responding to re-
cent forecast outcomes, although this strategy is costly and
time-consuming. Second, our Experiment 3 implies that it
is better to choose technological societies as a research field
because it is more difficult to distinguish the contributions of
experience and trust in less protected areas.

In socio-hydrology, researchers have mainly focused on
the functions of land use change and water-related infras-
tructures such as dams, levees, and dikes in the complex so-
cial systems. Although the interactions between social sys-
tems and weather forecasting such as the cry wolf effect
are interesting, the function of FEWS and weather-related
disaster forecasting has not been intensively investigated in
socio-hydrology. We call for the new research regime, socio-
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meteorology, as the extension of socio-hydrology. In socio-
meteorology, researchers may focus on how social systems
interact with water-related disaster forecasting, how the effi-
ciency of weather forecasting is affected by other hydrolog-
ical factors such as land use and flood protection infrastruc-
tures, and how weather forecasting affects the design of land
use and flood protection infrastructures.
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