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Abstract. Flooding is of particular concern in low-lying
coastal zones that are prone to flooding impacts from multi-
ple drivers, such as oceanographic (storm surge and wave),
fluvial (excessive river discharge), and/or pluvial (surface
runoff). In this study, we analyse, for the first time, the
compound flooding potential along the contiguous United
States (CONUS) coastline from all flooding drivers, using
observations and reanalysis data sets. We assess the overall
dependence from observations by using Kendall’s rank corre-
lation coefficient (τ ) and tail (extremal) dependence (χ ). Ge-
ographically, we find the highest dependence between differ-
ent drivers at locations in the Gulf of Mexico, southeastern,
and southwestern coasts. Regarding different driver combi-
nations, the highest dependence exists between surge–waves,
followed by surge–precipitation, surge–discharge, waves–
precipitation, and waves–discharge. We also perform a sea-
sonal dependence analysis (tropical vs. extra-tropical sea-
son), where we find higher dependence between drivers dur-
ing the tropical season along the Gulf and parts of the East
Coast and stronger dependence during the extra-tropical sea-
son on the West Coast. Finally, we compare the dependence
structure of different combinations of flooding drivers, us-
ing observations and reanalysis data, and use the Kullback–
Leibler (KL) divergence to assess significance in the differ-
ences of the tail dependence structure. We find, for exam-
ple, that models underestimate the tail dependence between
surge–discharge on the East and West coasts and overes-
timate tail dependence between surge–precipitation on the
East Coast, while they underestimate it on the West Coast.
The comprehensive analysis presented here provides new in-

sights on where the compound flooding potential is relatively
higher, which variable combinations are most likely to lead
to compounding effects, during which time of the year (trop-
ical versus extra-tropical season) compound flooding is more
likely to occur, and how well reanalysis data capture the de-
pendence structure between the different flooding drivers.

1 Introduction

The Contiguous United States (CONUS) comprises 48 states
(i.e. all states, excluding Hawaii and Alaska). Approximately
40 % of population of the United States of America (USA)
lives in coastal counties, which make up less than 10 % of
the total area of the CONUS; this leads to a high population
density relative to inland areas, especially in the 17 major
port cities with over 1 million inhabitants located along the
USA coast (Hanson et al., 2011). The coastal counties com-
bined, if they were a single country, would rank third in the
world in terms of the gross domestic product (GDP) after
the USA and China (NOAA Office for Coastal Management,
2021). Furthermore, 40 % of the people living in coastal
counties are at high risk of being affected by coastal flood
hazards, including vulnerable populations such as the elderly,
children, non-native English speakers, and low-income com-
munities (NOAA Office for Coastal Management, 2021).

Floods are the most dangerous and costly natural dis-
aster. In the USA, the total direct economic losses from
major weather and climate disasters (where each disaster
caused a minimum direct loss of USD 1 billion) amounted to
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USD 1.75 trillion for the period 1980–2020 (Smith, 2020).
Altogether, 66 % of these losses (USD 1.15 trillion) re-
sulted from inland floods (33 events) and tropical cyclones
(52 events) causing extreme wind, rain, storm surge, and
waves. Hurricanes Harvey in 2017 and Katrina in 2005 both
had estimated damages totalling around USD 300 billion
(Smith, 2020). In low-lying coastal areas, flooding occurs
due to different meteorological and hydrological drivers, in-
cluding storm surge and waves (both oceanographic), exces-
sive river discharge (fluvial), and direct runoff due to pre-
cipitation (pluvial). Impacts from these four drivers can be
exacerbated, depending on local characteristics, if they occur
concurrently (at the same time) or in close succession (sep-
arated by a few hours or days); this is a phenomenon that is
known as compound flooding.

The definition of compound events has evolved over the
past decade (e.g. Seneviratne et al., 2012; Leonard et al.,
2014; Zscheischler et al., 2018). A widely adopted definition
is the one by Zscheischler et al. (2018), who define com-
pound events as being “a combination of multiple drivers
and/or hazards that contributes to societal or environmen-
tal risk”. Compound meteorological and hydrological ex-
tremes have received increased attention due to their adverse
impacts on the environment, society, and economy. Flood
risk assessments (including those conducted in coastal loca-
tions) traditionally account for individual drivers, and inde-
pendence between them is often falsely assumed, which can
lead to an underestimation of flood risk (Wahl et al., 2015).

According to the proposed typology in Zscheischler et
al. (2020), compound flooding is considered as being a multi-
variate event, where multiple climate drivers and/or hazards
can occur in the same geographical region, and which may
not be extreme on its own, but the joint occurrence of multi-
ple climate drivers and/or hazards leads to extreme impacts.
The four main flooding drivers in coastal regions are often
causally related through associated weather patterns; for in-
stance, when a storm causes extreme rainfall, storm surge,
and/or high waves and the river discharge is enhanced by lo-
cal characteristics of the catchment (Hendry et al., 2019). The
statistical modelling framework suggested by Zscheischler et
al. (2020), for this type of multivariate compound event, con-
sists of multivariate probability distribution functions, which
represent both the marginal distributions and dependence of
multiple random variables. High-dimensional data sets can
be modelled using copula-based approaches, but due to their
complexity, these multivariate statistical models have mostly
been applied in local studies (Lian et al., 2013, in Fuzhou,
China; Kew et al., 2013, in the Netherlands; Rueda et al.,
2016, in Santander, Spain; Bevacqua et al., 2017, in Ravenna,
Italy; Couasnon et al., 2018, in Houston, TX, USA; Jane
et al., 2020, in South Florida, USA; Santos et al., 2021, in
Texas, USA). At larger spatial scales (continental to global),
where the compound flooding risk varies along coastlines,
previous assessments were often limited to the bivariate case
where two flooding drivers were analysed (e.g. Zheng et al.,

2013; Wahl et al., 2015; Moftakhari et al., 2017; Ward et al.,
2018; Marcos et al., 2019; Hendry et al., 2019; Couasnon et
al., 2020). There are some notable exceptions where the de-
pendence between three or even all four flooding drivers was
considered, but those focused only on Europe (Petroliagkis
et al., 2016; Paprotny et al., 2020; Camus et al., 2021). At
the global scale, Bevacqua et al. (2020) quantified the de-
pendence between the sea level and discharge and sea level
and precipitation to explore if one is a reasonable proxy for
the other and under which conditions. In addition, Ridder at
al. (2020) identified hotspots and assessed the statistical de-
pendence for different combinations of hazards and hazard
drivers, including coastal flooding drivers.

Typical flooding driver combinations that were previously
assessed include surge and discharge (e.g. Moftakhari et al.,
2017), surge and precipitation (e.g. Wahl et al., 2015), surge
and waves (e.g. Marcos et al., 2019), surge, discharge, and
precipitation (e.g. Svensson and Jones, 2002, 2004), surge,
waves, and discharge (e.g. Petroliagkis et al., 2016), and
surge, waves, discharge, and precipitation (e.g. Hawkes and
Svensson, 2006; Camus et al., 2021). Many studies were per-
formed using observational data (e.g. Wahl et al., 2015; Ward
et al., 2018), while some included model hindcast data (Mar-
cos et al., 2019; Couasnon et al., 2020; Camus et al., 2021),
and very few included both or compared different data sets
(e.g. Paprotny et al., 2020; Ganguli et al., 2020; Zscheischler
et al., 2021). For the CONUS coastline, two previous studies
assessed compound flooding potential at the continental scale
(while the CONUS was also included in global scale assess-
ments); Wahl et al. (2015) analysed storm surge and precipi-
tation, and Moftakhari et al. (2017) analysed storm surge and
discharge. Both studies highlighted that the existing depen-
dence between coastal and freshwater flooding drivers should
be taken into account for coastal flood risk assessments and
that non-stationarity can lead to a further increase in com-
pound flooding potential.

Here we build on these previous studies and perform the
first continental-scale analysis of the compound flooding po-
tential caused by oceanographic (storm surge and waves),
fluvial (excessive river discharge), and pluvial (direct surface
runoff) sources using both observational and model hind-
cast/reanalysis data. We have three key objectives. Our first
objective is to characterize and map the dependence between
different drivers at locations around the CONUS coastline
and identify spatial patterns. We carry out this specific ob-
jective using different methods to quantify the (bivariate)
dependence between the variables representing the flooding
drivers. This will show where the compound flooding poten-
tial is relatively higher and which pairs of drivers are more
likely to lead to compounding effects. Our second objective
is to perform the dependence analysis separately for the trop-
ical (June–November) and extra-tropical (December–May)
seasons. This is to investigate if the dependence between
the different flooding drivers is relatively higher in one of
the seasons and to assess if there are any spatial patterns

Hydrol. Earth Syst. Sci., 25, 6203–6222, 2021 https://doi.org/10.5194/hess-25-6203-2021



A. A. Nasr et al.: Assessing the dependence structure between various flooding drivers 6205

Figure 1. Selected study sites based on tide gauge data availability and separated into East Coast, Gulf Coast, and West Coast locations.

to these differences. Our third and final objective is to com-
pare the dependence structures of different combinations of
flooding drivers derived from observations to those derived
from model hindcast/reanalysis data. Comparing dependence
structures across different data sets is something only very
few studies have addressed to date (Paprotny et al., 2020;
Ganguli et al., 2020; Zscheischler et al., 2021). This last
analysis step will show how well models capture dependence
structures between flooding drivers and identify the pairs of
drivers and locations where model results overestimate or un-
derestimate the dependence.

The paper is structured as follows. The data sets and meth-
ods are detailed in Sects. 2 and 3, respectively. The results are
presented in Sect. 4, key findings are discussed in Sect. 5, and
conclusions are given in Sect. 6.

2 Data

We use both observational data (for objectives 1 to 3) and
model hindcast data (for objective 3) for multiple locations
around the CONUS coastline. The four flood-generating
variables considered here are storm surge (S), waves (W ),
river discharge (Q), and precipitation (P ); waves are charac-
terized by the significant wave height. In the following sub-
sections, we first describe the observational data, directly fol-
lowed by the hindcast data; in the case of waves, we use two
different model-based data sets (we refer to them as a hind-
cast data set and a reanalysis data set) due to the absence
of long observational records from wave buoys. Importantly,
the hindcast data that we use for the different variables were
all derived with coherent forcing from the ERA5 atmospheric
reanalysis (Hersbach et al., 2020), thereby avoiding inconsis-
tencies stemming from using different reanalysis products.

2.1 Storm surge

We use hourly sea-level data from the National
Oceanic and Atmospheric Administration (NOAA;
https://tidesandcurrents.noaa.gov/, last access: 5 Jan-
uary 2020) database. Following Rashid et al. (2019), we
identify 35 sites (Fig. 1) with long records, extending back
to 1950 or earlier, and where time series at individual sites
are 80 % or more complete. We used the R package of
rnoaa (Chamberlain et al., 2016) to retrieve the hourly data
year by year, starting in 1900, via the website application
programming interface (API). Next, the hourly time series
are detrended to remove the effects of the sea-level rise and
variability (i.e. annual mean sea level values are derived and
subtracted). Following that, the Unified Tidal Analysis and
Prediction (UTide) package in MATLAB (Codiga, 2011) is
used to perform a harmonic tidal analysis on a year-by-year
basis to obtain tidal constituents, using the standard set of
67 harmonic constituents. The predicted astronomical tides
are then subtracted from the detrended hourly sea level time
series to derive the non-tidal residual, which is used herein
as the storm surge component.

Hourly model-based storm surge time-series were de-
rived from the Coastal Dataset for the Evaluation of Cli-
mate Impact (CoDEC; Muis et al., 2020). CoDEC was gen-
erated by forcing the third generation Global Tide and Surge
Model (GTSM v3.0), with a coastal resolution of 2.5 km
globally (1.25 km in Europe), with meteorological fields
from the ERA5 climate reanalysis (Hersbach et al., 2020) to
simulate extreme sea levels for the period from 1979 to 2017.
The validation against observed sea levels demonstrated a
good performance, with the annual maxima having a mean
bias 50 % lower than that of the previous Global Tide and
Surge Reanalysis (GTSR) data set (Muis et al., 2016). We
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use the surge component from the model grid point that pro-
vides the maximum Kling–Gupta efficiency (KGE; Gupta el
al., 2009) from the closest nine grid points to each tide gauge
location. The KGE metric compares observations and simu-
lations using linear correlation, variability, and bias.

2.2 Waves

As outlined above, we only consider the significant wave
height, which is one of the most important wave parameters
to represent the wave climate. In situ observations from wave
buoys are limited temporally along the USA coast, with
lengths often restricted to 10–15 years, and, hence, much
shorter than the time series we have available for the other
flooding drivers. In addition, the spatial coverage is sparse,
making it difficult to find relatively long wave records in the
vicinity of the tide gauges with long records. Therefore, we
use hourly hindcast wave data obtained from the National
Centers for Environmental Information: U.S. Wave Informa-
tion Study (NCEI-WIS, https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00071,
last access: 5 January 2020) as a substitute for obser-
vational data. NCEI-WIS is a regional product that has
been widely applied for engineering purposes and is ex-
tensively validated against wave buoy observations; it has
provided wave information for the USA coastlines for over
30 years, with continuous development of hindcasts and
evaluation of model results and technology. Models are
forced with winds generated from the National Center for
Atmospheric Research NCEP/NCAR Reanalysis 1 (spatial
resolution= 0.5◦× 0.5◦; temporal resolution= 6 h). The
Atlantic coast, Pacific coast, and Gulf of Mexico are each
modelled independently, for the best results, with a coastal
grid resolution of 5 min and temporal coverage from 1980–
2014. We select the WIS grid points that are closest to the
tide gauge locations. We do not pair tide gauges that are
located further upstream in estuaries with wave data, as these
locations are often sheltered for wave action, which leads to
31 sites where co-located data are identified and used for the
analysis.

We compare the WIS data against wave time series ex-
tracted from the ERA5 reanalysis (spatial resolution= 0.5◦×
0.5◦; temporal resolution= 1 h; Hersbach et al., 2020) based
on the wave model WAM (WAMDI Group, 1988). For our
analysis, we use the grid points closest to the WIS grid points
selected before.

2.3 River discharge

We obtained observed river discharge time series from the
United States Geological Survey (USGS) National Water In-
formation System (NWIS; https://waterdata.usgs.gov/nwis,
last access: 5 January 2020). USGS-NWIS provides nation-
wide water flow (and quality) information in streams and
lakes. The R package of dataRetrieval (De Cicco et al., 2018)

was used for retrieving data from desired locations close to
the 35 tide gauge sites identified before. The selected stream
gauges were chosen to satisfy the following criteria: (1) a
minimum catchment area of 1000 km2, (2) a maximum Eu-
clidean distance to the matching tide gauge< 500 km, (3) a
river basin outlet within a maximum distance of 55 km (0.5◦)
from the tide gauge (Ward et al., 2018), and (4) a lead of
20 years or more in records overlapping with the tide gauges.
Based on these rules, we identify 23 sites where tide gauge
data can be paired with discharge data.

Modelled river discharge time series were extracted from
the Global Flood Awareness System (GloFAS)-ERA5 reanal-
ysis (Harrigan et al., 2020). This is a global gridded reanal-
ysis data set (excluding Antarctica), with a horizontal res-
olution of 0.1◦× 0.1◦ at a daily time step over 40 years,
starting in 1979. The GloFAS-ERA5 river discharge reanal-
ysis was produced by coupling the land surface model runoff
component of the ECMWF ERA5 global reanalysis with the
LISFLOOD hydrological and channel routing model. LIS-
FLOOD allows the lateral connectivity of ERA5 runoff grid
cells routed through the river channel to produce river dis-
charge. ERA5 runoff is produced from the HTESSEL (Hy-
drology Tiled ECMWF Scheme for Surface Exchanges over
Land) land surface model, with an advanced land data assim-
ilation system to assimilate conventional in situ and satellite
observations for land surface variables. We again identify the
nine grid points closest to the stream gauges selected before
and retain the ones with the highest KGE statistic.

2.4 Precipitation

We use precipitation observations from the Global Historical
Climatology Network–Daily (GHCN-D) hosted by NOAA’s
National Centers for Environmental Information (NOAA-
NCEI; https://www.ncdc.noaa.gov/ghcnd-data-access, last
access: 5 January 2020). For data retrieval, we used the
R package of rnoaa (Chamberlain et al., 2016). GHCN-
D contains precipitation and other climate data from more
than 100 000 stations worldwide, covering periods ranging
from 1 year to over 175 years. We consider the accumu-
lated daily precipitation depth (similar to Camus et al., 2021
and Wahl et al., 2015) since higher frequency data are not
available for long enough time periods to be useful for our
continental-scale analysis. We use data from rain gauges that
are located closest to the selected tide gauges with at least
20 years of overlapping data. In 31 instances, the closest pre-
cipitation gauges providing long records are found within
a 30 km radius around the respective tide gauges; for the
other four sites, the distance is larger but always smaller than
60 km.

Model-based precipitation time series were extracted from
the ERA5 reanalysis, which is based on the Integrated Fore-
casting System (IFS) cycle 41r2. The ERA5 reanalysis re-
places the ERA-Interim reanalysis with a significantly en-
hanced horizontal resolution of 31 km (∼ 0.25◦× 0.25◦),
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Figure 2. Histogram showing the length of overlapping time series
in years (on the x axis) and the corresponding frequency n (on the
y axis) for the observational data used in the analysis (lengths of
model data sets are outlined in the text and the same for all loca-
tions for a given variable). Note that we analyse 35 locations and
a maximum of six driver combinations (from four drivers) at each
location, all of which were used to derive the histogram. Bars are
separated into East Coast, Gulf Coast, and West Coast locations.

compared to 80 km for ERA-Interim. In addition, biases are
strongly reduced in ERA5 compared to ERA-Interim pre-
cipitation data. The ERA5 hourly data set spans the period
from 1979 onwards, and we used that to derive accumulated
daily precipitation. Similar to the other drivers, we selected
the nine grid points closest to the precipitation gauges and
selected the ones with the highest KGE statistic.

2.5 Final study sites

Following the procedure outlined above leads to a data
set that comprises information on storm surges, significant
wave height, precipitation, and river discharge derived from
observations and model hindcasts for 35 sites around the
USA coast (see Fig. 1). The overlapping record lengths be-
tween the various data pairs considered in the compound
flooding potential analysis range from 20 to 100 years (mean
is 47 years; median is 35 years; Fig. 2).

3 Methods

Our analysis is performed in three stages, each corresponding
to one of the three objectives outlined in Sect. 1. These are
described, in turn, below.

3.1 Dependence analysis

Our first objective is to characterize and map the dependence
between different flood driver combinations at the 35 sites
around the CONUS coastline and identify spatial patterns.

First, we derive daily data for all four variables. For storm
surge and significant wave height, these are the maximum
hourly values that occurred during a given day; for precipi-
tation, we use the accumulated daily precipitation depth, and
for discharge, we use the daily mean. From these daily time
series, we further identify extreme events using the annual
block maxima method. This avoids having to select appropri-
ate thresholds for all sites and variable pairs as would be re-
quired when using the peaks-over-threshold (POT) method;
both approaches were contrasted in a comprehensive sensi-
tivity analysis by Camus et al. (2021), who found comparable
results.

We use six combinations of variables, and for each, we ap-
ply two-way conditional sampling similar to previous stud-
ies (Wahl et al., 2015; Ward et al., 2018; Couasnon et al.,
2020; Jane et al., 2020; Santos et al., 2021; Camus et al.,
2021), where at least one variable is extreme. In particular,
we use annual maxima of the first (conditioning) variable
and the corresponding maximum value of the other (con-
ditioned) variable within a time window that we vary be-
tween 0 to ±10 d; the relatively long lag times are chosen
as we do not correct for the travel time of the river flow
from where it is measured/modelled to the tide gauge fur-
ther downstream. Previous studies calculated these lag times
for river discharge and then applied a time window of ±7 d
for sampling between surge and lagged discharge (e.g. Gan-
guli and Merz, 2019a, b; Ganguli et al., 2020). From all the
time windows tested, we chose the one that maximizes de-
pendence (Kendall’s τ ). For surge and wave, for example,
that leads to the selection of a time window of 0 d as the high
values usually occur on the same day. Across all locations
and variable pairs, the median time window that is selected
is 3 d; window lengths of 10 d are only considered in rare
cases for the S–Q combination. In general, the reason for
the choice of a time window is that compound events do not
have to occur on the same day to enhance impacts; they can
occur when separated by a number of days. The occurrence
of one event could impact flood defence systems or disaster
management efforts, leading to enhanced impacts when an-
other event occurs shortly after (Ganguli et al., 2020). The six
variable pairs (and 12 combinations from the two-way sam-
pling) are given in the list below. The variable that is listed
first is the conditioning variable (e.g. S_Q means that annual
maxima S is paired with (near-) coincident Q, whereas Q_S
means that annual maxima Q is paired with (near-) coinci-
dent S). The pairs are as follows:

– surge and discharge (S_Q and Q_S),

– surge and precipitation (S_P and P_S),

– surge and waves (S_W and W_S),

– discharge and precipitation (Q_P and P_Q),

– discharge and waves (Q_W and W_Q), and
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– precipitation and waves (P_W and W_P).

We assess dependence using Kendall’s rank correlation co-
efficient (τ ; Kendall, 1938) which, in contrast to Pearson’s
linear correlation coefficient (R), can also capture nonlinear
dependence between the variable pairs and was used in pre-
vious studies to assess dependence (e.g. Wahl et al., 2015;
Ward et al., 2018; Hendry et al., 2019; Marcos et al., 2019).
Another option would be to use Spearman’s rank correla-
tion coefficient (ρ), which measures the strength of mono-
tonic dependence between bivariate variables (e.g. Couasnon
et al., 2020). Camus et al. (2021) compared both measures
and found that Spearman’s rank correlation coefficient was
typically higher than Kendall’s rank correlation coefficient.
However, both showed the same spatial characteristics when
applied to many locations along the European coastline. Sig-
nificance is assessed here at α = 0.05 (i.e. 95 % confidence
level).

In addition to using Kendall’s τ in association with the
two-way sampling approach, we also assess extremal de-
pendence using tail dependence coefficients. In this method,
extremal (or tail) dependence falls into two categories, i.e.
(1) asymptotic tail dependence or (2) asymptotic tail inde-
pendence (Ledford and Tawn, 1997). If (A, B) are a pair
of variables with cumulative distribution functions (Fa , Fb)
transformed to unit scale (0, 1), then (U = Fa(A), V =
Fb(B)). Thus, (A, B) are asymptotically tail dependent if,
in the following:

χ = P (Fa(A) > q|Fb(B) > q)ε(0,1], (1)

and asymptotically tail independent if χ = 0. The coeffi-
cient χ represents the probability of one variable being ex-
treme (exceeding a threshold q), given that the other vari-
able is extreme (exceeding the same threshold q). We choose
q = 0.9 (90th percentile), following previous studies (e.g.
Vignotto et al., 2021). We estimate χ using the function
of taildep from the R package extRemes (Gilleland and
Katz, 2016). To estimate whether the calculated χ values
are significant, a bootstrapping method, following Svensson
and Jones (2002), is implemented. Data are bootstrapped
randomly by shuffling the temporal order of one variable
(using blocks of a 1-year length) to break up the depen-
dence structure while preserving seasonality. This is repeated
1000 times, and if less than 5 % of the bootstrapped estimates
are greater than χ calculated from the original records, then
χ is considered significant.

Since both approaches use different samples from the data
and are implemented differently, we also expect differences
in the results. The tail dependence (calculated using the daily
time series) only characterizes compound events when both
drivers are extreme (both exceed a certain threshold). On the
other hand, Kendall’s τ (using two-way sampling) character-
izes compound events generated when one of the drivers is
extreme, but not necessarily the other, providing information
about the relative severity of the secondary driver. Both met-

rics provide insight into the existence (or non-existence) of
dependence according to different compound flooding mech-
anisms (as outlined in Wahl et al., 2015).

3.2 Seasonal dependence analysis

Our second objective is to perform a seasonal dependence
analysis in which we analyse data from the tropical cyclone
season (June–November) separately from the extra-tropical
season (December–May). Data from each season were stud-
ied separately and compared to investigate if dependence
varies between them. The analysis is performed in the same
way as outlined in Sect. 3.1; i.e. for the rank correlation anal-
ysis, instead of using annual maxima, we use seasonal max-
ima of the conditioning variables and match those with near-
coincident values of the conditioned variables. The tail de-
pendence analysis is conducted separately for both seasons
using daily data corresponding to each season.

To assess the significance of the difference in dependence
and tail dependence between seasons, confidence intervals
were calculated for each statistic (Kendall’s τ and tail depen-
dence χ ) using a bootstrapping method similar to Svensson
and Jones (2004) and Wahl et al. (2015). This is done by gen-
erating many new data sets from the existing data set through
resampling (sampling with replacement). Unlike the boot-
strapping method explained in Sect. 3.1, where significance
was assessed based on independence, here we sample (with
replacement) both pairs at the same time. For Kendall’s τ ,
we draw a bivariate observation (in a season year), while, for
tail dependence χ , we draw a bivariate block (1 season year
in length ) at a time. To ensure that each season year is sam-
pled equally often, a balanced resampling approach was im-
plemented, which avoids bias from certain years being sam-
pled more often than others. For each season, a two-column
matrix with N ×B rows is created, where N is the length
of the overlapping data of a certain pair of flooding drivers,
and B is set to 1000. The resulting matrix is then shuffled
while keeping the bivariate pairs intact and afterwards sliced
into B slices of length N . For each of the B matrices of
length N , the desired statistics (Kendall’s τ or tail depen-
dence χ ) are calculated, and the 95 % confidence intervals
are estimated (2.5 % and 97.5 % quantiles). The confidence
intervals derived for each season are compared, and if they do
not overlap, then we consider the difference in dependence
(expressed as τ or χ ) to be significant.

3.3 Observation-based vs. model-based dependence
structure

Our third and final objective is to compare the dependence
structures derived from observation-based data and model-
based data. We perform this part of the analysis only for the
extremal (tail) dependence χ . This is because the two-way
sampling approach uses the annual (or seasonal) maxima val-
ues of the different variables, and those are often not well
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captured by model hindcasts, leading to a higher sensitivity
in the results as opposed to the tail dependence, which uses
the full daily time series and, here, a threshold of q = 0.9. We
calculate the extremal (tail) dependence χ (at q = 0.9) from
observation and hindcast data for periods where data from
both sources are available (Paprotny et al., 2020). We apply
the Kullback–Leibler (KL) divergence to assess the signifi-
cance in the difference in tail dependence derived from the
two types of data. The method based on the KL divergence
has been introduced by Zscheischler et al. (2021) to assess
if the dependence structure between wind and precipitation
extremes was different across different data sets in a study
location in Europe. The method builds on the earlier work of
Naveau et al (2014), for comparing univariate data sets, and
extends it to bivariate data sets. Vignotto et al. (2021) also
used the KL divergence for clustering the bivariate depen-
dencies of compound precipitation and wind extremes over
Great Britain and Ireland.

We provide a brief description of the methodology (see
Zscheischler et al., 2021, and Vignotto et al., 2021, and ref-
erences therein for more details). For two bivariate distri-
butions X(1) = (X(1)1 ,X

(1)
2 ) and X(2) = (X(2)1 ,X

(2)
2 ), corre-

sponding to bivariate distributions from observation-based
and model-based data, the divergence is only defined in the
tail of the distributions after normalizing the marginal dis-
tributions to standard Pareto distributions. A risk function (r
is R2

−→ R) calculated on the Pareto scale is used to define
extremal regions on each of the bivariate distributions. From
the risk functions introduced in Zscheischler et al. (2021), we
choose the minimum corresponding to r(x)=min(x1,x2),
with x = (x1,x2), as it covers both asymptotically depen-
dent and independent data. This results in two univariate
variables, i.e. R(1) = r(X(1)) and R(2) = r(X(2)). We con-
sider points as extreme when the variable R(j) exceeds a
given high quantile threshold q(j)u corresponding to an ex-
ceedance probability uε(0,1), j = 1,2. Varying the thresh-
old q(j)u changes the extremal region of interest (we used
u= 0.9 to be consistent with the tail dependence threshold
we employed). Applying the minimum risk function for each
of the two bivariate distributions, the extreme points are con-
tained in the set {R(j) > q(j)u |}, j = 1,2. This set is then
divided into a fixed number of disjoint sets A(j)1 , . . . ,A(j)W .
For the minimum risk function, the data are partitioned into
W = 3 sets, where one contains the co-occurring extremes,
and the other two contain data when only one variable is ex-
treme.

For the two random samples (X1
1 , . . . ,X1

n) and
(X2

1 , . . . ,X2
n), from the two distributions X(1) and X(2),

the empirical proportions of data points in each of the

previously mentioned sets A(j)w are computed as follows:

p̂(j)w =
#
{
i X

(j)
i εA

(j)
w

}
#
{
i : r

(
X
(j)
i

)
> q

(j)
u

} ,w = 1, . . ., W ;

j = 1,2; i = 1, . . ., n. (2)

The difference between the extremal behaviours of the two
distributions can be measured as the KL divergence between
the two multinomial distributions, which is defined through
the previous empirical proportions as follows:

d12 =D
(
X
(1)
1 ,X

(1)
2

)
=

1
2

W∑
w=1

((
p̂(1)w − p̂

(2)
w

)
log

(
p̂
(1)
w

p̂
(2)
w

))
. (3)

The divergence d12 is a natural way to contrast the differ-
ences between extremal dependence structures for asymptot-
ically dependent and independent data. Also, this divergence
is symmetric and does not require additional model assump-
tions as it is a non-parametric statistic. The statistic d12 fol-
lows a χ2(W − 1) distribution in the limit as the sample size
approaches∞ under suitable assumptions, allowing us to es-
timate whether it is significantly different from zero.

We repeat the analysis after splitting the data set into trop-
ical and extra-tropical seasons to investigate if models’ per-
formance is better in one season compared to the other.

4 Results

4.1 Overall dependence analysis

This section describes the results for the first objective, re-
lating to the bivariate dependence analysis between the four
drivers. First, we show the results from Kendall’s rank corre-
lation analysis applied to the two-way samples derived with
the annual maxima method, and then we show results from
extremal (tail) dependence (that will be referred to as tail de-
pendence hereafter).

In Fig. 3, the dependence based on Kendall’s τ is shown
between all combinations of drivers at the 35 study sites
around the CONUS coastline. Sites where one driver was not
available or where the number of overlapping years between
bivariate drivers was less than 20 are blank, and the insignifi-
cant dependence (at α = 0.05) is shown as an asterisk (∗). For
surge and discharge, out of 23 sites analysed, more sites show
significant correlation for Q_S (14 sites) than S_Q (11 sites).
Along the coasts of Florida and the southeastern USA, higher
values of τ are found for S_Q than Q_S. In contrast, along
the coasts in the western Gulf of Mexico and southwestern
USA, the values of Q_S are higher than for S_Q. For surge
and precipitation, from the 35 sites analysed, more sites show
significant dependence in S_P (24 sites) compared to P_S
(16 sites). Along the East Coast, more sites possess signif-
icant dependence in S_P (14 sites compared to 9 sites in
P_S), and at the same time, the dependence values for S_P
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Figure 3. Dependence between different pairs of flooding drivers based on Kendall’s τ and two-way sampling using annual maxima. Sites are
grouped into locations on the East, Gulf, and West coasts (see colours on the left and in the legend). The blue colour bar denotes dependence
strength, blank squares indicate that data for the particular pair did not exist, or that the number of overlapping years was less than 20, and
squares with an asterisk (∗) indicate that correlation is not significant.

are higher than P_S values. Interestingly, along the Gulf and
West coasts, although more sites have significant dependence
in S_P (10 sites compared to 7 sites in P_S), the strength of
the dependence is higher for P_S in most cases (six out of
the seven sites); this is in agreement with results from Wahl
et al. (2015). For surge and waves, out of 31 sites analysed,
we find more sites with significant dependence in the case of
S_W (25 sites) compared to W_S (16 sites), especially along
the East Coast. For the East and Gulf coasts, the strength
of dependence is also higher for S_W compared to W_S,
which is reversed on the West Coast. For discharge and pre-
cipitation, out of 23 sites analysed, more sites show signif-
icant dependence in the case of Q_P (17 sites) compared to
P_Q (13 sites), which is again most pronounced on the East
Coast. The strength of dependence of Q_P and P_Q in the
Gulf and West coasts is higher than that for the East Coast. In
most sites, the strength of dependence is higher for Q_P than
P_Q. For waves and discharge, out of 17 sites analysed, only
three show significant dependence in both cases. For W_Q,
all three are located in Florida and show a relatively high de-
pendence strength. Last, for wave and precipitation, out of
31 analysed sites, there is approximately an equal number of
sites showing significant dependence for W_P (12 sites) and

P_W (11 sites). However, the strength of dependence is over-
all higher for W_P compared to P_W at most sites (four of
five sites) where both are significant.

In general, our results indicate, from a geographic perspec-
tive, that dependence, when assessed through Kendall’s τ ,
is higher between most drivers along the Gulf, southeast-
ern, and southwestern coasts compared to the northeastern
and northwestern coasts. From a flooding driver perspective,
the highest dependence is found between surges and waves,
which are both oceanographic drivers, followed by surge and
precipitation, surge and discharge, waves and precipitation,
and waves and discharge.

The results from the tail dependence analysis, using χ cal-
culated at q = 0.9, are shown in Fig. 4. Recall that, for the
calculation of χ , we consider the full daily time series of
all variables; hence, we only obtain results for one case as
opposed to the results presented above, which are based on
the two-way sampling procedure. The results for the tail de-
pendence analysis indicate that there are more sites with sig-
nificant tail dependence compared to the two-way sampling
analysis with Kendall’s τ . Geographically, we find more
places with significant tail dependence in the northwestern
coast for the pairs S_P, W_Q, and W_P, whereas the rank cor-
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relation analysis using Kendall’s τ pointed to an insignificant
correlation between the same pairs. Nevertheless, in terms of
the strength of dependence between different variable pairs,
the order found with Kendall’s τ persists.

4.2 Seasonal dependence analysis

This section describes the results for the second objective, re-
lating to the seasonal dependence analysis between the four
drivers. Here we analyse data from June–November (trop-
ical cyclone season for the Atlantic and Gulf coasts) sepa-
rately from December–May (extra-tropical season) and com-
pare results. First, we show the results from Kendall’s rank
correlation analysis applied to the two-way samples derived
with the seasonal maxima method, and then we show results
from analysing the tail dependence.

The comparison between dependence using Kendall’s τ in
the tropical season (plotted on the x axis) and extra-tropical
season (plotted on the y axis) is shown in Fig. 5. Note that,
for the scatterplot, we did not distinguish between the two
cases, i.e. the pair Q_S that is shown as filled circles includes
the results for both Q_S and S_Q cases. Overall, the values
are dispersed widely from the diagonal 1 : 1 line (Pearson’s
correlation coefficient R = 0.42), indicating the existence of
differences in the dependence across the two seasons where
different types of storms are dominant. The deviation from
the diagonal is more pronounced in the lower left, where the
majority of markers are located, whereas markers tend to be
closer to the diagonal for sites/pairs where the dependence
is generally higher. In the majority of cases, the dependence
values tend to be stronger in the tropical season (as indicated
by the dashed lines in Fig. 5 representing linear regression
fits to the data subsets for different regions). This is partic-
ularly notable for the Gulf Coast (shown in green), where
the majority of markers fall below the diagonal, indicating
stronger dependence in the tropical season. This tendency
also exists for the East Coast sites, but is much less pro-
nounced, whereas for the West Coast sites, the markers are
scattered more symmetrically around the diagonal.

To better discern spatial patterns where differences in the
seasonal dependences for certain variable pairs are larger,
Fig. 6 shows the same results as in Fig. 5 but separately
for each of the 12 variable pairs (considering both cases of
the two-way sampling) and all individual sites. For the pairs
S_Q, Q_S, S_P, and P_S, higher values of τ are found along
the Gulf and East coasts for the tropical season, while higher
values are found for the extra-tropical season on the West
Coast. For surge and waves, higher dependence is found for
both pairs (S_W and W_S) in the Gulf of Mexico during
the tropical season, and the difference is significant. S_W is
higher during the tropical season on the East Coast and lower
on the West Coast. In contrast, W_S is lower during the trop-
ical season on the East Coast and higher on the West Coast.
For the rest of the pairs (Q_P, P_Q, W_Q, Q_W, W_P, and
P_W), the dependence is overall higher during the tropical

season compared to the extra-tropical season in the Gulf of
Mexico, whereas mixed patterns are found along the East and
West coasts. Similar to the overall dependence analysis, we
also assess differences in seasonal tail dependence using χ .
The results are shown in Figs. 7 and 8. Interestingly, the re-
sults point to different patterns to those we found from the
dependence analysis based on Kendall’s τ . In Fig. 7, mark-
ers for different pairs are scattered more closely around the
diagonal (1 : 1 line), with a Pearson correlation coefficient of
R = 0.75 indicating more similarity across seasons. For the
West Coast, many markers (especially S_P, S_Q, and Q_P)
above the diagonal indicate stronger tail dependence in the
extra-tropical season, while for the East and Gulf coasts, the
results are more symmetric.

Discrepancies found in the results when comparing be-
tween seasons using tail dependence χ and Kendall’s τ are
mainly due to the sample from which each statistic is calcu-
lated. For tail dependence, all bivariate daily values exceed-
ing a certain threshold (q = 0.9) are used, while for calculat-
ing Kendall’s τ , two-way sampling using block (seasonal or
annual) maxima is used. The two-way sampling makes mem-
bers of the samples independent and identically distributed
(one value is picked per block), while excesses above a cer-
tain threshold that are used for χ are not declustered.

4.3 Observation-based vs. model-based dependence
structure

This section describes the results for the third and final ob-
jective, relating to the comparison between the dependence
structures when using model-based versus observation-based
data. We perform this part of the analysis only for the tail de-
pendence χ . This is because the two-way sampling approach
uses the annual (or seasonal) maxima values of the differ-
ent variables, and those are often not well captured by model
hindcasts, leading to a higher sensitivity in the results as op-
posed to the tail dependence, which uses the full daily time
series and, here, a threshold of q = 0.9.

We start by comparing results for the full (annual) data
sets, and these are shown in Figs. 9 and 10. We find that,
in general, the models perform well in capturing tail de-
pendence (Pearson correlation R = 0.75). Using KL diver-
gence provides complementary information on whether tail
dependence structures calculated using models are signifi-
cantly different from those derived with observations. Pairs
for which the difference is significant are highlighted with
black dots in Fig. 9. Figure 10 shows the same results but
in a way that allows us to discern the spatial patterns. Both
figures show that models tend to overestimate the W_P de-
pendence in most of the analysed sites. S_Q is underesti-
mated by models on the East and West coasts but is well cap-
tured among sites analysed in the Gulf. S_P is well captured
along the Gulf and southeastern coasts but overestimated in
the northeast and northwest and underestimated in the south-
west. S_W is overestimated in some sites in the Gulf and
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Figure 4. Tail dependence χ between different pairs of flooding drivers for a threshold of q = 0.9. Sites are grouped into locations on the
East, Gulf, and West coasts (see colours on the left and in the legend). The blue colour bar denotes tail dependence strength, blank squares
indicate that data for the particular pair did not exist, or that the number of overlapping years was less than 20, and squares with an asterisk
(∗) indicate that dependence is not significant.

Figure 5. Scatterplot comparing dependence derived with
Kendall’s τ and two-way sampling, using seasonal maxima ap-
proach for tropical and extra-tropical seasons. Colours denote the
location (separated into East, Gulf, and West coasts), and mark-
ers represent the different variable pairs. Black dots on the mark-
ers indicate the significant difference in dependence between sea-
sons. Dashed lines show linear regression fits corresponding to all
data points (black) and for different subsets according to locations
(coloured as outlined in the legend).

southeastern coast. For the rest of the pairs, there is mixed
behaviour with no clear spatial pattern.

We note that, in some cases, the difference in the tail
dependence is small (i.e. markers lying on or close to the
1 : 1 line in Fig. 9 or showing a light colour in Fig. 10) but
still significantly different according to the KL divergence.
This is because two bivariate distributions with equal (or
very similar) tail dependence coefficients may still vary in
their dependence structure, and this cannot be assessed by
just calculating the difference in χ . The reason is that χ only
focuses on the diagonal (Zscheischler et al., 2021), whereas
KL divergence partitions the extremal space defined by the
risk function (above the selected threshold) into a number of
sets and, thus, better captures the dependence structure.

We repeat the analysis again for the tropical and extra-
tropical seasons to assess whether models perform better in
one of them when the tail dependence is compared to obser-
vations. Figure 11 shows that overall models perform better
during the tropical season (Pearson correlation R = 0.77) in
comparison with the extra-tropical season (Pearson correla-
tion R = 0.7). Especially for higher values of χ , points are
more aligned with the 1 : 1 line for the tropical season, with
a tendency of model overestimation (markers above the diag-
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Figure 6. Heat map showing differences in Kendall’s τ derived from two-way sampling, using seasonal maxima approach for tropical and
extra-tropical seasons. Sites are grouped into locations on the East, Gulf, and West coasts (see colours on the left and in the legend). The
colour bar denotes the difference between τ in the tropical versus extra-tropical season, where the red colour denotes higher dependence in
the tropical season, and the blue colour denotes higher dependence in the extra-tropical season. Squares with an asterisk (∗) indicate that the
difference in dependence across seasons is not significant. Blank squares indicate that data for the particular pair did not exist or that the
number of overlapping years was less than 20.

onal) for the pair S_W for several sites on the East Coast. For
the extra-tropical season, and for higher values of χ , models
tend to overestimate S_P at several sites across all coasts,
with no clear pattern. Figure 12 shows that models overesti-
mate the tail dependence between W_P everywhere during
both seasons and also overestimate S_P during the extra-
tropical season in the Gulf. Tail dependence between Q_P
is overestimated at several sites on the West Coast (in Cali-
fornia) during the tropical season but underestimated during
the extra-tropical season.

5 Discussion

In this study, we have assessed the compound flooding po-
tential from all four flooding drivers along the CONUS coast-
line. The dependence analysis is conducted using Kendall’s τ
and block maxima (either annual or seasonal maxima) with a
two-way conditional sampling between flooding drivers. The
choice of block maxima was to avoid having to identify indi-
vidual thresholds and declustering windows for all sites and
variable pairs individually when implementing POT. Previ-

ous studies, e.g. Ward et al. (2018) and Camus et al. (2021),
indicate that using block maxima versus POT does not af-
fect the overall results from large-scale dependence analyses
in the context of compound flooding. Camus et al. (2021)
showed through a comprehensive sensitivity analysis that us-
ing annual maxima and different thresholds in a POT frame-
work lead to comparable results; while dependence values
tended to be higher in the annual maxima approach, the spa-
tial distribution (which is what we are mostly interested in)
of the dependence was the same in both methods.

Our first objective was to characterize and map the depen-
dence between the four different compound flooding drivers
and identify spatial patterns. We find sites of the highest de-
pendence between the different pairs of drivers to be in the
Gulf of Mexico and the southeastern and southwestern coasts
(Fig. 3). For the Gulf and East coasts, this is due to the oc-
currence of hurricanes and tropical storms (which was con-
firmed in the second objective focused on the seasonal anal-
ysis), especially for pairs of drivers conditioned on surge.
Dependencies using Kendall’s τ were consistent with past
regional and global studies (e.g. Wahl et al., 2015, for surge–
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Figure 7. Scatterplot comparing tail dependence (for q = 0.9) de-
rived for tropical and extra-tropical seasons using a daily time series
of both variables. Colours denote the location (separated into East,
Gulf, and West coasts), and markers represent the different variable
pairs. Black dots on markers indicate the significant difference in
tail dependence between seasons. Dashed lines show linear regres-
sion fits corresponding to all data points (black) and for different
subsets according to locations (coloured as outlined in the legend).

precipitation, Ward et al., 2018, for surge–discharge, and
Marcos et al., 2019, for surge–waves). From the perspective
of different variable pairs, the highest dependence is found
between S_W as both are oceanographic drivers, but we also
find that significant dependence for S_P is more prevalent
than for S_Q (especially along the northeastern coast). This
highlights that catchment characteristics (e.g. size, surface
type, steepness, and antecedent moisture content), rainfall in-
tensity and duration, and snowmelt play an important role,
and not all dependence between S and P translates to de-
pendence between S and Q (Hendry et al., 2019; Bevacqua
et al., 2020; Couasnon et al., 2020). Additionally, more sites
have significant dependence for Q_P than for P_Q, especially
along the northeastern coast, highlighting that extreme pre-
cipitation can occur in the absence of moderate or extreme
river discharge, but extreme river discharge usually occurs
simultaneously with moderate or extreme precipitation. This
shows again that other mechanisms contribute to high dis-
charge events other than precipitation. From the perspective
of using different dependence metrics, we find more places
with significant tail dependence χ (Fig. 4) than with signif-
icant Kendall’s τ (Fig. 3), and this is likely a result of how
the data are sampled. Kendall’s τ analysis includes extreme
conditions of one variable (sampled in a year or season) and
anything from low to extreme for the other, thus providing
information about the relative severity of the secondary vari-
able. On the other hand, tail dependence χ assesses the prob-
ability of one variable to be extreme when the other is ex-
treme. This is done based on all daily values which are not
declustered, and hence, prolonged high values could intro-
duce stronger tail dependence. Both metrics provide insight
into the existence (or non-existence) of dependence accord-

ing to different compound flooding mechanisms (as outlined
in Wahl et al., 2015).

From the seasonal analysis, which is part of our sec-
ond objective, we find that, for the different pairs of vari-
ables, the dependence is always higher in the Gulf of Mex-
ico during June–November (the tropical cyclone season for
the Atlantic and Gulf coasts) as compared to December–
May (the extra-tropical season; Figs. 5 and 6). This is at-
tributed to the occurrence of hurricanes and tropical storms
where low pressure systems accompanied by strong winds
elevate coastal water levels through storm surges and also
produce high waves. When the storm systems travel further
inland, they often cause extreme precipitation, leading to plu-
vial flooding, and high river discharge, leading to fluvial
flooding. In both cases, the flooding impacts can be worse
if drainage is blocked at the river mouth/outfall due to ele-
vated coastal water levels, which is what happened in Texas
in 2017 during Hurricane Harvey (Emanuel, 2017). Along
parts of the USA East Coast, we find higher dependence dur-
ing the tropical season for flooding pairs S_Q, Q_S, S_P, and
P_S, which is likely also a result of the occurrence of hurri-
canes but could also be attributed to convective weather sys-
tems, including thunderstorms, that favour the occurrence of
coastal and inland extreme events, as shown by Catto and
Dowdy (2021). The latter found that those weather types are
more frequent during summer (tropical season) in associa-
tion with increased thermodynamic instability and heating.
On the other hand, we find higher dependence during the
extra-tropical season on the West Coast, especially for pairs
conditioned on storm surge (S_P, S_Q, and S_W). Bromirski
et al. (2017) studied storm surges along the Pacific coast of
North America and found that storm surges peak during win-
ter (December–February) as they are caused by low pressure
systems and are, in turn, linked to high rainfall events driven
by atmospheric rivers that occur on the West Coast during
winter. In this part of the country, the landfall of low-pressure
systems causing a high surge associated with extreme rain-
fall events compounds the adverse impacts of coincident high
surge and waves on sea cliffs. On the East Coast, the stronger
dependence between W_S during the extra-tropical season
compared to the tropical season can be attributed to stronger
wind–sea and swell energy during winter. Zheng et al. (2016)
studied the spatial and seasonal distribution of wind–sea and
swell energy and found that, for the Northern Hemisphere,
the peak is in winter (December–February) and the seasonal
average wind speed reaches a maximum during that time.

From the seasonal tail dependence analysis, we find that
results are more aligned with the 1 : 1 line (Fig. 7) compared
to the rank correlation analysis (Fig. 5), and some of the con-
clusions are reversed but mostly for sites where dependence
is weak. This shows how using different methods based on
different subsets of the data can lead to different results and
conclusions, thus introducing subjectivity. In a recent study,
Camus et al. (2021) showed that tail dependence coefficients
between two drivers were strongly positively correlated with
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Figure 8. Heat map showing differences in tail dependence (for q = 0.9) derived for tropical and extra-tropical seasons using a daily time
series of both variables. Sites are grouped into locations on the East, Gulf, and West coasts (see colours on the left and in the legend). The
colour bar denotes the difference between χ in the tropical versus extra-tropical season, where the red colour denotes higher dependence
in the tropical season, and the blue colour denotes higher dependence in the extra-tropical season. Squares with an asterisk (∗) indicate that
difference in dependence across seasons is not significant. Blank squares indicate that data for the particular pair did not exist or that the
number of overlapping years was less than 20.

joint occurrences of the same drivers, which was not always
the case for Kendall’s τ . This implies that tail dependence χ
is not always positively correlated with Kendall’s τ , espe-
cially when both are calculated using different subsets of the
data sample, and it explains the discrepancies found between
Figs. 6 and 8. The method of choice depends on the objec-
tive of the analysis. Deriving Kendall’s τ is often an impor-
tant interim step when performing joint probability analysis,
e.g. using copula models. Tail dependence χ , on the other
hand, is a very useful metric when assessing tail dependence
structures as done here, for example, when comparing model
results and observations.

In comparing dependence structures derived from model
and observational data, which is our third objective, we fol-
lowed the methodology in Zscheischler et al. (2021). Results
showed that, for pairs S–Q and S–P , the tail dependence
derived from models is very similar to that derived from
observations in the Gulf of Mexico. The models underesti-
mate the tail dependence for S–Q along the East and West
coasts, which might be a result of water management not
captured by the models. For S–P , the models overestimate

dependence at some sites along the East Coast and underes-
timate it at most sites on the West Coast. This points to spa-
tial variations in the models’ performance when estimating
tail dependence for S–P . Moreover, weather types driving
extreme inland and coastal events were found to be differ-
ent on the West and East coasts by Catto and Dowdy (2021).
Models overestimate the tail dependence between S–W in
the Gulf and southeastern coasts (Fig. 10). These are the lo-
cations where hurricanes and tropical cyclones occur, and the
seasonal analysis confirmed that tail dependence was over-
estimated by models, particularly during the tropical season
from Virginia to the western Gulf of Mexico (Fig. 12). In
a comprehensive analysis for Europe, Paprotny et al. (2020)
also compared dependence structures between observations
and model hindcasts and found that, on average, the depen-
dence between surge and discharge was underestimated. De-
pendence between surge and precipitation, on the other hand,
was overestimated along the North Sea and English Channel
but strongly underestimated in southern Europe. This exis-
tence of a strong spatial variation in the ability of models
to reproduce dependence structures between drivers (in par-
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Figure 9. Scatterplot comparing extremal (tail) dependence (for
q = 0.9) derived using observations (x axis) and models (y axis)
using a daily time series of both variables. Colours denote the loca-
tion (separated into East, Gulf, and West coasts), and markers repre-
sent the different variable pairs. Black dots on the markers indicate
significant difference in tail dependence structure between obser-
vations and models according to KL divergence. Dashed lines show
the linear regression fits corresponding to all data points (black) and
for different subsets according to locations (coloured as outlined in
the legend).

ticular for surge and precipitation) is also confirmed by our
analysis.

In this study, we carried out bivariate dependence analy-
sis between four main drivers which can potentially cause
compound flooding. At some locations on the Gulf Coast
(e.g. the west coast of Florida), a significant correlation was
found among most pairs of drivers. These are locations ex-
posed to hurricanes and storms that can cause three or all four
flooding drivers to coincide. The bivariate dependence anal-
ysis presented here could be extended to include multivariate
dependence, which can be modelled using higher dimension
copulas (e.g. Bevacqua et al., 2017; Jane et al., 2020).

6 Conclusions

We have quantified, for the first time, the compound flood-
ing potential that arises from the combination of storm surge,
waves, precipitation, and river discharge along the CONUS
coastline. Our first objective was to characterize and map the
dependence between the four different compound flooding
drivers and identify spatial patterns. We carried out the analy-
sis at 35 sites, where long enough overlapping data sets were
available for the different variables. From a geographic per-
spective, more sites with significant dependence between the
different drivers exist along the Gulf, southeast, and south-
west coasts as compared to the northwest and northeast.
From a flooding driver perspective, the highest dependence

is found between surges and waves which are both oceano-
graphic drivers, followed by surge and precipitation, surge
and discharge, waves and precipitation, and waves and dis-
charge.

Our second objective was to perform a seasonal depen-
dence analysis (tropical vs. extra-tropical season). We found
higher dependence between the different drivers during the
tropical season in the Gulf of Mexico and parts of the East
Coast that are prone to tropical cyclone impacts, whereas de-
pendence was stronger on the West Coast during the extra-
tropical season. Differences between seasons were larger
when using two-way sampling and Kendall’s τ as a mea-
sure of dependence compared to when assessing tail depen-
dence χ ; the latter leads to more similar results for both sea-
sons. Seasonal differences in the strength of dependence be-
tween the different flooding drivers show in which season
certain areas are more likely to be affected by compound
flooding, which can be integrated into coastal management
and flood risk mitigation efforts.

Our third objective was to compare the dependence struc-
ture of different combinations of flooding drivers using
observation-based and model-based data, where all model
data were derived with coherent forcing from the state-of-
the-art ERA5 reanalysis. For S_Q and S_P and in the Gulf
of Mexico, both models and observations point to the same
dependence structure in the tails of the joint distributions.
Models overestimate the tail dependence between P_W in all
sites. On the West Coast, models also underestimate depen-
dence in the tails in S_Q, S_P, and S_W, which is also found
along the East Coast, but in fewer places, with the exception
of S_P that is overestimated on the East Coast. The seasonal
analysis shows that models reproduce the dependence struc-
ture better during the tropical season compared to the extra-
tropical season for the whole CONUS coastline.

Importantly, our study focuses only on the hazard com-
ponent of flood risk, hence assessing the potential of com-
pound flooding caused by at least one extreme driver. Our as-
sumption is that severe impacts can occur when at least one
of the drivers is extreme, but from an impacts perspective,
this may not necessarily be the case. However, identifying
which combinations of drivers have relatively higher depen-
dence (and during which time of the year) is an important
first step which can help in identifying areas which require
more scrutiny. The results can also guide choices in terms of
which types of models are required and need to be coupled
to capture the relevant interactions between the four flooding
drivers.

Code availability. Data preprocessing, analysis, and vi-
sualization were carried out in the R programming lan-
guage (https://www.R-project.org; R Core Team, 2020).
The following R packages were used: dataRetrieval
(https://CRAN.R-project.org/package=ataRetrieval; De Cicco et
al., 2018) and rnoaa (https://CRAN.R-project.org/package=rnoaa;
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Figure 10. Heat map showing differences in tail dependence (for q = 0.9) derived for models (reanalysis) and observations using a daily
time series of both variables. Sites are grouped into locations on the East, Gulf, and West coasts (see colours on the left and in the legend).
The colour bar denotes the difference between χ in the reanalysis versus observations, where the red colour denotes higher dependence in
the reanalysis, and the blue colour denotes higher dependence in the observations. Squares with an asterisk (∗) indicate that difference in
dependence is not significant. Blank squares indicate that data for the particular pair did not exist or that the number of overlapping years
was less than 20.

Figure 11. Scatterplot comparing extremal (tail) dependence (for q = 0.9) derived using observations (x axis) and models (y axis) for tropi-
cal (a) and extra-tropical (b) seasons, using a daily time series of both variables. Colours denote the location (separated into East, Gulf, and
West coasts), and markers represent the different variable pairs. Black dots on markers indicate significant difference in the tail dependence
structure between observations and models according to the KL divergence. Dashed lines show linear regression fits corresponding to all
data points (black) and for different subsets according to locations (coloured as outlined in the legend).
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Figure 12. Heat map showing differences in extremal (tail) dependence (for q = 0.9) derived using observations and models, using a daily
time series of both variables for tropical (a) and extra-tropical (b) season. Sites are grouped into locations on the East, Gulf, and West coasts
(see colours on the left and in the legend). The colour bar denotes the difference between χ in the models versus observations, where the
red colour denotes a higher dependence in the models, and the blue colour denotes higher dependence in the observations. Squares with an
asterisk (∗) indicate that difference in dependence between models and observations is not significant. Blank squares indicate that data for
the particular pair did not exist or that the number of overlapping years was less than 20.
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Chamberlain et al., 2016), for the data retrieval, and dplyr (https:
//CRAN.R-project.org/package=dplyr; Wickham et al., 2020b),
lubridate (https://CRAN.R-project.org/package=lubridate; Spinu et
al., 2020), and tidyr (https://CRAN.R-project.org/package=tidyr;
Wickham, 2020), for the data preprocessing. We used extRemes
(https://doi.org/10.18637/jss.v072.i08; Gilleland and Katz, 2016)
and other routines, for the data analysis, and ggplot2 (https:
//CRAN.R-project.org/package=ggplot2; Wickham et al., 2020a)
and pheatmap (https://CRAN.R-project.org/package=pheatmap;
Kolde, 2015), for the visualization.

Data availability. Observational sea-level data are available from
NOAA (https://tidesandcurrents.noaa.gov/, NOAA, 2013), wave
hindcast from NCEI (https://www.ncei.noaa.gov/access/metadata/
landing-page/bin/iso?id=gov.noaa.ncdc:C00071, National Centers
for Environmental Information, 2014), river discharge from
USGS (https://waterdata.usgs.gov/nwis, U.S. Geological Survey,
2016), and precipitation from NOAA (https://www.ncdc.noaa.gov/
ghcnd-data-access, Menne et al., 2012). For reanalysis data, ERA5
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2018),
GloFAS-ERA5 (https://doi.org/10.24381/cds.a4fdd6b9, Harrigan et
al., 2019), and CoDEC (https://doi.org/10.24381/cds.8c59054f,
Muis et al., 2020) data are available from the Copernicus Climate
Change Service (C3S) Climate Data Store.
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