Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1857-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1857-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Benjamin Kitambo
CORRESPONDING AUTHOR
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, France
Congo Basin Water Resources Research Center (CRREBaC), Department of Natural Resources Management, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
Department of Geology, University of Lubumbashi (UNILU), Route Kasapa, Lubumbashi, Democratic Republic of the Congo
Fabrice Papa
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, France
Institute of Geosciences, Campus Universitario Darcy Ribeiro, Universidade de Brasília (UnB), 70910-900 Brasilia (DF), Brazi
Adrien Paris
Hydro Matters, 1 Chemin de la Pousaraque, 31460 Le Faget, France
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, France
Raphael M. Tshimanga
Congo Basin Water Resources Research Center (CRREBaC), Department of Natural Resources Management, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
Stephane Calmant
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, France
Ayan Santos Fleischmann
Instituto de Pesquisas Hidráulicas (IPH), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
Frederic Frappart
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, France
INRAE, Bordeaux Sciences Agro, UMR1391 ISPA, 71 Avenue Edouard Bourlaux, 33882 CEDEX Villenave d'Ornon, France
Melanie Becker
LIENSs/CNRS, UMR 7266, ULR/CNRS, 2 Rue Olympe de Gouges, La Rochelle, France
Mohammad J. Tourian
Institute of Geodesy, University of Stuttgart, Stuttgart, Germany
Catherine Prigent
LERMA, Observatoire de Paris, Sorbonne Université, CNRS, Université PSL, Paris, France
Johary Andriambeloson
Laboratoire de Géophysique de l'Environnement et de Télédétection (LGET), Institut et Observatoire de Géophysique d'Antananarivo (IOGA), Université d'Antananarivo, Antananarivo, Madagascar
Related authors
Peyman Saemian, Omid Elmi, Molly Stroud, Ryan Riggs, Benjamin M. Kitambo, Fabrice Papa, George H. Allen, and Mohammad J. Tourian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-406, https://doi.org/10.5194/essd-2024-406, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study addresses the need for better river discharge data, crucial for water management, by expanding global gauge networks with satellite data. We used satellite altimetry to estimate river discharge for over 8,700 stations worldwide, filling gaps in existing records. Our data set, SAEM supports a better understanding of water systems, helping to manage water resources more effectively, especially in regions with limited monitoring infrastructure.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-466, https://doi.org/10.5194/essd-2024-466, 2024
Preprint under review for ESSD
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the GIEMS-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25°x0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Peyman Saemian, Omid Elmi, Molly Stroud, Ryan Riggs, Benjamin M. Kitambo, Fabrice Papa, George H. Allen, and Mohammad J. Tourian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-406, https://doi.org/10.5194/essd-2024-406, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study addresses the need for better river discharge data, crucial for water management, by expanding global gauge networks with satellite data. We used satellite altimetry to estimate river discharge for over 8,700 stations worldwide, filling gaps in existing records. Our data set, SAEM supports a better understanding of water systems, helping to manage water resources more effectively, especially in regions with limited monitoring infrastructure.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Thomas Legay, Yoann Aubert, Julien Verdonck, Jérémy Guilhen, Adrien Paris, Jean-Michel Martinez, Sabine Sauvage, Pankyes Datok, Vanessa Dos Santos, José Miquel Sanchez-Perez, Stéphane Bruxelles, Emeric Lavergne, and Franck Mercier
Proc. IAHS, 385, 477–484, https://doi.org/10.5194/piahs-385-477-2024, https://doi.org/10.5194/piahs-385-477-2024, 2024
Short summary
Short summary
Water resources management traditionally relies on the use of in situ data. Spatial altimetry data is a new source of data for water resources monitoring. Through two projects, various partners (BRLi, IRD, CNES, CLS, CNRS, CENEAU) developed a method based on the combination of hydrological models, in-situ and satellite data to enhance the use of spatial altimetry data for water resources management. This article proposes to evaluate the implemented method.
Rodric Mérimé Nonki, Ernest Amoussou, Raphael Muamba Tshimanga, Djan'na Koubodana Houteta, Domiho Japhet Kodja, Franck Eitel Kemgang Ghomsi, and André Lenouo
Proc. IAHS, 385, 319–326, https://doi.org/10.5194/piahs-385-319-2024, https://doi.org/10.5194/piahs-385-319-2024, 2024
Short summary
Short summary
This research aims to evaluate the feasibility of using multiple rainfall-runoff hydrologic models Génie Rural à 4, 5, 6 paramètres Journalier (GR4J, GR5J, and GR6J) in the Upper Benue River (UBR) in Northern Cameroon. By using the Michel's calibration algorithm, we found that the composite criterion is the most sustainable objective function for model optimization. An honest evaluation empirically proves that the GR6J model performs better than the other two models follow by GR5J.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324, https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular streamflow. We also showed uncertainties in the calibration results, which is often useful for making informed decisions. We emphasis to consider observation uncertainty in model calibration.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Mohammad J. Tourian, Omid Elmi, Yasin Shafaghi, Sajedeh Behnia, Peyman Saemian, Ron Schlesinger, and Nico Sneeuw
Earth Syst. Sci. Data, 14, 2463–2486, https://doi.org/10.5194/essd-14-2463-2022, https://doi.org/10.5194/essd-14-2463-2022, 2022
Short summary
Short summary
HydroSat as a global water cycle database provides estimates of and uncertainty in geometric quantities of the water cycle: (1) surface water extent of lakes and rivers, (2) water level time series of lakes and rivers, (3) terrestrial water storage anomaly, (4) water storage anomaly of lakes and reservoirs, and (5) river discharge estimates for large and small rivers.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Gil Mahé, Gamal Abdo, Ernest Amoussou, Telesphore Brou, Stephan Dietrich, Ahmed El Tayeb, Henny van Lanen, Mohamed Meddi, Anil Mishra, Didier Orange, Thi Phuong Quynh Le, Raphael Tshimanga, Patrick Valimba, Santiago Yepez, Andrew Ogilvie, and Oula Amrouni
Proc. IAHS, 384, 5–18, https://doi.org/10.5194/piahs-384-5-2021, https://doi.org/10.5194/piahs-384-5-2021, 2021
Short summary
Short summary
The FRIEND-Water program (FWP) is the oldest and the most transverse program within the UNESCO IHP. It allows large communities of hydrologists to collaborate across borders on common shared data and scientific topics, addressed through 8 large world regions. Research priorities evolve according to the projections given by the member States during the IHP councils. FWP further activities follow the IHP IX program with the support of the Montpellier UNESCO Category II Center ICIREWAD.
Sakaros Bogning, Frédéric Frappart, Gil Mahé, Adrien Paris, Raphael Onguene, Fabien Blarel, Fernando Niño, Jacques Etame, and Jean-Jacques Braun
Proc. IAHS, 384, 181–186, https://doi.org/10.5194/piahs-384-181-2021, https://doi.org/10.5194/piahs-384-181-2021, 2021
Short summary
Short summary
This paper investigates links between rainfall variability in the Ogooué River Basin (ORB) and El Niño Southern Oscillation (ENSO) in the Pacific Ocean. Recent hydroclimatology studies of the ORB and surrounding areas resulting in contrasting conclusions about links between rainfall variability and ENSO. Then, this work uses cross-wavelet and wavelet coherence analysis to highlight significant links between ENSO and rainfall in the ORB.
Adama Telly Diepkilé, Flavien Egon, Fabien Blarel, Eric Mougin, and Frédéric Frappart
Proc. IAHS, 384, 31–35, https://doi.org/10.5194/piahs-384-31-2021, https://doi.org/10.5194/piahs-384-31-2021, 2021
Martina Klose, Oriol Jorba, María Gonçalves Ageitos, Jeronimo Escribano, Matthew L. Dawson, Vincenzo Obiso, Enza Di Tomaso, Sara Basart, Gilbert Montané Pinto, Francesca Macchia, Paul Ginoux, Juan Guerschman, Catherine Prigent, Yue Huang, Jasper F. Kok, Ron L. Miller, and Carlos Pérez García-Pando
Geosci. Model Dev., 14, 6403–6444, https://doi.org/10.5194/gmd-14-6403-2021, https://doi.org/10.5194/gmd-14-6403-2021, 2021
Short summary
Short summary
Mineral soil dust is a major atmospheric airborne particle type. We present and evaluate MONARCH, a model used for regional and global dust-weather prediction. An important feature of the model is that it allows different approximations to represent dust, ranging from more simplified to more complex treatments. Using these different treatments, MONARCH can help us better understand impacts of dust in the Earth system, such as its interactions with radiation.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021, https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon
Ocean Sci., 17, 455–461, https://doi.org/10.5194/os-17-455-2021, https://doi.org/10.5194/os-17-455-2021, 2021
Short summary
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities.
In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.
Adam Hastie, Ronny Lauerwald, Philippe Ciais, Fabrice Papa, and Pierre Regnier
Earth Syst. Dynam., 12, 37–62, https://doi.org/10.5194/esd-12-37-2021, https://doi.org/10.5194/esd-12-37-2021, 2021
Short summary
Short summary
We used a model of the Congo Basin to investigate the transfer of carbon (C) from land (vegetation and soils) to inland waters. We estimate that leaching of C to inland waters, emissions of CO2 from the water surface, and the export of C to the coast have all increased over the last century, driven by increasing atmospheric CO2 levels and climate change. We predict that these trends may continue through the 21st century and call for long-term monitoring of these fluxes.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020, https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary
Short summary
The water mass variation at and below the land surface is a major component of the water cycle that was first estimated using GRACE observations (2002–2017). Our analysis shows the advantages of the use of satellite observation for precipitation and evapotranspiration along with river discharge measurement to perform an indirect and coherent reconstruction of this water component estimate over longer time periods.
Seyed-Mohammad Hosseini-Moghari, Shahab Araghinejad, Mohammad J. Tourian, Kumars Ebrahimi, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020, https://doi.org/10.5194/hess-24-1939-2020, 2020
Short summary
Short summary
This paper uses a multi-objective approach for calibrating the WGHM model to determine the role of human water use and climate variations in the recent loss of water storage in Lake Urmia basin, Iran. We found that even without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the drought year 2008.
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020, https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary
Short summary
We present a new radar-altimeter-satellite-measured river surface height dataset. Our novel approach is broadly applicable rather than location specific. We were able to measure rivers that account for > 34 % of global drainage area with an accuracy comparable to much of the established literature. 389 of our 932 measurement locations include river gage validation. We have focused our efforts on creating a consistent, well-documented data product to encourage use by the broader science community.
Altug Ekici, Hanna Lee, David M. Lawrence, Sean C. Swenson, and Catherine Prigent
Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019, https://doi.org/10.5194/gmd-12-5291-2019, 2019
Short summary
Short summary
Ice-rich permafrost thaw can create expanding thermokarst lakes as well as shrinking large wetlands. Such processes can have major biogeochemical implications and feedbacks to climate systems by altering the pathways and rates of permafrost carbon release. We developed a new model parameterization that allows a direct representation of surface water dynamics with subsidence. Our results show increased surface water fractions around western Siberian plains and northeastern territories of Canada.
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019, https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Short summary
In this study, we develop and present simple algorithms to derive the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice. This is achieved using satellite observations collocated with buoy measurements. The errors of the retrieved parameters are estimated and compared with independent data. These parameters are useful for sea ice concentration mapping, understanding sea ice properties and variability, and for atmospheric sounding applications.
Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires
Atmos. Meas. Tech., 12, 1531–1543, https://doi.org/10.5194/amt-12-1531-2019, https://doi.org/10.5194/amt-12-1531-2019, 2019
Short summary
Short summary
Land surface parameters (such as temperature) can be extracted from passive microwave satellite observations, with less cloud contamination than in the infrared. A cloud contamination index is proposed to detect cloud contamination for multiple frequency ranges (from 10 to 190 GHz), to be applicable to the successive generations of MW instruments. Even with a reduced number of low-frequency channels over land, the index reaches an accuracy of ≥ 70 % in detecting contaminated observations.
Ida Russo, Guillaume Ramillien, Frédéric Frappart, and Frédérique Rémy
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-16, https://doi.org/10.5194/tc-2019-16, 2019
Preprint withdrawn
Nizar Abou Zaki, Ali Torabi Haghighi, Pekka M. Rossi, Mohammad J. Tourian, and Bjørn Klove
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-471, https://doi.org/10.5194/hess-2018-471, 2018
Preprint withdrawn
Short summary
Short summary
Groundwater is considered a main source of fresh water in semi-arid climatic zones, especially for agricultural usage. This study compares in-situ groundwater volume variation measurements with GRACE derived water mass data. The study concludes the possibility of using GRACE data to monitor groundwater depletion in catchments that lack measured data. GRACE data can here help in drawing general conclusions for integrated water resources management, and sustainable usage of this resources.
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Vinícius A. Siqueira, Rodrigo C. D. Paiva, Ayan S. Fleischmann, Fernando M. Fan, Anderson L. Ruhoff, Paulo R. M. Pontes, Adrien Paris, Stéphane Calmant, and Walter Collischonn
Hydrol. Earth Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018, https://doi.org/10.5194/hess-22-4815-2018, 2018
Short summary
Short summary
Providing reliable estimates of water fluxes at the continental scale is challenging. We extended a regional hydrological model to the entirety of South America and assessed its performance using multiple observations. After a comparison with global models, we show the extent to which estimates of daily river discharge can be improved, even by using global forcing data. Issues of global-/continental-scale modeling and future directions for simulating discharge in this continent are discussed.
Martin Tshikeba Kabantu, Raphael Muamba Tshimanga, Jean Marie Onema Kileshye, Webster Gumindoga, and Jules Tshimpampa Beya
Proc. IAHS, 378, 51–57, https://doi.org/10.5194/piahs-378-51-2018, https://doi.org/10.5194/piahs-378-51-2018, 2018
Short summary
Short summary
This study was done in order to promote the use of remote sensing products when dealing water resources in the Congo river basin. It is the first step of a large research on the evaluation of the performance of remote sensing products on water resources modeling in the Congo river basin.
Cassandra Normandin, Frédéric Frappart, Bertrand Lubac, Simon Bélanger, Vincent Marieu, Fabien Blarel, Arthur Robinet, and Léa Guiastrennec-Faugas
Hydrol. Earth Syst. Sci., 22, 1543–1561, https://doi.org/10.5194/hess-22-1543-2018, https://doi.org/10.5194/hess-22-1543-2018, 2018
Victoria Sol Galligani, Die Wang, Milagros Alvarez Imaz, Paola Salio, and Catherine Prigent
Atmos. Meas. Tech., 10, 3627–3649, https://doi.org/10.5194/amt-10-3627-2017, https://doi.org/10.5194/amt-10-3627-2017, 2017
Short summary
Short summary
Three meteorological events with deep convection and severe weather, characteristic of the SESA region, are considered. High-resolution models, a powerful tool to study convection, can be operated with different microphysics schemes (predict the development of hydrometeors, their interactions, growth, precipitation). We present a systematic evaluation of the microphysical schemes available in the WRF model by a direct comparison between satellite-based simulated and observed microwave radiances.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Xiangyu Luo, Hong-Yi Li, L. Ruby Leung, Teklu K. Tesfa, Augusto Getirana, Fabrice Papa, and Laura L. Hess
Geosci. Model Dev., 10, 1233–1259, https://doi.org/10.5194/gmd-10-1233-2017, https://doi.org/10.5194/gmd-10-1233-2017, 2017
Short summary
Short summary
This study shows that alleviating vegetation-caused biases in DEM data, refining channel cross-sectional geometry and Manning roughness coefficients, as well as accounting for backwater effects can effectively improve the modeling of streamflow, river stages and flood extent in the Amazon Basin. The obtained understanding could be helpful to hydrological modeling in basins with evident inundation, which has important implications for improving land–atmosphere interactions in Earth system models.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
V. S. Galligani, C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau
Atmos. Meas. Tech., 8, 1605–1616, https://doi.org/10.5194/amt-8-1605-2015, https://doi.org/10.5194/amt-8-1605-2015, 2015
H. Norouzi, M. Temimi, C. Prigent, J. Turk, R. Khanbilvardi, Y. Tian, F. A. Furuzawa, and H. Masunaga
Atmos. Meas. Tech., 8, 1197–1205, https://doi.org/10.5194/amt-8-1197-2015, https://doi.org/10.5194/amt-8-1197-2015, 2015
G. D. Hayman, F. M. O'Connor, M. Dalvi, D. B. Clark, N. Gedney, C. Huntingford, C. Prigent, M. Buchwitz, O. Schneising, J. P. Burrows, C. Wilson, N. Richards, and M. Chipperfield
Atmos. Chem. Phys., 14, 13257–13280, https://doi.org/10.5194/acp-14-13257-2014, https://doi.org/10.5194/acp-14-13257-2014, 2014
Short summary
Short summary
Globally, wetlands are a major source of methane, which is the second most important greenhouse gas. We find the JULES wetland methane scheme to perform well in general, although there is a tendency for it to overpredict emissions in the tropics and underpredict them in northern latitudes. Our study highlights novel uses of satellite data as a major tool to constrain land-atmosphere methane flux models in a warming world.
R. Briant, L. Menut, G. Siour, and C. Prigent
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-3441-2014, https://doi.org/10.5194/gmdd-7-3441-2014, 2014
Revised manuscript not accepted
I. Pison, B. Ringeval, P. Bousquet, C. Prigent, and F. Papa
Atmos. Chem. Phys., 13, 11609–11623, https://doi.org/10.5194/acp-13-11609-2013, https://doi.org/10.5194/acp-13-11609-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
R. C. D. Paiva, W. Collischonn, M.-P. Bonnet, L. G. G. de Gonçalves, S. Calmant, A. Getirana, and J. Santos da Silva
Hydrol. Earth Syst. Sci., 17, 2929–2946, https://doi.org/10.5194/hess-17-2929-2013, https://doi.org/10.5194/hess-17-2929-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Sediment transport in South Asian rivers high enough to impact satellite gravimetry
On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Climatic and anthropogenic drivers of a drying Himalayan river
On the selection of precipitation products for the regionalisation of hydrological model parameters
Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model
Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data
Using hydrological and climatic catchment clusters to explore drivers of catchment behavior
Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska
Informing a hydrological model of the Ogooué with multi-mission remote sensing data
Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models
Multi-source hydrological soil moisture state estimation using data fusion optimisation
Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile
Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion
Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment
Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model
Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks
Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations
Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone
Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations
Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes
Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling
Relating seasonal dynamics of enhanced vegetation index to the recycling of water in two endorheic river basins in north-west China
Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China
GRACE storage-runoff hystereses reveal the dynamics of regional watersheds
Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia
Identification of catchment functional units by time series of thermal remote sensing images
Flow regime change in an endorheic basin in southern Ethiopia
Evaluating digital terrain indices for soil wetness mapping – a Swedish case study
The suitability of remotely sensed soil moisture for improving operational flood forecasting
Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa
Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study
Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances
Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt
Estimating water discharge from large radar altimetry datasets
Estimation of antecedent wetness conditions for flood modelling in northern Morocco
MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites
The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment
A soil moisture and temperature network for SMOS validation in Western Denmark
Classification and flow prediction in a data-scarce watershed of the equatorial Nile region
On the use of AMSU-based products for the description of soil water content at basin scale
Estimating flooded area and mean water level using active and passive microwaves: the example of Paraná River Delta floodplain
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023, https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management.
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Gopal Penny, Zubair A. Dar, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 375–395, https://doi.org/10.5194/hess-26-375-2022, https://doi.org/10.5194/hess-26-375-2022, 2022
Short summary
Short summary
We develop an empirical approach to attribute declining streamflow in the Upper Jhelum watershed, a key subwatershed of the transboundary Indus basin. We find that a loss of streamflow since the year 2000 resulted primarily due to interactions among vegetation and groundwater in response to climate rather than local changes in land use, revealing the climate sensitivity of this Himalayan watershed.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Ulrike Falk and Adrián Silva-Busso
Hydrol. Earth Syst. Sci., 25, 3227–3244, https://doi.org/10.5194/hess-25-3227-2021, https://doi.org/10.5194/hess-25-3227-2021, 2021
Short summary
Short summary
This paper focuses on the groundwater flow aspects of a small hydrological catchment at the northern tip of the Antarctic Peninsula. This region has experienced drastic climatological changes in the recent past. The basin is representative for the rugged coastline of the peninsula. It is discussed as a case study for possible future evolution of similar basins further south. Results include a quantitative analysis of glacial and groundwater contribution to total discharge into coastal waters.
Rui Tong, Juraj Parajka, Andreas Salentinig, Isabella Pfeil, Jürgen Komma, Borbála Széles, Martin Kubáň, Peter Valent, Mariette Vreugdenhil, Wolfgang Wagner, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1389–1410, https://doi.org/10.5194/hess-25-1389-2021, https://doi.org/10.5194/hess-25-1389-2021, 2021
Short summary
Short summary
We used a new and experimental version of the Advanced Scatterometer (ASCAT) soil water index data set and Moderate Resolution Imaging Spectroradiometer (MODIS) C6 snow cover products for multiple objective calibrations of the TUWmodel in 213 catchments of Austria. Combined calibration to runoff, satellite soil moisture, and snow cover improves runoff (40 % catchments), soil moisture (80 % catchments), and snow (~ 100 % catchments) simulation compared to traditional calibration to runoff only.
Mo Zhang, Wenjiao Shi, and Ziwei Xu
Hydrol. Earth Syst. Sci., 24, 2505–2526, https://doi.org/10.5194/hess-24-2505-2020, https://doi.org/10.5194/hess-24-2505-2020, 2020
Short summary
Short summary
We systematically compared 45 models for direct and indirect soil texture classification and soil particle size fraction interpolation based on 5 machine-learning models and 3 log-ratio transformation methods. Random forest showed powerful performance in both classification of imbalanced data and regression assessment. Extreme gradient boosting is more meaningful and computationally efficient when dealing with large data sets. The indirect classification and log-ratio methods are recommended.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453–1472, https://doi.org/10.5194/hess-22-1453-2018, https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Short summary
In this study, we integrate free, global Earth observations in a user-friendly and flexible model to reliably characterize an otherwise unmonitored river basin. The proposed model is the best baseline characterization of the Ogooué basin in light of available observations. Furthermore, the study shows the potential of using new, publicly available Earth observations and a suitable model structure to obtain new information in poorly monitored or remote areas and to support user requirements.
Gopal Penny, Veena Srinivasan, Iryna Dronova, Sharachchandra Lele, and Sally Thompson
Hydrol. Earth Syst. Sci., 22, 595–610, https://doi.org/10.5194/hess-22-595-2018, https://doi.org/10.5194/hess-22-595-2018, 2018
Short summary
Short summary
Water resources in the Arkavathy watershed in southern India are changing due to human modification of the landscape, including changing agricultural practices and urbanization. We analyze surface water resources in man-made lakes in satellite imagery over a period of 4 decades and find drying in the northern part of the watershed (characterized by heavy agriculture) and wetting downstream of urban areas. Drying in the watershed is associated with groundwater-irrigated agriculture.
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017, https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
Short summary
The present study is focused on the spatial pattern evaluation of two models and describes the similarities and dissimilarities. It also discusses the factors that generate these patterns and proposes similar new approaches to minimize the differences. The study points towards a new approach in which the spatial component of the hydrological model is also calibrated and taken into account.
Henning Oppel and Andreas Schumann
Hydrol. Earth Syst. Sci., 21, 4259–4282, https://doi.org/10.5194/hess-21-4259-2017, https://doi.org/10.5194/hess-21-4259-2017, 2017
Short summary
Short summary
How can we evaluate the heterogeneity of natural watersheds and how can we assess its spatial organization? How can we make use of this information for hydrological models and is it beneficial to our models? We propose a method display and assess the interaction of catchment characteristics with the flow path which we defined as the ordering scheme within a basin. A newly implemented algorithm brings this information to the set-up of a model and our results show an increase in model performance.
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267–3285, https://doi.org/10.5194/hess-21-3267-2017, https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Short summary
Reliable estimation of hydrological soil moisture state is of critical importance in operational hydrology to improve the flood prediction and hydrological cycle description. This paper attempts for the first time to build a soil moisture product directly applicable to hydrology using multiple data sources retrieved from remote sensing and land surface modelling. The result shows a significant improvement of the soil moisture state accuracy; the method can be easily applied in other catchments.
Mauricio Zambrano-Bigiarini, Alexandra Nauditt, Christian Birkel, Koen Verbist, and Lars Ribbe
Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, https://doi.org/10.5194/hess-21-1295-2017, 2017
Short summary
Short summary
This work exhaustively evaluates – for the first time – the suitability of seven state-of-the-art satellite-based rainfall estimates (SREs) over the complex topography and diverse climatic gradients of Chile.
Several indices of performance are used for different timescales and elevation zones. Our analysis reveals what SREs are in closer agreement to ground-based observations and what indices allow for understanding mismatches in shape, magnitude, variability and intensity of precipitation.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Domenico Guida, Albina Cuomo, and Vincenzo Palmieri
Hydrol. Earth Syst. Sci., 20, 3493–3509, https://doi.org/10.5194/hess-20-3493-2016, https://doi.org/10.5194/hess-20-3493-2016, 2016
Short summary
Short summary
The authors apply an object-based geomorphometric procedure to define the runoff contribution areas. The results enabled us to identify the contribution area related to the different runoff components activated during the storm events through an advanced hydro-chemical analysis. This kind of approach could be useful applied to similar, rainfall-dominated, forested and no-karst Mediterranean catchments.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Cheng-Zhi Qin, Xue-Wei Wu, Jing-Chao Jiang, and A-Xing Zhu
Hydrol. Earth Syst. Sci., 20, 3379–3392, https://doi.org/10.5194/hess-20-3379-2016, https://doi.org/10.5194/hess-20-3379-2016, 2016
Short summary
Short summary
Application of digital terrain analysis (DTA), which is typically a modeling process involving workflow building, relies heavily on DTA domain knowledge. However, the DTA knowledge has not been formalized well to be available for inference in automatic tools. We propose a case-based methodology to solve this problem. This methodology can also be applied to other domains of geographical modeling with a similar situation.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Zhi Wei Li, Guo An Yu, Gary Brierley, and Zhao Yin Wang
Hydrol. Earth Syst. Sci., 20, 3013–3025, https://doi.org/10.5194/hess-20-3013-2016, https://doi.org/10.5194/hess-20-3013-2016, 2016
Short summary
Short summary
Influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching–braided to fully braided planform conditions along trunk and tributary reaches of the Yellow River source zone in western China. This innovative work reveals complex interactions between channel planform, bedload transport capacity, sediment supply in the flood season, and the hydraulic role of vegetation.
W. Qi, C. Zhang, G. Fu, C. Sweetapple, and H. Zhou
Hydrol. Earth Syst. Sci., 20, 903–920, https://doi.org/10.5194/hess-20-903-2016, https://doi.org/10.5194/hess-20-903-2016, 2016
Short summary
Short summary
Six precipitation products, including TRMM3B42, TRMM3B42RT, GLDAS/Noah, APHRODITE, PERSIANN, and GSMAP-MVK+, are investigated in the usually neglected area of NE China, and a framework is developed to quantify the contributions of uncertainties from precipitation products, hydrological models, and their interactions to uncertainty in simulated discharges. It is found that interactions between hydrological models and precipitation products contribute significantly to uncertainty in discharge.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
D. Shen, J. Wang, X. Cheng, Y. Rui, and S. Ye
Hydrol. Earth Syst. Sci., 19, 3605–3616, https://doi.org/10.5194/hess-19-3605-2015, https://doi.org/10.5194/hess-19-3605-2015, 2015
M. A. Matin and C. P.-A. Bourque
Hydrol. Earth Syst. Sci., 19, 3387–3403, https://doi.org/10.5194/hess-19-3387-2015, https://doi.org/10.5194/hess-19-3387-2015, 2015
Short summary
Short summary
This paper describes a methodology in analysing the interdependencies between components of the hydrological cycle and vegetation characteristics at different elevation zones of two endorheic river basins in an arid-mountainous region of NW China. The analysis shows that oasis vegetation has an important function in sustaining the water cycle in the river basins and oasis vegetation is dependent on surface and shallow subsurface water flow from mountain sources.
L. Hao, G. Sun, Y. Liu, J. Wan, M. Qin, H. Qian, C. Liu, J. Zheng, R. John, P. Fan, and J. Chen
Hydrol. Earth Syst. Sci., 19, 3319–3331, https://doi.org/10.5194/hess-19-3319-2015, https://doi.org/10.5194/hess-19-3319-2015, 2015
Short summary
Short summary
The role of land cover in affecting hydrologic and environmental changes in the humid region in southern China is not well studied. We found that high flows and low flows increased and evapotranspiration decreased due to urbanization in the Qinhuai River basin. Urbanization masked climate warming effects in a rice-paddy-dominated watershed in altering long-term hydrology. Flooding risks and heat island effects are expected to rise due to urbanization.
E. A. Sproles, S. G. Leibowitz, J. T. Reager, P. J. Wigington Jr, J. S. Famiglietti, and S. D. Patil
Hydrol. Earth Syst. Sci., 19, 3253–3272, https://doi.org/10.5194/hess-19-3253-2015, https://doi.org/10.5194/hess-19-3253-2015, 2015
Short summary
Short summary
The paper demonstrates how data from the Gravity Recovery and Climate Experiment (GRACE) can be used to describe the relationship between water stored at the regional scale and stream flow. Additionally, we employ GRACE as a regional-scale indicator to successfully predict stream flow later in the water year. Our work focuses on the Columbia River Basin (North America), but is widely applicable across the globe, and could prove to be particularly useful in regions with limited hydrological data.
A. Rouillard, G. Skrzypek, S. Dogramaci, C. Turney, and P. F. Grierson
Hydrol. Earth Syst. Sci., 19, 2057–2078, https://doi.org/10.5194/hess-19-2057-2015, https://doi.org/10.5194/hess-19-2057-2015, 2015
Short summary
Short summary
We reconstructed a 100-year monthly history of flooding and drought of a large wetland in arid northwest Australia, using hydroclimatic data calibrated against 25 years of satellite images. Severe and intense regional rainfall, as well as the sequence of events, determined surface water expression on the floodplain. While inter-annual variability was high, changes to the flood regime over the last 20 years suggest the wetland may become more persistent in response to the observed rainfall trend.
B. Müller, M. Bernhardt, and K. Schulz
Hydrol. Earth Syst. Sci., 18, 5345–5359, https://doi.org/10.5194/hess-18-5345-2014, https://doi.org/10.5194/hess-18-5345-2014, 2014
Short summary
Short summary
We present a method to define hydrological landscape units by a time series of thermal infrared satellite data. Land surface temperature is calculated for 28 images in 12 years for a catchment in Luxembourg. Pattern measures show spatio-temporal persistency; principle component analysis extracts relevant patterns. Functional units represent similar behaving entities based on a representative set of images. Resulting classification and patterns are discussed regarding potential applications.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
A. M. Ågren, W. Lidberg, M. Strömgren, J. Ogilvie, and P. A. Arp
Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, https://doi.org/10.5194/hess-18-3623-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
J. K. Kiptala, M. L. Mul, Y. A. Mohamed, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, https://doi.org/10.5194/hess-18-2287-2014, 2014
C. I. Michailovsky and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, https://doi.org/10.5194/hess-18-997-2014, 2014
T. Conradt, F. Wechsung, and A. Bronstert
Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, https://doi.org/10.5194/hess-17-2947-2013, 2013
M. El Bastawesy, R. Ramadan Ali, A. Faid, and M. El Osta
Hydrol. Earth Syst. Sci., 17, 1493–1501, https://doi.org/10.5194/hess-17-1493-2013, https://doi.org/10.5194/hess-17-1493-2013, 2013
A. C. V. Getirana and C. Peters-Lidard
Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, https://doi.org/10.5194/hess-17-923-2013, 2013
Y. Tramblay, R. Bouaicha, L. Brocca, W. Dorigo, C. Bouvier, S. Camici, and E. Servat
Hydrol. Earth Syst. Sci., 16, 4375–4386, https://doi.org/10.5194/hess-16-4375-2012, https://doi.org/10.5194/hess-16-4375-2012, 2012
J. Parajka, L. Holko, Z. Kostka, and G. Blöschl
Hydrol. Earth Syst. Sci., 16, 2365–2377, https://doi.org/10.5194/hess-16-2365-2012, https://doi.org/10.5194/hess-16-2365-2012, 2012
S. Peischl, J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi
Hydrol. Earth Syst. Sci., 16, 1697–1708, https://doi.org/10.5194/hess-16-1697-2012, https://doi.org/10.5194/hess-16-1697-2012, 2012
S. Bircher, N. Skou, K. H. Jensen, J. P. Walker, and L. Rasmussen
Hydrol. Earth Syst. Sci., 16, 1445–1463, https://doi.org/10.5194/hess-16-1445-2012, https://doi.org/10.5194/hess-16-1445-2012, 2012
J.-M. Kileshye Onema, A. E. Taigbenu, and J. Ndiritu
Hydrol. Earth Syst. Sci., 16, 1435–1443, https://doi.org/10.5194/hess-16-1435-2012, https://doi.org/10.5194/hess-16-1435-2012, 2012
S. Manfreda, T. Lacava, B. Onorati, N. Pergola, M. Di Leo, M. R. Margiotta, and V. Tramutoli
Hydrol. Earth Syst. Sci., 15, 2839–2852, https://doi.org/10.5194/hess-15-2839-2011, https://doi.org/10.5194/hess-15-2839-2011, 2011
M. Salvia, F. Grings, P. Ferrazzoli, V. Barraza, V. Douna, P. Perna, C. Bruscantini, and H. Karszenbaum
Hydrol. Earth Syst. Sci., 15, 2679–2692, https://doi.org/10.5194/hess-15-2679-2011, https://doi.org/10.5194/hess-15-2679-2011, 2011
Cited articles
Aires, F., Papa, F., and Prigent, C.: Along-term, high-resolution wetland
dataset over the Amazon basin, downscaled from a multiwavelength retrieval
using SAR data, J. Hydrometeorol., 14, 594–607, https://doi.org/10.1175/JHM-D-12-093.1, 2013.
Aloysius, N. and Saiers, J.: Simulated hydrologic response to projected
changes in precipitation and temperature in the Congo River basin, Hydrol.
Earth Syst. Sci., 21, 4115–4130, https://doi.org/10.5194/hess-21-4115-2017, 2017.
Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin,
F., Mahé, G., Dinga, B., Moukandi, G., and Spencer, R. G. M.: Opportunities for hydrologic research in the Congo Basin, Rev. Geophys., 54,
378–409, https://doi.org/10.1002/2016RG000517, 2016.
Andriambeloson, J. A., Paris, A., Calmant, S., and Rakotondraompiana, S.:
Re-initiating depth-discharge monitoring in small-sized ungauged watersheds by combining remote sensing and hydrological modelling: a case study in
Madagascar, Hydrolog. Sci. J., 65, 2709-2728, https://doi.org/10.1080/02626667.2020.1833013, 2020.
Becker, M., Santos, J., Calmant, S., Robinet, V., Linguet, L., and Seyler, F.: Water Level Fluctuations in the Congo Basin Derived from ENVISAT
Satellite Altimetry, Remote Sens., 6, 9340–9358, https://doi.org/10.3390/rs6109340, 2014.
Becker, M., Papa, F., Frappart, F., Alsdorf, D., Calmant, S., da Silva, J. S., Prigent, C., and Seyler, F.: Satellite-based estimates of surface water
dynamics in the Congo River Basin, Int. J. Appl. Earth Obs. Geoinf., 66,
196–209, https://doi.org/10.1016/j.jag.2017.11.015, 2018.
Bele, Y., Mulotwa, E., Bokoto de Semboli, B., Sonwa, D., and Tiani, A.: Afrique centrale: Les effets du changement climatique dans le Bassin du
Congo: la nécessité de soutenir les capacités adaptatives
locales, CRDI/CIFOR, Canada, 5 pp., https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/45639/132108.pdf (last access; 6 April 2022), 2010.
Betbeder, J., Gond, V., Frappart, F., Baghdadi, N. N., Briant, G., and
Bartholomé, E.: Mapping of Central Africa forested wetlands using remote
sensing, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 7, 531–542,
https://doi.org/10.1109/JSTARS.2013.2269733, 2014.
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J. P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M. C., and Braun, J. J.: Monitoring water levels and discharges using radar altimetry in an ungauged river basin: The case of the Ogooué, Remote Sens., 10, 350, https://doi.org/10.3390/rs10020350, 2018.
Bonnefond, P., Verron, J., Aublanc, J., Babu, K., Bergé-Nguyen, M., Cancet, M., Chaudhary, A., Crétaux, J.-F., Frappart, F., Haines, B., Laurain, O., Ollivier, A., Poisson, J.-C., Prandi, P., Sharma, R., Thibaut, P., and Watson, C.: The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa AltimetricMission: Quality Assessment and Unique Characteristics of AltiKa Data, Remote Sens., 10, 83, https://doi.org/10.3390/rs10010083, 2018.
Bricquet, J.-P.: Les écoulements du Congo à Brazzaville et la spatialisation des apports, in: Grands bassins fluviaux périatlantiques: Congo, Niger, Amazone, Paris, ORSTOM, edited by: Boulègue, J. and Olivry, J.-C., Colloques et Séminaires, Grands Bassins Fluviaux Péri-Atlantiques: Congo, Niger, Amazone, Paris, France, 1993/11/22-24, 27–38, ISBN 2-7099-1245-7, ISSN 0767-2896, 1995
Burnett, M. W., Quetin, G. R., and Konings, A. G.: Data-driven estimates of evapotranspiration and its controls in the Congo Basin, Hydrol. Earth Syst. Sci., 24, 4189–4211, https://doi.org/10.5194/hess-24-4189-2020, 2020.
Bwangoy, J. R. B., Hansen, M. C., Roy, D. P., De Grandi, G., and Justice, C.
O.: Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices, Remote Sens. Environ., 114,
73–86, 2010.
Carr, A. B., Trigg, M. A., Tshimanga, R. M., Borman, D. J., and Smith, M.
W.: Greater water surface variability revealed by new Congo River field data: Implications for satellite altimetry measurements of large rivers, Geophys. Res. Lett., 46, 8093–8101, https://doi.org/10.1029/2019GL083720, 2019.
Corbari, C., Huber, C., Yesou, H., Huang, Y., and Su, Z.: Multi-Satellite Data of Land Surface Temperature, Lakes Area, and Water Level for Hydrological Model Calibration and Validation in the Yangtze River Basin,
Water, 11, 2621, https://doi.org/10.3390/w11122621, 2019.
Cretaux, J., Frappart, F., Papa, F., Calmant, S., Nielsen, K., and Benveniste, J.: Hydrological Applications of Satellite Altimetry Rivers,
Lakes, Man-Made Reservoirs, Inundated Areas, in: Satellite Altimetry over
Oceans and Land Surfaces, edited by: Stammer, D. C. and Cazenave, A., Taylor & Francis Group, New York, 459–504, ISBN 9781315151779,
https://doi.org/10.1201/9781315151779, 2017.
Crowhurst, D., Dadson, S., Peng, J., and Washington, R.: Contrasting controls on Congo Basin evaporation at the two rainfall peaks, Clim. Dynam., 56, 1609–1624, https://doi.org/10.1007/s00382-020-05547-1, 2021.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90, https://doi.org/10.1038/nature21048, 2017.
Da Silva, J., Calmant, S., Seyler, F., Corrêa, O., Filho, R., Cochonneau, G., and João, W.: Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions, Remote Sens. Environ., 114, 2160–2181, https://doi.org/10.1016/j.rse.2010.04.020, 2010.
Datok, P., Fabre, C., Sauvage, S., N'kaya, G. D. M., Paris, A., Santos, V. D., Laraque, A. and Sánchez-Pérez, J.-M. : Investigating the Role of the Cuvette Centrale in the Hydrology of the Congo River Basin, in: Congo Basin Hydrology, Climate, and Biogeochemistry, edited by: Tshimanga, R. M., N'kaya, G. D. M., and Alsdorf, D., AGU, https://doi.org/10.1002/9781119657002.ch14, 2022.
Decharme, B., Douville, H., Prigent, C., Papa, F., and Aires, F.: A new river flooding scheme for global climate applications: Off-line evaluation over South America, J. Geophys. Res.-Atmos., 113, 1–11, https://doi.org/10.1029/2007JD009376, 2008.
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.: Global off-line evaluation of the ISBA-TRIP flood model, Clim. Dynam., 38, 1389–1412, https://doi.org/10.1007/s00382-011-1054-9, 2011.
de Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M., Frappart, F., Calmant, S., and Mendes, C. A. B.: Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin, Water Resour. Res., 49,
1226–1243, https://doi.org/10.1002/wrcr.20067, 2013.
Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M., Fensholt, R.,
Saatchi, S. S., Bastos, A., Al-Yaari, A., Hufkens, K., Qin, Y., Xiao, X.,
Chen, C., Myneni, R. B., Fernandez-Moran, R., Mialon, A., Rodriguez-Fernandez, N. J., Kerr, Y., Tian, F., and Penuelas, J.: Satellite-observed pantropical carbon dynamics, Nat. Plants, 5, 944–951,
https://doi.org/10.1038/s41477-019-0478-9, 2019.
Fatras, C., Parrens, M., Peña Luque, S., and Al Bitar, A.: Hydrological
Dynamics of the Congo Basin From Water Surfaces Based on L-Band Microwave,
Water Resour. Res., 57, e2020WR027259, https://doi.org/10.1029/2020wr027259, 2021.
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A.:
Preliminary results of ENVISAT RA-2-derived water levels validation over the
Amazon basin, Remote Sens. Environ., 100, 252–264, https://doi.org/10.1016/j.rse.2005.10.027, 2006.
Frappart, F., Papa, F., Malbeteau, Y., León, J. G., Ramillien, G., Prigent, C., Seoane, L., Seyler, F., and Calmant, S.: Surface freshwater
storage variations in the Orinoco floodplains using multi-satellite observations, Remote Sens., 7, 89–110, https://doi.org/10.3390/rs70100089, 2015a.
Frappart, F., Papa, F., Marieu, V., Malbeteau, Y., Jordy, F., Calmant, S.,
Durand, F. and Bala, S.: Preliminary assessment of SARAL/AltiKa observations
over the Ganges-Brahmaputra and Irrawaddy Rivers, Mar. Geod., 38, 568–580,
https://doi.org/10.1080/01490419.2014.990591, 2015b.
Frappart, F., Zeiger, P., Betbeder, J., Gond, V., Bellot, R., Baghdadi, N.,
Blarel, F., Darrozes, J., Bourrel, L., and Seyler, F.: Automatic Detection of
Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin, Remote Sens., 13, 3804, https://doi.org/10.3390/rs13193804, 2021a.
Frappart, F., Blarel, F., Fayad, I., Bergé-Nguyen, M., Crétaux, J. F., Shu, S., Schregenberger, J., and Baghdadi, N.: Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes, Remote Sens., 13, 2196, https://doi.org/10.3390/rs13112196, 2021b.
Garambois, P. A., Calmant, S., Roux, H., Paris, A., Monnier, J., Finaud-Guyot, P., Samine Montazem, A., and da Silva, J. S.: Hydraulic visibility: Using satellite altimetry to parameterize a hydraulic model of an ungauged reach of a braided river, Hydrol. Process., 31, 756–767, https://doi.org/10.1002/hyp.11033, 2017.
Hastenrath, S.: Climate and circulation of the tropics, D. Reidel Publishing
Company, Holland, https://doi.org/10.1007/978-94-009-5388-8, 1985.
Hastie, A., Lauerwald, R., Ciais, P., Papa, F., and Regnier, P.: Historical and future contributions of inland waters to the Congo Basin carbon balance, Earth Syst. Dynam., 12, 37–62, https://doi.org/10.5194/esd-12-37-2021, 2021.
Hess, L. L., Melack, J. M., Novo, E., Barbosa, C., and Gastil, M.: Dual-season mapping of wetland inundation and vegetation for the central
Amazon basin, Remote Sens. Environ., 87, 404–428, https://doi.org/10.1016/j.rse.2003.04.001, 2003.
Hydroweb: http://hydroweb.theia-land.fr/, last access: 6 April 2022.
Ingram, V., Tieguhong, J. C., Schure, J., Nkamgnia, E., and Tadjuidje, M.
H.: Where artisanal mines and forest meet: Socio-economic and environmental
impacts in the Congo Basin, Nat. Resour. Forum, 35, 304–320, https://doi.org/10.1111/j.1477-8947.2011.01408.x, 2011.
Inogwabini, B.-I.: The changing water cycle: Freshwater in the Congo, WIREs
Water, 7, e1410, https://doi.org/10.1002/wat2.1410, 2020.
Kao, H., Kuo, C., Tseng, K., Shum, C. K., Tseng, T.-P., Jia, Y.-Y., Yang,
T.-Y., Ali, T. A., Yi, Y., and Hussain, D.: Assessment of Cryosat-2 and SARAL/AltiKa altimetry for measuring inland water and coastal sea level variations: A case study on Tibetan Plateau Lake and Taiwan Coast, Mar.
Geod., 42, 327–343, https://doi.org/10.1080/01490419.2019.1623352, 2019.
Kim, D., Lee, H., Laraque, A., Tshimanga, R. M., Yuan, T., Jung, H. C., Beighley, E., and Chang, C.-H.: Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data, Int. J. Remote Sens., 38, 7021–7040, https://doi.org/10.1080/01431161.2017.1371867, 2017.
Kittel, C. M. M., Jiang, L., Tøttrup, C., and Bauer-Gottwein, P.: Sentinel-3 radar altimetry for river monitoring - A catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B, Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, 2021.
Laraque, Alain, Bricquet, J. P., Pandi, A., and Olivry, J. C.: A review of
material transport by the Congo River and its tributaries, Hydrol. Process.,
23, 3216–3224, https://doi.org/10.1002/hyp.7395, 2009.
Laraque, A., Bellanger, M., Adele, G., Guebanda, S., Gulemvuga, G., Pandi,
A., Paturel, J. E., Robert, A., Tathy, J. P., and Yambele, A.: Evolutions
récentes des débits du Congo, de l'Oubangui et de la Sangha, Geo-Eco-Trop., 37, 93–100, 2013.
Laraque, Alain, N'kaya, G. D. M., Orange, D., Tshimanga, R., Tshitenge, J.
M., Mahé, G., Nguimalet, C. R., Trigg, M. A., Yepez, S., and Gulemvuga,
G.: Recent budget of hydroclimatology and hydrosedimentology of the congo
river in central Africa, Water, 12, 2613, https://doi.org/10.3390/w12092613, 2020.
Lee, H., Beighley, R. E., Alsdorf, D., Chul, H., Shum, C. K., Duan, J., Guo,
J., Yamazaki, D., and Andreadis, K.: Remote Sensing of Environment Characterization of terrestrial water dynamics in the Congo Basin using
GRACE and satellite radar altimetry, Remote Sens. Environ., 115, 3530–3538,
https://doi.org/10.1016/j.rse.2011.08.015, 2011.
Leon, J. G., Calmant, S., Seyler, F., Bonnet, M. P., Cauhopé, M., Frappart, F., Filizola, N., and Fraizy, P.: Rating curves and estimation of
average water depth at the upper Negro River based on satellite altimeter
data and modeled discharges, J. Hydrol., 328, 481–496, https://doi.org/10.1016/j.jhydrol.2005.12.006, 2006.
Mcphaden, M. J.: El Niño and La Niña: Causes and Global Consequences, in: Encyclopedia of Global Environmental Change, edited by: MacCracken, M. C. and Perry, J. S., USA, 353–370, ISBN 0-471-97796-9,
https://www.pmel.noaa.gov/gtmba/files/PDF/pubs/ElNinoLaNina.pdf (last access: 6 April 2022), 2002.
Moreira, D. M., Calmant, S., Perosanz, F., Xavier, L., Rotunno Filho, O. C.,
Seyler, F., and Monteiro, A. C.: Comparisons of observed and modeled elastic
responses to hydrological loading in the Amazon basin, Geophys. Res. Lett.,
43, 9604–9610, https://doi.org/10.1002/2016GL070265, 2016.
Munzimi, Y. A., Hansen, M. C., and Asante, K. O.: Estimating daily streamflow in the Congo Basin using satellite-derived data and a semi-distributed hydrological model, Hydrolog. Sci. J., 64, 1472–1487, https://doi.org/10.1080/02626667.2019.1647342, 2019.
Ndehedehe, C. E., Anyah, R. O., Alsdorf, D., Agutu, N. O., and Ferreira, V.
G.: Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the Congo basin, Sci. Total Environ., 651, 1569–1587, https://doi.org/10.1016/j.scitotenv.2018.09.203, 2019.
Nogherotto, R., Coppola, E., Giorgi, F., and Mariotti, L.: Impact of Congo
Basin deforestation on the African monsoon, Atmos. Sci. Lett., 14, 45–51,
https://doi.org/10.1002/asl2.416, 2013.
Normandin, C., Frappart, F., Diepkilé, A. T., Marieu, V., Mougin, E.,
Blarel, F., Lubac, B., Braquet, N., and Ba, A.: Evolution of the performances of radar altimetry missions from ERS-2 to Sentinel-3A over the Inner Niger Delta, Remote Sens., 10, 833, https://doi.org/10.3390/rs10060833, 2018.
O'Loughlin, F., Trigg, M. A., Schumann, G. J.-P., and Bates, P. D. : Hydraulic characterization of the middle reach of the Congo River, Water Resour. Res., 49, 5059–5070, https://doi.org/10.1002/wrcr.20398, 2013.
O'Loughlin, F., Neal, J., Schumann, G. J., Beighley, R. E., and Bates, P. D.: A LISFLOOD-FP hydraulic model of the middle reach of the Congo, J. Hydrol., 580, 124203, https://doi.org/10.1016/j.jhydrol.2019.124203, 2019.
OMM: CONGO-HYCOS, Organisation météorologique mondiale, 101 pp.,
https://library.wmo.int/doc_num.php?explnum_id=4883 (last access: 6 April 2022), 2010.
Papa, F, Gu, A., Frappart, F., Prigent, C., and Rossow, W. B.: Variations of
surface water extent and water storage in large river basins: A comparison of different global data sources, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL033857, 2008.
Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Interannual variability of surface water extent at the global scale, 1993–2004, J. Geophys. Res.-Atmos., 115, 1–17, https://doi.org/10.1029/2009JD012674, 2010.
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V, Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res., 117, C11021, https://doi.org/10.1029/2012JC008158, 2012.
Papa, F., Frappart, F., Güntner, A., Prigent, C., Aires, F., Getirana, A. C. V., and Maurer, R.: Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993–2007, J. Geophys. Res.-Atmos., 118, 11951–11965, https://doi.org/10.1002/2013JD020500, 2013.
Papa, F., Frappart, F., Malbeteau, Y., Shamsudduha, M., Vuruputur, V., Sekhar, M., Ramillien, G., Prigent, C., Aires, F., Pandey, R. K., Bala, S.,
and Calmant, S.: Satellite-derived surface and sub-surface water storage in
the Ganges-Brahmaputra River Basin, J. Hydrol. Reg. Stud., 4, 15–35,
https://doi.org/10.1016/j.ejrh.2015.03.004, 2015.
Paris, Adrien, De Paiva, R. D., Da Silva, J. S., Moreira, D. M., Calmant, S., Garambois, P.-A., Collischonn, W., Bonnet, M., and Seyler, F.: Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin, Water Resour. Res., 52, 3787–3814,
https://doi.org/10.1002/2014WR016618, 2016.
Paris, A., Calmant, S., Gosset, M., Fleischmann, A. S., Conchy, T. S. X., Garambois, P.-A., Bricquet, J.-P., Papa, F., Tshimanga, R. M., Guzanga, G. G., Siqueira, V. A., Tondo, B.-L., Paiva, R., da Silva, J. S., and Laraque, A.: Monitoring Hydrological Variables from Remote Sensing and Modeling in the Congo River Basin, in: Congo Basin Hydrology, Climate, and Biogeochemistry edited by: Tshimanga, R. M., N'kaya, G. D. M., and Alsdorf, D., AGU, https://doi.org/10.1002/9781119657002.ch18, 2022.
Park, E.: Characterizing channel–floodplain connectivity using satellite
altimetry: Mechanism, hydrogeomorphic control, and sediment budget, Remote
Sens. Environ., 243, 111783, https://doi.org/10.1016/j.rse.2020.111783, 2020.
Parrens, M., Al Bitar, A., Frappart, F., Papa, F., Wigneron, J.-P., and Kerr, Y.: Mapping dynamic water fraction under the tropical rain forests of the Amazonian basin from L-band brightness temperature, Water, 9, 350, https://doi.org/10.3390/w9050350, 2017.
Pekel, J.-F., A. Cottam, N. Gorelick, and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Plisnier, P. D., Nshombo, M., Mgana, H., and Ntakimazi, G.: Monitoring climate change and anthropogenic pressure at Lake Tanganyika, J. Great Lakes
Res., 44, 1194–1208, https://doi.org/10.1016/j.jglr.2018.05.019, 2018.
Prigent, Catherine, Papa, F., Aires, F., Rossow, W. B., and Matthews, E.:
Global inundation dynamics inferred from multiple satellite observations, 1993–2000, J. Geophys. Res.-Atmos., 112, 1993–2000, https://doi.org/10.1029/2006JD007847, 2007.
Prigent, C., Jimenez, C., and Bousquet, P.: Satellite-Derived Global Surface Water Extent and Dynamics Over the Last 25 Years (GIEMS-2), J. Geophys. Res.-Atmos., 125, 1–21, https://doi.org/10.1029/2019JD030711, 2020.
Pujol, L., Garambois, P. A., Finaud-Guyot, P., Monnier, J., Larnier, K.,
Mosé, R., Biancamaria, S., Yesou, H., Moreira, D., Paris, A., and Calmant, S.: Estimation of multiple inflows and effective channel by
assimilation of multi-satellite hydraulic signatures: The ungauged anabranching Negro river, J. Hydrol., 591, 125331, https://doi.org/10.1016/j.jhydrol.2020.125331, 2020.
Raney, R. K.: The delay/Doppler radar altimeter, IEEE T. Geosci. Remote, 36, 1578–1588, https://doi.org/10.1109/36.718861, 1998.
Rosenqvist, Å. and Birkett, C. M.: Evaluation of JERS-1 SAR mosaics for
hydrological applications in the Congo River basin, Int. J. Remote Sens., 23, 1283–1302, https://doi.org/10.1080/01431160110092902, 2002.
Runge, J.: The Congo River, Central Africa, in: Large Rivers: Geomorphology
and Management, edited by: Gupta, A., John Wiley and Sons, 293–309, https://doi.org/10.1002/9780470723722.ch14, 2007.
Seyler, F., Calmant, S., Silva, J., Filizola, N., Roux, E., Cochonneau, G.,
Vauchel, P., and Bonnet, M.: Monitoring water level in large trans-boundary
ungauged basins with altimetry: the example of ENVISAT over the Amazon basin, in: 6th SPIE Asia Pacific Remote Sensing Conference, November 2008, Nouméa, France, https://doi.org/10.1117/12.813258, 2008.
Stammer, D. and Cazenave, A.: Satellite Altimetry over Oceans and Land
Surfaces, Taylor and Francis Group, Boca Raton, London, New York, 645 pp.,
2017.
Sun, W., Ishidaira, H., and Bastola, S.: Calibration of hydrological models in ungauged basins based on satellite radar altimetry observations of river
water level, Hydrol. Process., 26, 3524–3537, https://doi.org/10.1002/hyp.8429, 2012.
Tshimanga, R. M.: Two decades of hydrologic modeling and predictions in the
Congo River Basin: Progress and prospect for future investigations, Under
press, in: Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation
for the Future, edited by: Alsdorf, D., Tshimanga, R. M., and Moukandi, G. N., Wiley-AGU, ISBN 9781119656975, 2021.
Tshimanga, R. M. and Hughes, D. A.: Climate change and impacts on the hydrology of the Congo Basin: the case of the northern sub-basins of the
Oubangui and Sangha Rivers, Phys. Chem. Earth, 50–52, 72–83, https://doi.org/10.1016/j.pce.2012.08.002, 2012.
Tshimanga, R. M. and Hughes, D. A.: Basin-scale performance of a semi-distributed rainfall-runoff model for hydrological predictions and
water resources assessment of large rivers: the Congo River, Water Resour.
Res., 50, 1174–1188, https://doi.org/10.1002/2013WR014310, 2014.
Tshimanga, R. M., Hughes, D. A., and Kapangaziwiri, E.: Initial calibration of a semi-distributed rainfall runoff model for the Congo River basin, Phys.
Chem. Earth, 36, 761–774, https://doi.org/10.1016/j.pce.2011.07.045, 2011.
Ummenhofer, C. C., England, M. H., Mcintosh, P. C., Meyers, G. A., Pook, M.
J., Risbey, J. S., and Gupta, A. S., and Taschetto, A. S.: What causes
southeast Australia's worst droughts?, Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801, 2009.
Verhegghen, A., Mayaux, P., De Wasseige, C., and Defourny, P.: Mapping Congo
Basin vegetation types from 300 m and 1 km multi-sensor time series for
carbon stocks and forest areas estimation, Biogeosciences, 9, 5061–5079,
https://doi.org/10.5194/bg-9-5061-2012, 2012.
Zakharova, E., Nielsen, K., Kamenev, G., and Kouraev, A.: River discharge
estimation from radar altimetry: Assessment of satellite performance, river
scales and methods, J. Hydrol., 583, 124561, https://doi.org/10.1016/j.jhydrol.2020.124561, 2020.
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
This study presents a better characterization of surface hydrology variability in the Congo...