Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5917-2021
https://doi.org/10.5194/hess-25-5917-2021
Research article
 | 
15 Nov 2021
Research article |  | 15 Nov 2021

Evaluating different machine learning methods to simulate runoff from extensive green roofs

Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna

Related authors

Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022,https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Hydrological impacts of climate change on small ungauged catchments – results from a global climate model–regional climate model–hydrologic model chain
Aynalem T. Tsegaw, Marie Pontoppidan, Erle Kristvik, Knut Alfredsen, and Tone M. Muthanna
Nat. Hazards Earth Syst. Sci., 20, 2133–2155, https://doi.org/10.5194/nhess-20-2133-2020,https://doi.org/10.5194/nhess-20-2133-2020, 2020
Short summary
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546, https://doi.org/10.5194/hess-22-6533-2018,https://doi.org/10.5194/hess-22-6533-2018, 2018
Short summary
Brief Communication: Mapping river ice using drones and structure from motion
Knut Alfredsen, Christian Haas, Jeffrey A. Tuhtan, and Peggy Zinke
The Cryosphere, 12, 627–633, https://doi.org/10.5194/tc-12-627-2018,https://doi.org/10.5194/tc-12-627-2018, 2018
Short summary
Should radar precipitation depend on incident air temperature? A new estimation algorithm for cold climates
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-662,https://doi.org/10.5194/hess-2017-662, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023,https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022,https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary

Cited articles

Allaire J. J. and Cholle, F.: keras: R Interface to 'Keras', R package version 2.2.5.0, available at: https://CRAN.R-project.org/package=keras (last access: 10 November 2021), 2019. a
Allen, R. G., Pereira, L. S., Raes, D., Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, 1998. a
Almorox, J., Quej, V. H., and Martí, P.: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes, J. Hydrol., 528, 514–522, 2015. a
Ayzel, G.: Does deep learning advance hourly runoff predictions, in: Proceedings of the V International Conference Information Technologies and High-Performance Computing (ITHPC-2019), Khabarovsk, Russia, CEUR Workshop Proceedings (CEUR-WS.org), 16–19, 2019. a, b, c, d
Bengtsson, L., Grahn, L., and Olsson, J.: Hydrological function of a thin extensive green roof in southern Sweden, Hydrol. Res., 36, 259–268, 2005. a
Download
Short summary
This study investigated the potential of using machine learning algorithms as hydrological models of green roofs across different climatic condition. The study provides comparison between conceptual and machine learning algorithms. Machine learning models were found to be accurate in simulating runoff from extensive green roofs.