Articles | Volume 25, issue 6
Hydrol. Earth Syst. Sci., 25, 3137–3162, 2021
https://doi.org/10.5194/hess-25-3137-2021
Hydrol. Earth Syst. Sci., 25, 3137–3162, 2021
https://doi.org/10.5194/hess-25-3137-2021
Research article
09 Jun 2021
Research article | 09 Jun 2021

Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France)

Yangzi Qiu et al.

Related authors

Evaluation of Low Impact Development and Nature-Based Solutions for stormwater management: a fully distributed modelling approach
Yangzi Qiu, Abdellah Ichiba, Igor Da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-347,https://doi.org/10.5194/hess-2019-347, 2019
Manuscript not accepted for further review

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022,https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022,https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022,https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021,https://doi.org/10.5194/hess-25-5917-2021, 2021
Short summary
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858, https://doi.org/10.5194/hess-25-5839-2021,https://doi.org/10.5194/hess-25-5839-2021, 2021
Short summary

Cited articles

Ahiablame, L. and Shakya, R.: Modeling flood reduction effects of low impact development at a watershed scale, J. Environ. Manage., 171, 81–91, https://doi.org/10.1016/j.jenvman.2016.01.036, 2016. 
Ahiablame, L. M., Engel, B. A., and Chaubey, I.: Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement, J. Environ. Manage., 119, 151–161, https://doi.org/10.1016/j.jenvman.2013.01.019, 2013. 
Alves de Souza, B., da Silva Rocha Paz, I., Ichiba, A., Willinger, B., Gires, A., Amorim, J. C. C., de Miranda Reis, M., Tisserand, B., Tchiguirinskaia, I., and Schertzer, D.: Multi-hydro hydrological modelling of a complex peri-urban catchment with storage basins comparing C-band and X-band radar rainfall data, Hydrolog. Sci. J., 63, 1619–16352018, https://doi.org/10.1080/02626667.2018.1520390, 2018. 
Burszta-Adamiak, E. and Mrowiec, M.: Modelling of Green roofs' hydrologic performance using EPA's SWMM, Water Sci. Technol., 68, 36–42, https://doi.org/10.2166/wst.2013.219, 2013. 
Bloorchian, A. A., Ahiablame, L., Osouli, A., and Zhou, J.: Modeling BMP and Vegetative Cover Performance for Highway Stormwater Runoff Reduction, in: Procedia Engineering, 145, 274–280, https://doi.org/10.1016/j.proeng.2016.04.074, 2016. 
Download
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.