Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6203-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6203-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline
Civil, Environmental, and Construction Engineering and National
Center for Integrated Coastal Research, University of Central Florida, 12800 Pegasus Drive, Suite 211, Orlando, FL 32816-2450, USA
Thomas Wahl
Civil, Environmental, and Construction Engineering and National
Center for Integrated Coastal Research, University of Central Florida, 12800 Pegasus Drive, Suite 211, Orlando, FL 32816-2450, USA
Md Mamunur Rashid
Civil, Environmental, and Construction Engineering and National
Center for Integrated Coastal Research, University of Central Florida, 12800 Pegasus Drive, Suite 211, Orlando, FL 32816-2450, USA
Paula Camus
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Ivan D. Haigh
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Related authors
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Stephen E. Darby, Ivan D. Haigh, Melissa Wood, Bui Duong, Tien Le Thuy Du, Thao Phuong Bui, Justin Sheffield, Hal Voepel, and Joël J.-M. Hirschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3506, https://doi.org/10.5194/egusphere-2025-3506, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We use model simulations to see what changes have been occurring to Mekong and Red River flows, 1970–2019, due to changes in tropical cyclone (TC)-linked precipitation. Results suggest that the highest river flows in multiple sub-catchments have been increasing over time, with coastal zones most intensely affected due to the combination of TC track and wet soils from prior rainfall. Climate change may exacerbate this TC-linked risk in the future making it a topic of strategic importance.
Ziyu Chen, Philip M. Orton, James F. Booth, Thomas Wahl, Arthur DeGaetano, Joel Kaatz, and Radley M. Horton
Hydrol. Earth Syst. Sci., 29, 3101–3117, https://doi.org/10.5194/hess-29-3101-2025, https://doi.org/10.5194/hess-29-3101-2025, 2025
Short summary
Short summary
Urban flooding can be driven by rain and storm surge or the combination of the two, which is called compound flooding. In this study, we analyzed hourly historical rain and surge data for New York City to provide a more detailed statistical analysis than prior studies of this topic. The analyses reveal that tropical cyclones (e.g., hurricanes) have potential for causing more extreme compound floods than other storms, while extratropical cyclones cause less extreme, more frequent compound events.
Sara Santamaria-Aguilar, Pravin Maduwantha, Alejandra R. Enriquez, and Thomas Wahl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1938, https://doi.org/10.5194/egusphere-2025-1938, 2025
Short summary
Short summary
Traditional flood assessments use an event-based approach, assuming flood risk matches the chance of flood drivers. However, flooding also depends on topography and the spatio-temporal features of events. The response-based approach uses many events to estimate flood hazard directly. In Gloucester City (NJ, U.S.), we find that frequent events can cause rare (1 %) flood levels due to their spatio-temporal characteristics. Including these factors is key for accurate flood hazard estimates.
Thomas P. Collings, Callum J. R. Murphy-Barltrop, Conor Murphy, Ivan D. Haigh, Paul D. Bates, and Niall D. Quinn
EGUsphere, https://doi.org/10.5194/egusphere-2025-1138, https://doi.org/10.5194/egusphere-2025-1138, 2025
Short summary
Short summary
Determining the threshold above which events are considered extreme is an important consideration for many modelling procedures. We propose an extension of an existing data-driven method for automatic threshold selection. We test our approach on tide gauge records, and show that it outperforms existing techniques. This helps improve estimates of extreme sea levels, and we hope other researchers will use this method for other natural hazards.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, Sönke Dangendorf, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1557, https://doi.org/10.5194/egusphere-2025-1557, 2025
Short summary
Short summary
Compound flooding occurs when multiple drivers, such as heavy rain and storm surge, occur simultaneously. Comprehensive compound flood risk assessments require simulating a many storm events using flood models, but such historical data are limited. To address this, we developed a statistical framework to generate large numbers of synthetic yet realistic storm events for use in flood modeling.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Melissa Wood, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-107, https://doi.org/10.5194/nhess-2024-107, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
The paper focuses on inundation process in a highest climate vulnerability area of the Mekong Delta, main drivers and future impacts, this is importance alert to decision makers and stakeholder for investment of infrastructure, adaptation approaches and mitigating impacts.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Cited articles
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.:
Multivariate statistical modelling of compound events via pair-copula
constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief
communication: The role of using precipitation or river discharge data when
assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci.,
20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020.
Bromirski, P. D., Flick, R. E., and Miller, A. J.: Storm surge along the
Pacific coast of North A merica, J. Geophys. Res.-Oceans, 122, 441–457,
https://doi.org/10.1002/2016JC012178, 2017.
Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns, Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, 2021.
Catto, J. L. and Dowdy, A.: Understanding compound hazards from a weather
system perspective, Weather Clim. Extrem., 32, 100313, https://doi.org/10.1016/j.wace.2021.100313, 2021.
Chamberlain, S., Anderson, B., Salmon, M., Erickson, A., Potter, N., Stachelek, J., Simmons, A., Ram, K., and Edmund, H.: rnoaa: NOAA weather data
from R, CRAN [code], https://CRAN.R-project.org/package=rnoaa (last access: 2 January 2021), 2016.
Codiga, D. L.: Unified tidal analysis and prediction using the UTide Matlab
functions, Technical report 2011-01, Graduate School of Oceanography,
University of Rhode Island, Narragansett, 1–59, available at: http://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf
(last access: 25 June 2020), 2011.
Couasnon, A., Sebastian, A., and Morales-Nápoles, O.: A Copula-Based
Bayesian Network for Modeling Compound Flood Hazard from Riverine and Coastal Interactions at the Catchment Scale: An Application to the Houston Ship Channel, Texas, Water, 10, 1190, https://doi.org/10.3390/w10091190, 2018.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale and its implications for flood hazard, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
De Cicco, L. A., Lorenz, D., Hirsch, R. M., and Watkins, W.: dataRetrieval:
R package for discovering and retrieving water data available from U.S. federal hydrologic web services, CRAN [code], https://CRAN.R-project.org/package=ataRetrieval (last access: 2 January 2021), 2018.
Emanuel, K.: Assessing the present and future probability of Hurricane Harvey's rainfall, P. Natl. Acad. Sci. USA, 114, 12681–12684, https://doi.org/10.1073/pnas.1716222114, 2017.
Ganguli, P. and Merz, B.: extreme coastal Water Levels exacerbate fluvial flood Hazards in northwestern europe, Scient. Rep., 9, 1–14, https://doi.org/10.1038/s41598-019-49822-6, 2019a.
Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe
During 1901–2014, Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019GL084220, 2019b.
Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., and Merz, B.: Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe, Earths Future, 8, e2020EF001752, https://doi.org/10.1029/2020EF001752, 2020.
Gilleland, E. and Katz, R. W.: Extremes 2.0: an extreme value analysis package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Climatic Change, 104, 89–111, https://doi.org/10.1007/s10584-010-9977-4, 2011.
arrigan, S., Zsoter, E., Barnard, C., Wetterhall F., Salamon, P., and Prudhomme, C.: River discharge and related historical data from the Global Flood Awareness System, v2.1, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.a4fdd6b9, 2019.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Hawkes, P. J. and Svensson, C.: Use of joint probability methods in flood management: A guide to best practice, T02-06-17, available at:
http://resolver.tudelft.nl/uuid:7e779720-61b6-4d65-b1ac-cb8716773ca8 (last access: 1 October 2020), 2006.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T.,
Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers
of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci.,
23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.
Jane, R., Cadavid, L., Obeysekera, J., and Wahl, T.: Multivariate statistical modelling of the drivers of compound flood events in south Florida, Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, 2020.
Kendall, M. G.: A New Measure of Rank Correlation, Biometrika, 30, 81–93,
https://doi.org/10.2307/2332226, 1938.
Kew, S. F., Selten, F. M., Lenderink, G., and Hazeleger, W.: The simultaneous occurrence of surge and discharge extremes for the Rhine delta, Nat. Hazards Earth Syst. Sci., 13, 2017–2029, https://doi.org/10.5194/nhess-13-2017-2013, 2013.
Kolde, R.: pheatmap: pretty heatmaps in R, CRAN [code],
https://CRAN.R-project.org/package=pheatmap (last access: 2 January 2021), 2015.
Ledford, A. W. and Tawn, J. A.: Modelling dependence within joint tail regions, J. Roy. Stat. Soc. B, 59, 475–499, https://doi.org/10.1111/1467-9868.00080, 1997.
Leonard, M., Westra, S., Phatak, A., Lambert, M., Van den Hurk, B., Mcinnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, WIREs Clim. Change Wiley
Interdisciplin. Rev.: Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Lian, J. J., Xu, K., and Ma, C.: Joint impact of rainfall and tidal level on
flood risk in a coastal city with a complex river network: a case study of
Fuzhou City, China, Hydrol. Earth Syst. Sci., 17, 679–689, https://doi.org/10.5194/hess-17-679-2013, 2013.
Marcos, M., Rohmer, J., Vousdoukas, M., Mentaschi, L., Le Cozannet, G., and
Amores, A.: Increased extreme coastal water levels due to the combined action of storm surges and wind-waves, Geophys. Res. Lett., 1, 2019GL082599,
https://doi.org/10.1029/2019GL082599, 2019.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012 (data available at: https://www.ncdc.noaa.gov/ghcnd-data-access, last access: 5 January 2020).
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding, P. Natl. Acad. Sci. USA, 114, 9785–9790, https://doi.org/10.1073/pnas.1620325114, 2017.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections, Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020 (data available at: https://doi.org/10.24381/cds.8c59054f).
National Centers for Environmental Information: U.S. Wave Information Study, available at: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00071 (last access: 5 January 2020), 2014.
Naveau, P., Guillou, A., and Rietsch, T.: A non-parametric entropybased approach to detect changes in climate extremes, J. Roy. Stat. Soc. B, 76,
861–884, 2014.
NOAA: Tides and currents, NOAA [data set], available at: https://tidesandcurrents.noaa.gov/ (last access: 5 January 2020), 2013.
NOAA Office for Coastal Management: Economics and Demographics, available at:
https://coast.noaa.gov/states/fast-facts/economics-and-demographics.html,
last access: 20 February 2021.
Paprotny, D., Vousdoukas, M. I., Morales-Nápoles, O., Jonkman, S. N., and
Feyen, L.: Pan-European hydrodynamic models and their ability to identify
compound floods, Nat. Hazards, 101, 933–957, https://doi.org/10.1007/s11069-020-03902-3, 2020.
Petroliagkis, T. I., Voukouvalas, E., Disperati, J., and Bidlot, J.: Joint Probabilities of Storm Surge, Significant Wave Height and River Discharge Components of Coastal Flooding Events, JRC Technical Report EUR 27824 EN, https://doi.org/10.2788/677778, 2016.
Rashid, M. M., Wahl, T., Chambers, D. P., Calafat, F. M., and Sweet, W. V.:
An extreme sea level indicator for the contiguous United States coastline,
Sci. Data, 6, 1–14, https://doi.org/10.1038/s41597-019-0333-x, 2019.
R Core Team: R: a language and environment for statistical computing, R foundation for statistical computing, R Core Team [code], https://www.R-project.org (last access: 2 January 2021), 2020.
Ridder, N., Pitman, A., Westra, S., Ukkola, A., Do, H., Bador, M., Hirsch, A., Evans, J., Luca, A. D., and Zscheischler, J.: Global hotspots for the
occurrence of compound events, Nat. Commun., 11, 5956, https://doi.org/10.1038/s41467-020-19639-3, 2020.
Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F. J.: A
multivariate extreme wave and storm surge climate emulator based on weather
patterns, Ocean Model., 104, 242–251, https://doi.org/10.1016/j.ocemod.2016.06.008, 2016.
Santos, V. M., Wahl, T., Jane, R. A., Misra, S. K., and White, K. D.: Assessing compound flooding potential with multivariate statistical models in a complex estuarine system under data constraints, J. Flood Risk Manage., 14, e12749, https://doi.org/10.1111/jfr3.12749, 2021.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and
their impacts on the natural physical environment, in: Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation, A Special
Report of Working Groups I and II of the Intergovernmental Panel on Climate
Change (IPCC), edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D.,
Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K.,
Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press,
Cambridge, UK, and New York, USA, 109–230, 2012.
Smith, A. B.: U.S. Billion-dollar Weather and Climate Disasters, 1980–present (NCEI Accession 0209268) [inland floods and tropical cyclones],
NOAA National Centers for Environmental Information, https://doi.org/10.25921/stkw-7w73, 2020.
Spinu, V., Grolemund, G., and Wickham, H.: lubridate: make dealing with
dates a little easier R package, CRAN [code],
https://CRAN.R-project.org/package=lubridate (last access: 2 January 2021), 2020.
Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river
flow and precipitation in eastern Britain, Int. J. Climatol., 22, 1149–1168,
https://doi.org/10.1002/joc.794, 2002.
Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and
precipitation in south and west Britain, Hydrol. Earth Syst. Sci., 8, 973–992, https://doi.org/10.5194/hess-8-973-2004, 2004.
U.S. Geological Survey: National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) [data set], available at: http://waterdata.usgs.gov/nwis/ (last access: 5 January 2020), 2016.
Vignotto, E., Engelke, S., and Zscheischler, J.: Clustering bivariate dependences in the extremes of climate variables, Weather Clim. Extrem., 32, 100318, https://doi.org/10.1016/j.wace.2021.100318, 2021.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015.
WAMDI Group: The WAM model – A third generation ocean wave prediction model,
J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high
sea-level and high river discharge increases flood hazard in global deltas
and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Wickham, H.: tidyr: Tidy Messy Data R package, CRAN [code], https://CRAN.R-project.org/package=tidyr (last access: 2 January 2021), 2020.
Wickham, H., Chang, W., Henry L., Pedersen, T. L., Takahashi, K., Wilke, C.,
Woo, K., Yutani, H., and Dunnington, D.: ggplot2: create elegant data
visualisations using the grammar of graphics R package, CRAN [code],
https://CRAN.R-project.org/package=ggplot2 (last access: 2 January 2021), 2020a.
Wickham, H., Francois, R., Henry, L., and Müller, K.: dplyr: a grammar
of data manipulation R Package, CRAN [code], https://CRAN.R-project.org/package=dplyr (last access: 2 January 2021), 2020b.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between
extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505,
172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zheng, K., Sun, J., Guan, C., and Shao, W.: Analysis of the global swell and
wind sea energy distribution using WAVEWATCH III, Adv. Meteorol., 2016,
8419580, https://doi.org/10.1155/2016/8419580, 2016.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., Agha Kouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.:
Evaluating the dependence structure of compound precipitation and wind speed
extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
We analyse dependences between different flooding drivers around the USA coastline, where the...