Articles | Volume 25, issue 6
Hydrol. Earth Syst. Sci., 25, 3137–3162, 2021
Hydrol. Earth Syst. Sci., 25, 3137–3162, 2021

Research article 09 Jun 2021

Research article | 09 Jun 2021

Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France)

Yangzi Qiu et al.

Related authors

Evaluation of Low Impact Development and Nature-Based Solutions for stormwater management: a fully distributed modelling approach
Yangzi Qiu, Abdellah Ichiba, Igor Da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci. Discuss.,,, 2019
Manuscript not accepted for further review

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935,,, 2021
Short summary
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858,,, 2021
Short summary
The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717,,, 2021
Short summary
Urban surface water flood modelling – a comprehensive review of current models and future challenges
Kaihua Guo, Mingfu Guan, and Dapeng Yu
Hydrol. Earth Syst. Sci., 25, 2843–2860,,, 2021
Short summary
Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy
Everett Snieder, Karen Abogadil, and Usman T. Khan
Hydrol. Earth Syst. Sci., 25, 2543–2566,,, 2021
Short summary

Cited articles

Ahiablame, L. and Shakya, R.: Modeling flood reduction effects of low impact development at a watershed scale, J. Environ. Manage., 171, 81–91,, 2016. 
Ahiablame, L. M., Engel, B. A., and Chaubey, I.: Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement, J. Environ. Manage., 119, 151–161,, 2013. 
Alves de Souza, B., da Silva Rocha Paz, I., Ichiba, A., Willinger, B., Gires, A., Amorim, J. C. C., de Miranda Reis, M., Tisserand, B., Tchiguirinskaia, I., and Schertzer, D.: Multi-hydro hydrological modelling of a complex peri-urban catchment with storage basins comparing C-band and X-band radar rainfall data, Hydrolog. Sci. J., 63, 1619–16352018,, 2018. 
Burszta-Adamiak, E. and Mrowiec, M.: Modelling of Green roofs' hydrologic performance using EPA's SWMM, Water Sci. Technol., 68, 36–42,, 2013. 
Bloorchian, A. A., Ahiablame, L., Osouli, A., and Zhou, J.: Modeling BMP and Vegetative Cover Performance for Highway Stormwater Runoff Reduction, in: Procedia Engineering, 145, 274–280,, 2016. 
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.