Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3137-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3137-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France)
Hydrology Meteorology and Complexity Laboratory, École des Ponts ParisTech, Champs-sur-Marne 77455, France
Igor da Silva Rocha Paz
Laboratory of Applied Meteorology, Risk Reduction and Natural Disaster Prevention (LAMP), Instituto Militar de Engenharia, Rio de Janeiro 22290-270, Brazil
Feihu Chen
School of Architecture, Hunan University, Changsha 410082, China
Pierre-Antoine Versini
Hydrology Meteorology and Complexity Laboratory, École des Ponts ParisTech, Champs-sur-Marne 77455, France
Daniel Schertzer
Hydrology Meteorology and Complexity Laboratory, École des Ponts ParisTech, Champs-sur-Marne 77455, France
Ioulia Tchiguirinskaia
Hydrology Meteorology and Complexity Laboratory, École des Ponts ParisTech, Champs-sur-Marne 77455, France
Related authors
No articles found.
Hai Zhou, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 29, 4437–4455, https://doi.org/10.5194/hess-29-4437-2025, https://doi.org/10.5194/hess-29-4437-2025, 2025
Short summary
Short summary
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a reliable one-step-ahead prediction, with better performance in predicting high and low values than the pure long short-term memory (LSTM) model. The universal multifractal technique is also introduced to evaluate prediction performance, thus validating the usefulness and applicability of the hybrid model.
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
Nonlin. Processes Geophys., 32, 131–138, https://doi.org/10.5194/npg-32-131-2025, https://doi.org/10.5194/npg-32-131-2025, 2025
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used to upscale precipitation climate networks to study the Indian summer monsoon and to analyze strong dependencies between spatial regions, which change with changing scales.
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 31, 587–602, https://doi.org/10.5194/npg-31-587-2024, https://doi.org/10.5194/npg-31-587-2024, 2024
Short summary
Short summary
Wind energy exhibits extreme variability in space and time. However, it also shows scaling properties (properties that remain similar across different times and spaces of measurement). This can be quantified using appropriate statistical tools. In this way, the scaling properties of power from a wind farm are analysed here. Since every turbine is manufactured by design for a rated power, this acts as an upper limit on the data. This bias is identified here using data and numerical simulations.
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys., 31, 603–624, https://doi.org/10.5194/npg-31-603-2024, https://doi.org/10.5194/npg-31-603-2024, 2024
Short summary
Short summary
To understand the influence of rainfall on wind power production, turbine power and rainfall were measured simultaneously on an operational wind farm and analysed. The correlation between wind, wind power, air density, and other fields was obtained on various temporal scales under rainy and dry conditions. An increase in the correlation was observed with an increase in the rain; rain also influenced the correspondence between actual and expected values of power at various velocities.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022, https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Cited articles
Ahiablame, L. and Shakya, R.: Modeling flood reduction effects of low impact
development at a watershed scale, J. Environ. Manage., 171, 81–91,
https://doi.org/10.1016/j.jenvman.2016.01.036, 2016.
Ahiablame, L. M., Engel, B. A., and Chaubey, I.: Effectiveness of low impact
development practices in two urbanized watersheds: Retrofitting with rain
barrel/cistern and porous pavement, J. Environ. Manage., 119, 151–161,
https://doi.org/10.1016/j.jenvman.2013.01.019, 2013.
Alves de Souza, B., da Silva Rocha Paz, I., Ichiba, A., Willinger, B.,
Gires, A., Amorim, J. C. C., de Miranda Reis, M., Tisserand, B.,
Tchiguirinskaia, I., and Schertzer, D.: Multi-hydro hydrological modelling of
a complex peri-urban catchment with storage basins comparing C-band and
X-band radar rainfall data, Hydrolog. Sci. J., 63, 1619–16352018,
https://doi.org/10.1080/02626667.2018.1520390, 2018.
Burszta-Adamiak, E. and Mrowiec, M.: Modelling of Green roofs' hydrologic
performance using EPA's SWMM, Water Sci. Technol., 68, 36–42,
https://doi.org/10.2166/wst.2013.219, 2013.
Bloorchian, A. A., Ahiablame, L., Osouli, A., and Zhou, J.: Modeling BMP and
Vegetative Cover Performance for Highway Stormwater Runoff Reduction, in:
Procedia Engineering, 145, 274–280,
https://doi.org/10.1016/j.proeng.2016.04.074, 2016.
Bozovic, R., Maksimovic, C., Mijic, A., Smith, K. M., Suter, I., and van
Reeuwijk, M.: Blue Green Solutions: A Systems Approach to Sustainable,
Resilient and Cost-Efficient Urban Development, Technical report,
https://doi.org/10.13140/RG.2.2.30628.07046, 2017.
Cipolla, S. S., Maglionico, M., and Stojkov, I.: A long-term hydrological
modelling of an extensive green roof by means of SWMM, Ecol. Eng., 95,
876–887, https://doi.org/10.1016/j.ecoleng.2016.07.009, 2016.
Cohen-Shacham, E., Walters, G., Janzen, C., and Maginnis, S.: Nature-based
solutions to address global societal challenges, IUCN: Gland, Switzerland,
97, https://doi.org/10.2305/IUCN.CH.2016.13.en, 2016.
Chan, F., Griffiths, J., Ka, F., Chan, S., Gri, J. A., Higgitt, D., Xu, S.,
and Zhu, F.: “ Sponge City ” in China – A breakthrough of planning and
flood risk management in the urban context, Land Use Policy, 76, 772–778,
https://doi.org/10.1016/j.landusepol.2018.03.005, 2018.
Dussaillant, A. R., Wu, C. H., and Potter, K. W.: Richards Equation Model of
a Rain Garden, J. Hydrol. Eng., 9, 219–225,
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:3(219), 2004.
El Tabach, E., Tchiguirinskaia, I., Mahmood, O., and Schertzer, D.:
Multi-Hydro: a spatially distributed numerical model to assess and manage
runoff processes in peri-urban watersheds. In Proceedings Final Conference
of the COST Action C22 Urban Flood Management, Paris, 26 (no. 27.11), 2009,
2009.
Ercolani, G., Chiaradia, E. A., Gandolfi, C., Castelli, F., and Masseroni,
D.: Evaluating performances of green roofs for stormwater runoff mitigation
in a high flood risk urban catchment, J. Hydrol., 566, 830–845,
https://doi.org/10.1016/j.jhydrol.2018.09.050, 2018.
European Commission: Towards an EU Research and Innovation policy
agenda for Nature-Based Solutions & Re-Naturing Cities, Final Report of
the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing
Cities”, Luxembourg: Publications Office of the European Union,
https://doi.org/10.2777/765301, 2015.
Fry, T. J. and Maxwell, R. M.: Evaluation of distributed BMPs in an urban
watershed – High resolution modeling for stormwater management, Hydrol.
Process., 31, 2700–2712, https://doi.org/10.1002/hyp.11177, 2017.
Giangola-Murzyn, A.: Modélisation et paramétrisation hydrologique
de la ville, résilience aux inondations, PhD thesis, Ecole des Ponts
ParisTech, Université Paris-Est, France, 260 pp., 2013.
Giangola-Murzyn, A., Richard, J., Gires, A., Fitton, G., Tchiguirinskaia, I.,
and Schertzer, D.: Multi-Hydro Notice and Tutorial. Laboratoire Eau
Environnement et Systèmes Urbains, École des Ponts ParisTech.
Université Paris-Est, France, 44 pp., 2014.
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Multifractal
analysis of a semi-distributed urban hydrological model, Urban Water J.,
10, 195–208, https://doi.org/10.1080/1573062X.2012.716447, 2013.
Gires, A., Giangola-Murzyn, A., Abbes, J. B., Tchiguirinskaia, I.,
Schertzer, D., and Lovejoy, S.: Impacts of small scale rainfall variability
in urban areas: a case study with 1D and 1D/2D hydrological models in a
multifractal framework, Urban Water J., 12, 607–617,
https://doi.org/10.1080/1573062X.2014.923917, 2015.
Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A., Wang, L.-P., Pina, R., Van Assel, J., Bruni, G., Murla Tuyls, D., and ten Veldhuis, M.-C.: Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system, Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, 2017.
Gires, A., Abbes, J.-B., da Silva Rocha Paz, I., Tchiguirinskaia, I., and
Schertzer, D.: Multifractal characterisation of a simulated surface flow: a
case study with multi-hydro in Jouy-en-Josas, France, J. Hydrol.,
558, 483–495, https://doi.org/10.1016/j.jhydrol.2018.01.062, 2018.
Gilroy, K. L. and McCuen, R. H.: Spatio-temporal effects of low impact
development practices, J. Hydrol., 367, 228–236,
https://doi.org/10.1016/j.jhydrol.2009.01.008, 2009.
Guo, X., Du, P., Zhao, D., and Li, M.: Modelling low impact development in
watersheds using the storm water management model, Urban Water J., 16,
146–155, https://doi.org/10.1080/1573062X.2019.1637440, 2019.
Hentschel, H. G. E. and Procaccia, I.: The infinite number of generalized
dimensions of fractals and strange attractors, Physica D, 8, 435–444, https://doi.org/10.1016/0167-2789(83)90235-X,
1983.
Healy, R. W.: Simulation of solute transport in variably saturated porous
media with supplemental information on modifications to the US Geological
Survey's computer program VS2D, U.S. Geol. Surv. Water-Resources Investig.
Rep. 90-4025, https://doi.org/10.3133/wri904025, 1990.
Hoang, T.: Prise en compte des fluctuations spatio-temporelles
pluies-débits pour une meilleure gestion de la ressource en eau et une
meilleure évaluation des risques, PhD Thesis, Earth Sciences,
Université Paris-Est, Champs-sur-Marne, France, 2011.
Holman-Dodds, J. K., Bradley, A. A., and Potter, K. W.: Evaluation of
hydrologic benefits of infiltration based urban storm water management, J.
Am. Water Resour. Assoc., 39, 205–215,
https://doi.org/10.1111/j.1752-1688.2003.tb01572.x, 2003.
Her, Y., Jeong, J., Arnold, J., Gosselink, L., Glick, R., and Jaber, F.: A
new framework for modeling decentralized low impact developments using Soil
and Water Assessment Tool, Environ. Model. Softw., 96, 305–322,
https://doi.org/10.1016/j.envsoft.2017.06.005, 2017.
Hu, M., Sayama, T., Zhang, X., Tanaka, K., Takara, K., and Yang, H.:
Evaluation of low impact development approach for mitigating flood
inundation at a watershed scale in China, J. Environ. Manage., 193,
430–438, https://doi.org/10.1016/j.jenvman.2017.02.020, 2017.
Hamidi, A., Farnham, D. J., and Khanbilvardi, R.: Uncertainty analysis of
urban sewer system using spatial simulation of radar rainfall fields: New
York City case study, Stoch. Environ. Res. Risk Assess., 32, 2293–2308,
https://doi.org/10.1007/s00477-018-1563-8, 2018.
Ichiba, A.: X-Band Radar Data and Predictive Management in Urban Hydrology,
PhD Thesis, Earth Sciences, Université Paris-Est, Champs-sur-Marne,
France, 2016.
Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P., and Ten Veldhuis, M.-C.: Scale effect challenges in urban hydrology highlighted with a distributed hydrological model, Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, 2018.
Imhoff, R. O., Van Verseveld, W. J., Van Osnabrugge, B., and Weerts, A. H.:
Scaling Point-Scale (Pedo) transfer Functions to Seamless Large-Domain
Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An
Example for the Rhine River, Water Resour. Res., 56, 1–28,
https://doi.org/10.1029/2019WR026807, 2020.
Institut National de la Statistique et des Etudes Economiques – INSEE:
Dossier complet – Commune de Guyancourt (78297), available at:
https://www.insee.fr/fr/statistiques/2011101?geo=COM-78297#chiffre-cle-5,
last access: 29 February 2020.
James, W., Rossman, L. A., and James, W. R. C.: User's guide to SWMM5 based
on original USEPA SWMM documentation, CHI, USA, 905, 2010.
Jia, H., Yao, H., Tang, Y., Yu, S. L., Field, R., and Tafuri, A. N.: LID-BMPs
planning for urban runoff control and the case study in China, J. Environ.
Manage., 149, 65–76, https://doi.org/10.1016/j.jenvman.2014.10.003, 2015.
Kelman, I.: Climate Change and the Sendai Framework for Disaster Risk
Reduction, Int. J. Disaster Risk Sc., 6, 117–127,
https://doi.org/10.1007/s13753-015-0046-5, 2015.
Kuang, X., Sansalone, J., Ying, G., and Ranieri, V.: Pore-structure models of
hydraulic conductivity for permeable pavement, J. Hydrol., 399,
148–157, https://doi.org/10.1016/j.jhydrol.2010.11.024, 2011.
Kwak, D., Kim, H., and Han, M.: Runoff Control Potential for Design Types of
Low Impact Development in Small Developing Area Using XPSWMM, Procedia
Engineering., 154, 1324–1332, https://doi.org/10.1016/j.proeng.2016.07.483,
2016.
Lappala, E. G., Healy, R. W., and Weeks, E. P.: Documentation of computer
program VS2D to solve the equations of fluid flow in variably saturated
porous media, Department of the Interior, US Geological Survey, 83-4099,
https://doi.org/10.3133/wri834099, 1987.
Lavallée, D., Lovejoy, S., Schertzer, D., and Ladoy, P.: Nonlinear
variability and landscape topography: analysis and simulation, Fractals in
Geography, 158–192, 1993.
Liu, Y., Ahiablame, L. M., Bralts, V. F., and Engel, B. A.: Enhancing a
rainfall-runoff model to assess the impacts of BMPs and LID practices on
storm runoff, J. Environ. Manage., 147, 12–23,
https://doi.org/10.1016/j.jenvman.2014.09.005, 2015.
Loukas, A., Llasat, M.-C., and Ulbrich, U.: Preface “Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning”, Nat. Hazards Earth Syst. Sci., 10, 1895–1897, https://doi.org/10.5194/nhess-10-1895-2010, 2010.
Lovejoy, S. and Schertzer, D.: The weather and climate: Emergent laws and
multifractal cascades, Cambridge University Press, UK, 491, 2013.
Lovejoy, S., Schertzer, D., and Tsonis, A. A.: Functional Box-Counting and
Multiple Elliptical Dimensions in Rain, Science, 235, 1036–1038,
https://doi.org/10.1126/science.235.4792.1036, 1987.
Lucas, W. C. and Sample, D. J.: Reducing combined sewer overflows by using
outlet controls for Green Stormwater Infrastructure: Case study in
Richmond, Virginia, J. Hydrol., 520, 473–488,
https://doi.org/10.1016/j.jhydrol.2014.10.029, 2015.
Mandelbrot, B. B.: The fractal geometry of nature, W.H. Freeman and Company, New York, 468, 1983.
Massoudieh, A., Maghrebi, M., Kamrani, B., Nietch, C., Tryby, M., Aflaki, S.,
and Panguluri, S.: A flexible modeling framework for hydraulic and water
quality performance assessment of stormwater green infrastructure, Environ.
Model. Softw., 92, 57–73, https://doi.org/10.1016/j.envsoft.2017.02.013,
2017.
Météo-France: Climat des Yvelines, available at:
https://www.meteofrance.com/accueil, last access: 29 February 2020.
Miller, J. D. and Hutchins, M.: The impacts of urbanisation and climate
change on urban flooding and urban water quality: A review of the evidence
concerning the United Kingdom, J. Hydrol., 12, 345–362,
https://doi.org/10.1016/j.ejrh.2017.06.006, 2017.
Mooers, E. W., Eng, P., Jamieson, R. C., Eng, P., Hayward, J. L., Eng, P.,
Drage, J., Lake, C. B., and Eng, P.: Low-Impact Development Effects on
Aquifer Recharge Using Coupled Surface and Groundwater Models, J. Hydrol.
Eng., 23, 1–11, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001682,
2018.
Morison, P. J. and Brown, R. R.: Landscape and Urban Planning Understanding
the nature of publics and local policy commitment to Water Sensitive Urban
Design, Landscape Urban Plan., 99, 83–92,
https://doi.org/10.1016/j.landurbplan.2010.08.019, 2011.
Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Newcomer, M. E., Gurdak, J. J., Sklar, L. S., and Nanus, L.: Urban recharge
beneath low impact development and effects of climate variability and
change, Water Resour. Res., 50, 1716–1734,
https://doi.org/10.1002/2013WR014282, 2014.
Ochoa-rodriguez, S., Wang, L., Gires, A., Daniel, R., Reinoso-rondinel, R.,
Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., Assel, J. Van, Kroll, S.,
Murlà-tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I.,
Onof, C., Willems, P., and Veldhuis, M.: Impact of spatial and temporal
resolution of rainfall inputs on urban hydrodynamic modelling outputs: A
multi-catchment investigation, J. Hydrol., 531, 389–407,
https://doi.org/10.1016/j.jhydrol.2015.05.035, 2015.
Park, D., Sandoval, N., Lin, W., Kim, H., and Cho, Y.: A case study:
Evaluation of water storage capacity in permeable block pavement, J. Civ.
Eng., 18, 514–520, https://doi.org/10.1007/s12205-014-0036-y, 2014.
Palla, A., Gnecco, I., Carbone, M., Garofalo, G., Lanza, L. G., and Piro, P.:
Influence of stratigraphy and slope on the drainage capacity of permeable
pavements: laboratory results, Urban Water J., 12, 394–403,
https://doi.org/10.1080/1573062X.2014.900091, 2015.
Paz, I., Willinger, B., Gires, A., Ichiba, A., Monier, L., Zobrist, C.,
Tisserand, B., Tchiguirinskaia, I., and Schertzer, D.: Multifractal
comparison of reflectivity and polarimetric rainfall data from C- and X-band
radars and respective hydrological responses of a complex catchment model,
Water, 10, 269, https://doi.org/10.3390/w10030269, 2018.
Paz, I., Willinger, B., Gires, A., Alves de Souza, B., Monier, L., Cardinal,
H., Tisserand, B., Tchiguirinskaia, I., and Schertzer, D.: Small-Scale
Rainfall Variability Impacts Analyzed by Fully-Distributed Model Using
C-Band and X-Band Radar Data, Water, 11, 1273,
https://doi.org/10.3390/w11061273, 2019.
Paz, I., Tchiguirinskaia, I., and Schertzer, D.: Rain gauge networks'
limitations and the implications to hydrological modelling highlighted with
a X-band radar, J. Hydrol., 583, 124615,
https://doi.org/10.1016/j.jhydrol.2020.124615, 2020.
Qin, H. P., Li, Z. X., and Fu, G.: The effects of low impact development on
urban flooding under different rainfall characteristics, J. Environ.
Manage., 129, 577–585, https://doi.org/10.1016/j.jenvman.2013.08.026, 2013.
Richard, J., Giangola-Murzyn, A., Tchiguirinskaia, I., and Schertzer, D.:
MH-ASSIMTOOL: An assimilation tool dedicated to a fully distributed model.
Poster presented at International Conference on Flood Resilience, 5–7
September 2013, United Kingdom, 2013.
Riva, M., Guadagnini, L., Guadagnini, A., Ptak, T., and Martac, E.:
Probabilistic study of well capture zones distribution at the Lauswiesen
field site, J. Contam. Hydrol., 88, 92–118,
https://doi.org/10.1016/j.jconhyd.2006.06.005, 2006.
Rossman, L. A.: Storm water management model user's manual, version 5.0,
Cincinnati: National Risk Management Research Laboratory, Office of Research
and Development, US Environmental Protection Agency, 276, 2010.
Scherzter, D. and Lovejoy, S.: On the dimension of atmospheric motions, Turbulence and Chaotic phenomena in Fluids, edited by: Tatsumi, T., Elsevier North-Holland, 505–512, 1984.
Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and
clouds by anisotropic scaling multiplicative processes, J.
Geophys. Res.-Atmos., 92, 9693–9714,
https://doi.org/10.1029/JD092iD08p09693 1987.
Schertzer, D. and Lovejoy, S.: Nonlinear variability in geophysics, Kluwer Academic Publishers, the Netherlands, 303,
https://doi.org/10.1007/978-94-009-2147-4, 1991.
Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., and Hubert, P.: No monsters,
no miracles: in nonlinear sciences hydrology is not an outlier!, Hydrolog. Sci. J., 55, 965–979, https://doi.org/10.1080/02626667.2010.505173,
2010.
Sun, Y. W., Li, Q. Y., Liu, L., Xu, C. D., and Liu, Z. P.: Hydrological
simulation approaches for BMPs and LID practices in highly urbanized area
and development of hydrological performance indicator system, Water Sci.
Eng., 7, 143–154, https://doi.org/10.3882/j.issn.1674-2370.2014.02.003,
2014.
Stanić, F., Cui, Y. J., Delage, P., De Laure, E., Versini, P. A.,
Schertzer, D., and Tchiguirinskaia, I.: A device for the simultaneous
determination of the water retention properties and the hydraulic
conductivity function of an unsaturated coarse material; application to a
green-roof volcanic substrate, Geotech. Test. J., 43,
https://doi.org/10.1520/GTJ20170443, 2019.
Tchiguirinskaia, I., Schertzer, D., Hubert, P., Bendjoudi, H., and Lovejoy,
S.: Multiscaling geophysics and sustainable development, IAHS Publ. Proc.
Reports, 287, 113–136, 2004.
Velleux, M. L., England, J. F., and Julien, P. Y.: TREX: spatially
distributed model to assess watershed contaminant transport and fate, Sci.
Total Environ., 404, 113–128,
https://doi.org/10.1016/j.scitotenv.2008.05.053, 2008.
Versini, P. A., Gires, A., Tchinguirinskaia, I., and Schertzer, D.: Toward an
operational tool to simulate green roof hydrological impact at the basin
scale: A new version of the distributed rainfall-runoff model Multi-Hydro,
Water Sci. Technol., 74, 1845–1854,
https://doi.org/10.2166/wst.2016.310, 2016.
Versini, P. A., Kotelnikova, N., Poulhes, A., Tchiguirinskaia, I.,
Schertzer, D., and Leurent, F.: A distributed modelling approach to assess
the use of Blue and Green Infrastructures to fulfil stormwater management
requirements, Landscape Urban Plan., 173, 60–63,
https://doi.org/10.1016/j.landurbplan.2018.02.001, 2018.
Versini, P.-A., Gires, A., Tchiguirinskaia, I., and Schertzer, D.: Fractal analysis
of green roof spatial implementation in European cities, Urban For.
Urban Gree., 49, 126629, https://doi.org/10.1016/j.ufug.2020.126629,
2020.
Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., and
Goharian, E.: Low-Impact Development Practices to Mitigate Climate Change
Effects on Urban Stormwater Runoff: Case Study of New York City, J. Irrig.
Drain. Eng., 141, 4014043,
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000770, 2015.
Zhu, Z., Chen, Z., Chen, X., and Yu, G.: An assessment of the hydrologic
effectiveness of low impact development (LID) practices for managing runoff
with different objectives, J. Environ. Manage., 231, 504–514,
https://doi.org/10.1016/j.jenvman.2018.10.046, 2019.
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.
Our original research objective is to investigate the uncertainties of the hydrological...