Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2045-2021
https://doi.org/10.5194/hess-25-2045-2021
Research article
 | 
19 Apr 2021
Research article |  | 19 Apr 2021

Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network

Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Nearing, Jimmy Lin, and Sepp Hochreiter

Related authors

A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-64,https://doi.org/10.5194/hess-2024-64, 2024
Revised manuscript accepted for HESS
Short summary
Technical Note: The Divide and Measure Nonconformity
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-59,https://doi.org/10.5194/hess-2024-59, 2024
Revised manuscript accepted for HESS
Short summary
HESS Opinions: Never train an LSTM on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-275,https://doi.org/10.5194/hess-2023-275, 2024
Revised manuscript under review for HESS
Short summary
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022,https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022,https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024,https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024,https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024,https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017a. a
Addor, N., Newman, A., Mizukami, M., and Clark, M. P.: Catchment attributes for large-sample studies [data set], Boulder, CO, UCAR/NCAR, https://doi.org/10.5065/D6G73C3Q (last access: 14 April 2021), 2017. a
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. a, b
Araya, I. A., Valle, C., and Allende, H.: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting, Pattern Recognition Letters, 136, 333–340, https://doi.org/10.1016/j.patrec.2019.10.011, 2019. a
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 5, 157–166, https://doi.org/10.1109/72.279181, 1994. a
Download
Short summary
We present multi-timescale Short-Term Memory (MTS-LSTM), a machine learning approach that predicts discharge at multiple timescales within one model. MTS-LSTM is significantly more accurate than the US National Water Model and computationally more efficient than an individual LSTM model per timescale. Further, MTS-LSTM can process different input variables at different timescales, which is important as the lead time of meteorological forecasts often depends on their temporal resolution.