Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4109-2020
https://doi.org/10.5194/hess-24-4109-2020
Research article
 | 
21 Aug 2020
Research article |  | 21 Aug 2020

Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework

Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland

Related authors

A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022,https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Monthly new water fractions and their relationships with climate and catchment properties across Alpine rivers
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024,https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024,https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024,https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
On the regional-scale variability in flow duration curves in Peninsular India
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024,https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023,https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary

Cited articles

Adamowski, K. and Bocci, C.: Geostatistical regional trend detection in river flow data, Hydrol. Process., 15, 3331–3341, https://doi.org/10.1002/hyp.1045, 2001. a
Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D., and Lindgren, F.: Spatial modeling with R-INLA: A review, WIREs Computational Statistics, 10, e1443, https://doi.org/10.1002/wics.1443, 2018. a
Banerjee, S., Gelfand, A., and Carlin, B.: Hierarchical Modeling and Analysis for Spatial Data, vol. 101 of Monographs on Statistics and Applied Probability, Chapman & Hall, Boca Raton, Florida, 2004. a
Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, Camebridge University Press, Cambridge, 2013. a, b, c, d, e, f, g, h, i, j
Brenner, S. and Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd Edition. Vol. 15 of Texts in Applied Mathematics, Springer, New York, 2008. a
Download
Short summary
Annual runoff is a measure of how much water flows through a river during a year and is an important quantity, e.g. when planning infrastructure. In this paper, we suggest a new statistical model for annual runoff estimation. The model exploits correlation between rivers and is able to detect whether the annual runoff in the target river follows repeated patterns over time relative to neighbouring rivers. In our work we show for what cases the latter represents a benefit over comparable methods.