Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 417–426, 2020
https://doi.org/10.5194/hess-24-417-2020
Hydrol. Earth Syst. Sci., 24, 417–426, 2020
https://doi.org/10.5194/hess-24-417-2020

Research article 28 Jan 2020

Research article | 28 Jan 2020

On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system

Shany Ben Moshe et al.

Related authors

Geophysically based analysis of breakthrough curves and ion exchange processes in soil
Shany Ben Moshe, Pauline Kessouri, Dana Erlich, and Alex Furman
Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021,https://doi.org/10.5194/hess-25-3041-2021, 2021
Short summary

Related subject area

Subject: Biogeochemical processes | Techniques and Approaches: Instruments and observation techniques
Geophysically based analysis of breakthrough curves and ion exchange processes in soil
Shany Ben Moshe, Pauline Kessouri, Dana Erlich, and Alex Furman
Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021,https://doi.org/10.5194/hess-25-3041-2021, 2021
Short summary
Spatio-temporal controls of C–N–P dynamics across headwater catchments of a temperate agricultural region from public data analysis
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021,https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Pesticide peak concentration reduction in a small vegetated treatment system controlled by chemograph shape
Jan Greiwe, Oliver Olsson, Klaus Kümmerer, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 497–509, https://doi.org/10.5194/hess-25-497-2021,https://doi.org/10.5194/hess-25-497-2021, 2021
Short summary
Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system
Elena Fernández-Pascual, Marcus Bork, Birte Hensen, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 41–60, https://doi.org/10.5194/hess-24-41-2020,https://doi.org/10.5194/hess-24-41-2020, 2020
Short summary
Assessing inter-annual and seasonal patterns of DOC and DOM quality across a complex alpine watershed underlain by discontinuous permafrost in Yukon, Canada
Nadine J. Shatilla and Sean K. Carey
Hydrol. Earth Syst. Sci., 23, 3571–3591, https://doi.org/10.5194/hess-23-3571-2019,https://doi.org/10.5194/hess-23-3571-2019, 2019
Short summary

Cited articles

Amy, G. and Drewes, J.: Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: Fate of wastewater effluent organic Matter (EfoM) and trace organic compounds, Environ. Monit. Assess., 129, 19–26, https://doi.org/10.1007/s10661-006-9421-4, 2007. a, b
Ak, M. and Gunduz, O.: Comparison of organic matter removal from synthetic and real wastewater in a laboratory-scale soil aquifer treatment system, Water Air Soil Poll., 224, 1467, https://doi.org/10.1007/s11270-013-1467-7, 2013. a, b
Arye, G., Tarchitzky, J., and Chen, Y.: Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins, J. Hydrol., 397, 136–145, https://doi.org/10.1016/j.jhydrol.2010.11.046, 2011. a
Assouline, S., Narkis, K., Gherabli, R., and Sposito, G.: Combined Effect of Sodicity and Organic Matter on Soil Properties under Long-Term Irrigation with Treated Wastewater, Vadose Zone J., 15, 2–10, https://doi.org/10.2136/vzj2015.12.0158, 2016. a
Bouwer, H.: Ground water recharge with sewage effluent, Water Sci. Technol., 23, 2099–2108, 1991. a
Download
Short summary
In soil aquifer treatment (a soil-based treatment for wastewater), infiltration ponds are operated in flooding and drying cycles, and the reclaimed water may be used for irrigation. We tested the effect of hydraulic operation on the biogeochemical system via long-column experiments. We found that longer drying periods not only were beneficial for the upper area of the profile but also increased the volume of the system that maintained oxidizing conditions.