Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1425-2021
https://doi.org/10.5194/hess-25-1425-2021
Research article
 | 
24 Mar 2021
Research article |  | 24 Mar 2021

A multi-sourced assessment of the spatiotemporal dynamics of soil moisture in the MARINE flash flood model

Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel

Related authors

Multi-instrumental monitoring of snowmelt infiltration in Vallon de Nant, Swiss Alps
Judith Eeckman, Brian De Grenus, Floreana Marie Miesen, James Thornton, Philip Brunner, and Nadav Peleg
Hydrol. Earth Syst. Sci., 29, 4093–4107, https://doi.org/10.5194/hess-29-4093-2025,https://doi.org/10.5194/hess-29-4093-2025, 2025
Short summary
The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021,https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary

Cited articles

Adamovic, M., Branger, F., Braud, I., and Kralisch, S.: Development of a data-driven semi-distributed hydrological model for regional scale catchments prone to Mediterranean flash floods, J. Hydrol., 541, 173–189, 2016. a
Albergel, C., Rüdiger, C., Carrer, D., Calvet, J.-C., Fritz, N., Naeimi, V., Bartalis, Z., and Hasenauer, S.: An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France, Hydrol. Earth Syst. Sci., 13, 115–124, https://doi.org/10.5194/hess-13-115-2009, 2009. a
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Le Moigne, P., Decharme, B., Mahfouf, J.-F., and Calvet, J.-C.: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. a, b, c
Albergel, C., Munier, S., Bocher, A., Bonan, B., Zheng, Y., Draper, C., Leroux, D., and Calvet, J.-C.: LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables, Remote Sens., 10, 1627, https://doi.org/10.3390/rs10101627, 2018. a
Aune-Lundberg, L. and Strand, G.-H.: CORINE Land Cover 2006. The Norwegian CLC2006 project, Norsk institutt for skog og landskap, As, Norway, 2010. a, b
Download
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Share