Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research
Franciele Maria Vanelli
CORRESPONDING AUTHOR
Institute of Hydraulic Research, Federal University of Rio Grande do
Sul, Porto Alegre, 91501-970, Brazil
Masato Kobiyama
Institute of Hydraulic Research, Federal University of Rio Grande do
Sul, Porto Alegre, 91501-970, Brazil
Mariana Madruga de Brito
CORRESPONDING AUTHOR
Department of Urban and Environmental Sociology, Helmholtz Centre for
Environmental Research, 04347 Leipzig, Germany
Related authors
No articles found.
Jan Sodoge, Taís Maria Nunes Carvalho, and Mariana Madruga de Brito
Geosci. Commun., 8, 191–196, https://doi.org/10.5194/gc-8-191-2025, https://doi.org/10.5194/gc-8-191-2025, 2025
Short summary
Short summary
Thousands of geoscience abstracts are presented at the European Geosciences Union (EGU) General Assembly, but researchers often miss key insights by focusing on their own field. Using natural language processing (NLP), we help scientists find relevant research across disciplines. This approach breaks down boundaries, encouraging broader knowledge sharing and new interdisciplinary connections in the geosciences.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024, https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the effect of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the effect of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Luana Lavagnoli Moreira, Mariana Madruga de Brito, and Masato Kobiyama
Nat. Hazards Earth Syst. Sci., 21, 1513–1530, https://doi.org/10.5194/nhess-21-1513-2021, https://doi.org/10.5194/nhess-21-1513-2021, 2021
Short summary
Short summary
The review of flood vulnerability indices revealed that (1) temporal dynamic aspects were often disregarded, (2) coping and adaptive capacity indicators were frequently ignored, as obtaining these data demand time and effort, and (3) most studies neither applied sensitivity (90.5 %) or uncertainty analyses (96.8 %) nor validated the results (86.3 %). The study highlights the importance of addressing these gaps to produce scientifically rigorous and comparable research.
Cited articles
Abadie, L. M., Markandya, A., and Neumann, M. B.: Accounting for economic
factors in socio-hydrology: Optimization under uncertainty and climate
change, Water-Sui., 11, 1–17, https://doi.org/10.3390/w11102073, 2019.
Abebe, Y. A., Ghorbani, A., Nikolic, I., Vojinovic, Z., and Sanchez, A.:
Flood risk management in Sint Maarten – A coupled agent-based and flood
modelling method, J. Environ. Manage., 248, 109317,
https://doi.org/10.1016/j.jenvman.2019.109317, 2019.
Adger, W. N., Arnell, N. W., and Tompkins, E. L.: Successful adaptation to
climate change across scales, Global Environ. Chang., 15, 77–86,
https://doi.org/10.1016/j.gloenvcha.2004.12.005, 2005.
AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedifard, F.,
Mazdiyasni, O., Moftakhari, H., and Mallakpour, I.: How do natural hazards
cascade to cause disasters?, Nature, 561, 458–460,
https://doi.org/10.1038/d41586-018-06783-6, 2018.
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I.,
Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.:
Climate Extremes and Compound Hazards in a Warming World, Annu. Rev. Earth
Pl. Sc., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-055228, 2020.
Albertini, C., Mazzoleni, M., Totaro, V., Iacobellis, V., and Di Baldassarre,
G.: Socio-Hydrological Modelling: The Influence of Reservoir Management and
Societal Responses on Flood Impacts, Water, 12, 1384,
https://doi.org/10.3390/w12051384, 2020.
Baeza, A., Bojorquez-Tapia, L. A., Janssen, M. A., and Eakin, H.:
Operationalizing the feedback between institutional decision-making,
socio-political infrastructure, and environmental risk in urban
vulnerability analysis, J. Environ. Manage., 241, 407–417,
https://doi.org/10.1016/j.jenvman.2019.03.138, 2019.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte,
L., and Blöschl, G.: Debates – Perspectives on socio-hydrology: Capturing
feedbacks between physical and social processes, Water Resour. Res., 51,
4770–4781, https://doi.org/10.1002/2014WR016416, 2015.
Di Baldassarre, G., Saccà, S., Aronica, G. T., Grimaldi, S., Ciullo, A., and Crisci, M.: Human-flood interactions in Rome over the past 150 years, Adv. Geosci., 44, 9–13, https://doi.org/10.5194/adgeo-44-9-2017, 2017.
Di Baldassarre, G., Nohrstedt, D., Mård, J., Burchardt, S., Albin, C.,
Bondesson, S., Breinl, K., Deegan, F. M., Fuentes, D., Lopez, M. G.,
Granberg, M., Nyberg, L., Nyman, M. R., Rhodes, E., Troll, V., Young, S.,
Walch, C., and Parker, C. F.: An Integrative Research Framework to Unravel
the Interplay of Natural Hazards and Vulnerabilities, Earth's Future, 6,
305–310, https://doi.org/10.1002/2017EF000764, 2018.
Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M.,
Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S., Sanderson, M.
R., Tian, F., Viglione, A., Wei, J., Wei, Y., Yu, D. J., Srinivasan, V., and
Blöschl, G.: Sociohydrology: Scientific Challenges in Addressing the
Sustainable Development Goals, Water Resour. Res., 55, 6327–6355,
https://doi.org/10.1029/2018WR023901, 2019.
Di Baldassarre, G., Cloke, H., Lindersson, S., Mazzoleni, M., Mondino, E.,
Mård, J., Odongo, V., Raffetti, E., Ridolfi, E., Rusca, M., Savelli, E.,
and Tootoonchi, F.: Integrating Multiple Research Methods to Unravel the
Complexity of Human-Water Systems, AGU Adv., 2, 1–6,
https://doi.org/10.1029/2021av000473, 2021.
Basel, B., Hernández Quiroz, N., Velasco Herrera, R., Santiago Alonso,
C., and Hoogesteger, J.: Bee mietii rak rkabni nis (The people know how to
seed water): A Zapotec experience in adapting to water scarcity and drought,
Clim. Dev., 13, 792–806, https://doi.org/10.1080/17565529.2020.1855100, 2020.
Birkmann, J. and von Teichman, K.: Integrating disaster risk reduction and
climate change adaptation: Key challenges-scales, knowledge, and norms,
Sustain. Sci., 5, 171–184, https://doi.org/10.1007/s11625-010-0108-y, 2010.
Borga, M., Comiti, F., Ruin, I., and Marra, F.: Forensic analysis of flash
flood response, WIREs Water, 6, 1–9, https://doi.org/10.1002/wat2.1338, 2019.
de Brito, M. M.: Compound and cascading drought impacts do not happen by
chance: A proposal to quantify their relationships, Sci. Total Environ.,
778, 146236, https://doi.org/10.1016/j.scitotenv.2021.146236, 2021.
de Brito, M. M., Evers, M., and Höllermann, B.: Prioritization of flood
vulnerability, coping capacity and exposure indicators through the Delphi
technique: A case study in Taquari-Antas basin, Brazil, Int. J. Disast.
Risk Re., 24, 119–128, https://doi.org/10.1016/j.ijdrr.2017.05.027, 2017.
de Brito, M. M., Evers, M., and Almoradie, A. D. S.: Participatory flood vulnerability assessment: a multi-criteria approach, Hydrol. Earth Syst. Sci., 22, 373–390, https://doi.org/10.5194/hess-22-373-2018, 2018.
de Brito, M. M., Kuhlicke, C., and Marx, A.: Near-real-time drought impact
assessment: A text mining approach on the 2018/19 drought in Germany,
Environ. Res. Lett., 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, 2020.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in
modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520,
https://doi.org/10.1002/wat2.1520, 2021.
Bryman, A.: Barriers to Integrating Quantitative and Qualitative Research,
J. Mix. Methods Res., 1, 8–22, https://doi.org/10.1177/2345678906290531, 2007.
Buarque, A. C. S., Bhattacharya-Mis, N., Fava, M. C., de Souza, F. A. A., and
Mendiondo, E. M.: Using historical source data to understand urban flood
risk: a socio-hydrological modelling application at Gregório Creek,
Brazil, Hydrolog. Sci. J., 65, 1075–1083,
https://doi.org/10.1080/02626667.2020.1740705, 2020.
Carr, G., Barendrecht, M. H., Debevec, L., Kuil, L., and Blöschl, G.:
People and water: Understanding integrated systems needs integrated
approaches, J. Water Supply Res. T., 69, 819–832,
https://doi.org/10.2166/aqua.2020.055, 2020.
Chen, X., Wang, D., Tian, F., and Sivapalan, M.: From channelization to
restoration: Sociohydrologic modeling with changing community preferences in
the Kissimmee River Basin, Florida, Water Resour. Res., 52,
1227–1244, https://doi.org/10.1002/2015WR018194, 2016.
Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di Baldassarre,
G.: Socio-hydrological modelling of flood-risk dynamics: comparing the
resilience of green and technological systems, Hydrolog. Sci. J., 62,
880–891, https://doi.org/10.1080/02626667.2016.1273527, 2017.
Creswell, J.: Educational research: planning, conducting and evaluating
quantitative and qualitative research, 4th ed., edited by: Pearson, Boston,
ISBN-10 0-13-136739-0,
ISBN-13 978-0-13-136739-5,
2012.
EM-Dat: The Emergency Events Database, https://public.emdat.be/,
last access: November 2021.
Eriksen, C., Gill, N., and Bradstock, R.: Trial by fire: Natural hazards,
mixed-methods and cultural research, Aust. Geogr., 42, 19–40,
https://doi.org/10.1080/00049182.2011.546317, 2011.
Evers, M., Almoradie, A., and de Brito, M. M.: Enhancing Flood Resilience
Through Collaborative Modelling and Multi-criteria Decision Analysis (MCDA),
in: Urban Disaster Resilience and Security, The Urban Book Series, edited by: Fekete, A. and Fiedrich, F., Springer, Cham, 221–236, https://doi.org/10.1007/978-3-319-68606-6_14, 2018.
Falkenmark, M.: Water and Mankind: A Complex System of Mutual Interaction,
Ambio, 6, 3–9, 1977.
Falkenmark, M.: Main Problems of Water Use and Transfer of Technology,
GeoJournal, 3, 435–443, 1979.
Ferdous, M. R., Wesselink, A., Brandimarte, L., Slager, K., Zwarteveen, M., and Di Baldassarre, G.: Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh, Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, 2018.
Ferdous, M. R., Di Baldassarre, G., Brandimarte, L., and Wesselink, A.: The
interplay between structural flood protection, population density, and flood
mortality along the Jamuna River, Bangladesh, Reg. Environ. Chang., 20,
1–9, https://doi.org/10.1007/s10113-020-01600-1, 2020.
Fischer, A., Miller, J. A., Nottingham, E., Wiederstein, T., Krueger, L. J.,
Perez-Quesada, G., Hutchinson, S. L., and Sanderson, M. R.: A Systematic
Review of Spatial-Temporal Scale Issues in Sociohydrology, Front. Water,
3, 1–19, https://doi.org/10.3389/frwa.2021.730169, 2021.
Flint, C. G., Jones, A. S., and Horsburgh, J. S.: Data Management Dimensions
of Social Water Science: The iUTAH Experience, J. Am. Water Resour. Assoc.,
53, 988–996, https://doi.org/10.1111/1752-1688.12568, 2017.
Ford, J. D., Pearce, T., McDowell, G., Berrang-Ford, L., Sayles, J. S., and
Belfer, E.: Vulnerability and its discontents: the past, present, and future
of climate change vulnerability research, Clim. Change, 151, 189–203,
https://doi.org/10.1007/s10584-018-2304-1, 2018.
Garcia, M., Portney, K., and Islam, S.: A question driven socio-hydrological modeling process, Hydrol. Earth Syst. Sci., 20, 73–92, https://doi.org/10.5194/hess-20-73-2016, 2016.
Gober, P. and Wheater, H. S.: Debates – Perspectives on socio-hydrology:
Modeling flood risk as a public policy problem, Water Resour. Res., 51,
4782–4788, https://doi.org/10.1002/2015WR016945, 2015.
Gonzales, P. and Ajami, N.: Social and Structural Patterns of
Drought-Related Water Conservation and Rebound, Water Resour. Res., 53,
10619–10634, https://doi.org/10.1002/2017WR021852, 2017.
Gotham, K. F. and Campanella, R.: Coupled vulnerability and resilience: The
dynamics of cross-scale interactions in post-Katrina new Orleans, Ecol.
Soc., 16, 25, https://doi.org/10.5751/ES-04292-160312, 2011.
Grames, J., Prskawetz, A., Grass, D., Viglione, A., and Blöschl, G.:
Modeling the interaction between flooding events and economic growth, Ecol.
Econ., 129, 193–209, https://doi.org/10.1016/j.ecolecon.2016.06.014, 2016.
Grames, J., Grass, D., Kort, P. M., and Prskawetz, A.: Optimal investment and
location decisions of a firm in a flood risk area using impulse control
theory, Cent. Eur. J. Oper. Res., 27, 1051–1077,
https://doi.org/10.1007/s10100-018-0532-0, 2019.
Haddaway, N. R., Macura, B., Whaley, P., and Pullin, A. S.: ROSES Reporting
standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and
descriptive summary of the plan and conduct of environmental systematic
reviews and systematic maps, Environ. Evid., 7, 7,
https://doi.org/10.1186/s13750-018-0121-7, 2018.
Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz,
Y., Siebert, S., and Sebesvari, Z.: Drought vulnerability and risk
assessments: State of the art, persistent gaps, and research agenda,
Environ. Res. Lett., 14, 083002, https://doi.org/10.1088/1748-9326/ab225d, 2019.
Han, S., Tian, F., Liu, Y., and Duan, X.: Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain, Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, 2017.
Han, Y., Huang, Q., He, C., Fang, Y., Wen, J., Gao, J., and Du, S.: The
growth mode of built-up land in floodplains and its impacts on flood
vulnerability, Sci. Total Environ., 700, 134462,
https://doi.org/10.1016/j.scitotenv.2019.134462, 2020.
Herrera-Franco, G., Carrión-Mero, P., Aguilar-Aguilar, M.,
Morante-Carballo, F., Jaya-Montalvo, M., and Morillo-Balsera, M. C.:
Groundwater resilience assessment in a communal coastal aquifer system. The
case of manglaralto in Santa Elena, Ecuador, Sustain., 12, 8290,
https://doi.org/10.3390/su12198290, 2020.
Horn, F. and Elagib, N. A.: Building socio-hydrological resilient cities
against flash floods: Key challenges and a practical plan for arid regions,
J. Hydrol., 564, 125–132, https://doi.org/10.1016/j.jhydrol.2018.07.001, 2018.
Intergovernmental Panel on Climate Change: Assessment Report 6 Climate
Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
https://www.ipcc.ch/report/ar6/wg1/, last access: December 2021.
Ivanova, D., Barrett, J., Wiedenhofer, D., Macura, B., Callaghan, M., and
Creutzig, F.: Quantifying the potential for climate change mitigation of
consumption options, Environ. Res. Lett., 15, 093001,
https://doi.org/10.1088/1748-9326/ab8589, 2020.
Jick, T. D.: Mixing Qualitative and Quantitative Methods: Triangulation in
Action, Adm. Sci. Q., 24, 602, https://doi.org/10.2307/2392366, 1979.
Johnson, R. B. and Onwuegbuzie, A. J.: Mixed Methods Research: A Research
Paradigm Whose Time Has Come, Educ. Res., 33, 14–26,
https://doi.org/10.3102/0013189X033007014, 2004.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of
analyzing multi-hazard risk: A review, Nat. Hazards, 64, 1925–1958,
https://doi.org/10.1007/s11069-012-0294-2, 2012.
Klenk, N. L., Meehan, K., Pinel, S. L., Mendez, F., Lima, P. T., and Kammen,
D. M.: Stakeholders in climate science: Beyond lip service?, Science, 350, 743–744, https://doi.org/10.1126/science.aab1495, 2015.
Kounadi, O. and Leitner, M.: Why does geoprivacy matter? The scientific
publication of confidential data presented on maps, J. Empir. Res. Hum. Res., 9, 34–45, https://doi.org/10.1177/1556264614544103, 2014.
Koutiva, I., Lykou, A., Pantazis, C., and Makropoulos, C.: Investigating
decision mechanisms of statutory stakeholders in flood risk strategy
formation: A computational experiments approach, Water-Sui.,
12, 2716, https://doi.org/10.3390/w12102716, 2020.
Krueger, T., Maynard, C., Carr, G., Bruns, A., Mueller, E. N., and Lane, S.:
A transdisciplinary account of water research, WIREs Water, 3, 369–389,
https://doi.org/10.1002/wat2.1132, 2016.
Kuil, L., Carr, G., Viglione, A., Prskawetz, A., and Blöschl, G.:
Conceptualizing socio-hydrological drought processes: The case of the Maya
collapse, Water Resour. Res., 52, 6222–6242,
https://doi.org/10.1111/j.1752-1688.1969.tb04897.x, 2016.
Kuil, L., Carr, G., Prskawetz, A., Salinas, J. L., Viglione, A., and
Blöschl, G.: Learning from the Ancient Maya: Exploring the Impact of
Drought on Population Dynamics, Ecol. Econ., 157, 1–16,
https://doi.org/10.1016/j.ecolecon.2018.10.018, 2019.
Lele, S.: Watershed services of tropical forests: from hydrology to economic
valuation to integrated analysis, Curr. Opin. Sust., 1,
148–155, https://doi.org/10.1016/j.cosust.2009.10.007, 2009.
Leong, C.: The Role of Narratives in Sociohydrological Models of Flood
Behaviors, Water Resour. Res., 54, 3100–3121, https://doi.org/10.1002/2017WR022036,
2018.
Lerner, A. M., Eakin, H. C., Tellman, E., Bausch, J. C., and Hernández
Aguilar, B.: Governing the gaps in water governance and land-use planning in
a megacity: The example of hydrological risk in Mexico City, Cities,
83, 61–70, https://doi.org/10.1016/j.cities.2018.06.009, 2018.
Madani, K. and Shafiee-Jood, M.: Socio-hydrology: A new understanding to
unite or a new science to divide?, Water, 12, 1–26,
https://doi.org/10.3390/w12071941, 2020.
Maghsood, F. F., Moradi, H., Berndtsson, R., Panahi, M., Daneshi, A.,
Hashemi, H., and Bavani, A. R. M.: Social acceptability of flood management
strategies under climate change using contingent valuation method (CVM),
Sustain., 11, 5053, https://doi.org/10.3390/su11185053, 2019.
McClain, M. E., Chícharo, L., Fohrer, N., Gaviño Novillo, M., Windhorst, W., and Zalewski, M.: Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving, Hydrol. Earth Syst. Sci., 16, 1685–1696, https://doi.org/10.5194/hess-16-1685-2012, 2012.
Medeiros, P. and Sivapalan, M.: From hard-path to soft-path solutions:
slow–fast dynamics of human adaptation to droughts in a water scarce
environment, Hydrolog. Sci. J., 65, 1803–1814,
https://doi.org/10.1080/02626667.2020.1770258, 2020.
Michaelis, T., Brandimarte, L., and Mazzoleni, M.: Capturing flood-risk
dynamics with a coupled agent-based and hydraulic modelling framework,
Hydrol. Sci. J., 65, 1458–1473, https://doi.org/10.1080/02626667.2020.1750617, 2020.
Mohorjy, A. M.: Multidisciplinary Planning and Managing of Water Reuse,
JAWRA J. Am. Water Resour. Assoc., 25, 433–442,
https://doi.org/10.1111/j.1752-1688.1989.tb03080.x, 1989.
Mondino, E., Scolobig, A., Borga, M., Albrecht, F., Mård, J., Weyrich,
P., and Di Baldassarre, G.: Exploring changes in hydrogeological risk
awareness and preparedness over time: a case study in northeastern Italy,
Hydrolog. Sci. J., 65, 1049–1059, https://doi.org/10.1080/02626667.2020.1729361,
2020a.
Mondino, E., Scolobig, A., Borga, M., and Di Baldassarre, G.: The role of
experience and different sources of knowledge in shaping flood risk
awareness, Water-Sui., 12, 2130, https://doi.org/10.3390/W12082130, 2020b.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren,
L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Bloeschl,
G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer,
B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P.,
Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson,
S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and
Belyaev, V.: “Panta Rhei-Everything Flows”: Change in hydrology and
society-The IAHS Scientific Decade 2013-2022, Hydrolog. Sci. J., 58,
1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Moreira, L. L., de Brito, M. M., and Kobiyama, M.: Review article: A systematic review and future prospects of flood vulnerability indices, Nat. Hazards Earth Syst. Sci., 21, 1513–1530, https://doi.org/10.5194/nhess-21-1513-2021, 2021.
Munafò, M. R. and Davey Smith, G.: Robust research needs many lines of
evidence, Nature, 553, 399–401, https://doi.org/10.1038/d41586-018-01023-3, 2018.
Nakamura, S. and Oki, T.: Paradigm Shifts on Flood Risk Management in Japan:
Detecting Triggers of Design Flood Revisions in the Modern Era, Water
Resour. Res., 54, 5504–5515, https://doi.org/10.1029/2017WR022509, 2018.
Nelson, G. C., Bennett, E., Berhe, A. A., Cassman, K., DeFries, R., Dietz,
T., Dobermann, A., Dobson, A., Janetos, A., Levy, M., Marco, D.,
Nakicenovic, N., O'Neill, B., Norgaard, R., Petschel-Held, G., Ojima, D.,
Pingali, P., Watson, R., and Zurek, M.: Anthropogenic drivers of ecosystem
change: An overview, Ecol. Soc., 11, 29, https://doi.org/10.5751/ES-01826-110229, 2006.
Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D.,
Breckler, S. J., Buck, S., Chambers, C. D., Chin, G., Christensen, G.,
Contestabile, M., Dafoe, A., Eich, E., Freese, J., Glennerster, R., Goroff,
D., Green, D. P., Hesse, B., Humphreys, M., Ishiyama, J., Karlan, D., Kraut,
A., Lupia, A., Mabry, P., Madon, T. A., Malhotra, N., Mayo-Wilson, E.,
McNutt, M., Miguel, E., Paluck, E. L., Simonsohn, U., Soderberg, C.,
Spellman, B. A., Turitto, J., VandenBos, G., Vazire, S., Wagenmakers, E. J.,
Wilson, R., and Yarkoni, T.: Promoting an open research culture, Science, 348, 1422–1425, https://doi.org/10.1126/science.aab2374, 2015.
Nüst, D. and Pebesma, E.: Practical Reproducibility in Geography and
Geosciences, Ann. Am. Assoc. Geogr., 111, 1300–1310,
https://doi.org/10.1080/24694452.2020.1806028, 2021.
O'Cathain, A., Murphy, E., and Nicholl, J.: Three techniques for integrating
data in mixed methods studies, BMJ, 341, 1147–1150,
https://doi.org/10.1136/bmj.c4587, 2010.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of challenges and opportunities, Wiley Interdiscip. Rev. Water, 4, e1193, https://doi.org/10.1002/wat2.1193, 2017.
Peters, D. P. C., Pielke, R. a, Bestelmeyer, B. T., Allen, C. D.,
Munson-mcgee, S., and Havstad, K. M.: Cross-scale interactions,
nonlinearities, and forecasting catastrophic events, P. Natl. Acad. Sci. USA, 101,
15130–15135, 2004.
Rai, P. and Khawas, V.: Traditional knowledge system in disaster risk
reduction: Exploration, acknowledgement and proposition, Journal of Disaster Risk Studies, 11, a484, https://doi.org/10.4102/jamba.v11i1.484, 2019.
Rangecroft, S., Rohse, M., Banks, E. W., Day, R., Di Baldassarre, G.,
Frommen, T., Hayashi, Y., Höllermann, B., Lebek, K., Mondino, E., Rusca,
M., Wens, M., and Van Loon, A. F.: Guiding principles for hydrologists
conducting interdisciplinary research and fieldwork with participants,
Hydrol. Sci. J., 66, 214–225, https://doi.org/10.1080/02626667.2020.1852241, 2021.
Räsänen, A.: Cross-scale interactions in flood risk management: A
case study from Rovaniemi, Finland, Int. J. Disaster Risk Re., 57, 102185,
https://doi.org/10.1016/j.ijdrr.2021.102185, 2021.
Robertson, R.: Globalisation or glocalisation?, J. Int. Commun., 1,
33–52, https://doi.org/10.1080/13216597.2012.709925, 1994.
Sanderson, M. R., Bergtold, J. S., Heier Stamm, J. L., Caldas, M. M., and
Ramsey, S. M.: Bringing the “social” into sociohydrology: Conservation
policy support in the Central Great Plains of Kansas, USA, Water Resour.
Res., 53, 6725–6743, https://doi.org/10.1002/2017WR020659, 2017.
Sapountzaki, K. and Daskalakis, I.: Transboundary resilience: the case of
social-hydrological systems facing water scarcity or drought, J. Risk Res.,
19, 829–846, https://doi.org/10.1080/13669877.2015.1057202, 2016.
Sapountzaki, K. and Daskalakis, I.: Expansionary Adaptive Transformations of
Socio-Hydrological Systems (SHSs): The Case of Drought in Messara Plain,
Crete, Greece, Environ. Manage., 61, 819–833,
https://doi.org/10.1007/s00267-018-1012-y, 2018.
Sawada, Y. and Hanazaki, R.: Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration, Hydrol. Earth Syst. Sci., 24, 4777–4791, https://doi.org/10.5194/hess-24-4777-2020, 2020.
Seidl, R. and Barthel, R.: Linking scientific disciplines: Hydrology and
social sciences, J. Hydrol., 550, 441–452,
https://doi.org/10.1016/j.jhydrol.2017.05.008, 2017.
Shelton, R. E., Baeza, A., Janssen, M. A., and Eakin, H.: Managing household
socio-hydrological risk in Mexico city: A game to communicate and validate
computational modeling with stakeholders, J. Environ. Manage., 227,
200–208, https://doi.org/10.1016/j.jenvman.2018.08.094, 2018.
Sivapalan, M. and Blöschl, G.: Time scale interactions and the
coevolution of humans and water, Water Resour. Res., 51, 6988–7022,
https://doi.org/10.1002/2015WR017896, 2015.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A
new science of people and water, Hydrol. Process., 26, 1270–1276,
https://doi.org/10.1002/hyp.8426, 2012.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., and Wescoat, J. L.: Socio-hydrology: Use-inspired water sustainability science for the Anthropocene, Earth’s Future, 2, 225–230, https://doi.org/10.1002/2013EF000164, 2014.
Slater, K. and Robinson, J.: Social learning and transdisciplinary
co-production: A social practice approach, Sustain., 12, 1–17,
https://doi.org/10.3390/su12187511, 2020.
Soranno, P. A., Cheruvelil, K. S., Bissell, E. G., Bremigan, M. T., Downing,
J. A., Fergus, C. E., Filstrup, C. T., Henry, E. N., Lottig, N. R., Stanley,
E. H., Stow, C. A., Tan, P. N., Wagner, T., and Webster, K. E.: Cross-scale
interactions: Quantifying multi-scaled cause-effect relationships in
macrosystems, Front. Ecol. Environ., 12, 65–73, https://doi.org/10.1890/120366,
2014.
Srinivasan, V., Sanderson, M., Garcia, M., Konar, M., Blöschl, G., and
Sivapalan, M.: Prediction in a socio-hydrological world, Hydrolog. Sci. J.,
62, 338–345, https://doi.org/10.1080/02626667.2016.1253844, 2017.
Sung, K., Jeong, H., Sangwan, N., and Yu, D. J.: Effects of Flood Control
Strategies on Flood Resilience Under Sociohydrological Disturbances, Water
Resour. Res., 54, 2661–2680, https://doi.org/10.1002/2017WR021440, 2018.
Swyngedouw, E.: Globalisation or “glocalisation”? Networks, territories and
rescaling, Camb. Rev. Int. Aff., 17, 25–48,
https://doi.org/10.1080/0955757042000203632, 2004.
Thaler, T.: Social justice in socio-hydrology – how we can integrate the two
different perspectives, Hydrolog. Sci. J., 66, 1503–1512,
https://doi.org/10.1080/02626667.2021.1950916, 2021.
United Nations for Disaster Risk Reduction (UNDRR): Sendai Framework for Disaster Risk Reduction 2015–2030, Geneva,
Switzerland, https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (last access: November 2021), 2015.
United Nations for Disaster Risk Reduction (UNDRR) and Centre for Research on the Epidemiology of Disasters (CRED): Human Cost of Disasters. An overview of last 20 years 2000–2019, UNDRR, Geneva, 29 pp., https://www.preventionweb.net/files/74124_humancostofdisasters20002019reportu.pdf (last access: November 2021), 2020.
Vanelli, F. M. and Kobiyama, M.: How can socio-hydrology contribute to
natural disaster risk reduction?, Hydrolog. Sci. J., 66, 1758–1766,
https://doi.org/10.1080/02626667.2021.1967356, 2021.
van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia, Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, 2014.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G.,
Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from
socio-hydrology modelling on dealing with flood risk – Roles of collective
memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82,
https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Wallington, K. and Cai, X.: Feedback Between Reservoir Operation and
Floodplain Development: Implications for Reservoir Benefits and
Beneficiaries, Water Resour. Res., 56, 1–20, https://doi.org/10.1029/2019WR026610,
2020.
Wang, G., Hu, Z., Liu, Y., Zhang, G., Liu, J., Lyu, Y., Gu, Y., Huang, X.,
Zhang, Q., Tong, Z., Hong, C., and Liu, L.: Impact of expansion pattern of
built-up land in floodplains on flood vulnerability: A case study in the
North China plain area, Remote Sens., 12, 1–29, https://doi.org/10.3390/rs12193172,
2020.
Wens, M., Johnson, J. M., Zagaria, C., and Veldkamp, T. I. E.: Integrating
human behavior dynamics into drought risk assessment – A sociohydrologic,
agent-based approach, Wiley Interdiscip. Rev. Water, 6, e1345,
https://doi.org/10.1002/wat2.1345, 2019.
Westerberg, I. K., Di Baldassarre, G., Beven, K. J., Coxon, G., and Krueger,
T.: Perceptual models of uncertainty for socio-hydrological systems: a flood
risk change example, Hydrolog. Sci. J., 62, 1705–1713,
https://doi.org/10.1080/02626667.2017.1356926, 2017.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t Hoen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18, 2016.
Wilson, N. J., Todd Walter, M., and Waterhouse, J.: Indigenous knowledge of
hydrologic change in the Yukon river basin: A case study of Ruby, Alaska,
Arctic, 68, 93–106, https://doi.org/10.14430/arctic4459, 2015.
Xu, L., Gober, P., Wheater, H. S., and Kajikawa, Y.: Reframing
socio-hydrological research to include a social science perspective, J.
Hydrol., 563, 76–83, https://doi.org/10.1016/j.jhydrol.2018.05.061, 2018.
York, A. M., Sullivan, A., and Bausch, J. C.: Cross-scale interactions of
socio-hydrological subsystems: Examining the frontier of common pool
resource governance in Arizona, Environ. Res. Lett., 14, 125019,
https://doi.org/10.1088/1748-9326/ab51be, 2019.
Yu, D. J., Sangwan, N., Sung, K., Chen, X., and Merwade, V.: Incorporating
institutions and collective action into a sociohydrological model of flood
resilience, Water Resour. Res., 53, 1336–1353, https://doi.org/10.1002/2016WR019746,
2017.
Zipper, S. C., Stack Whitney, K., Deines, J. M., Befus, K. M., Bhatia, U.,
Albers, S. J., Beecher, J., Brelsford, C., Garcia, M., Gleeson, T.,
O'Donnell, F., Resnik, D., and Schlager, E.: Balancing Open Science and Data
Privacy in the Water Sciences, Water Resour. Res., 55, 5202–5211,
https://doi.org/10.1029/2019WR025080, 2019.
Short summary
We conducted a systematic literature review of socio-hydrological studies applied to natural hazards and disaster research. Results indicate that there is a wide range of understanding of what
socialmeans in socio-hydrology, and monodisciplinary studies prevail. We expect to encourage socio-hydrologists to investigate different disasters using a more integrative approach that combines natural and social sciences tools by involving stakeholders and broadening the use of mixed methods.
We conducted a systematic literature review of socio-hydrological studies applied to natural...