Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 381–396, 2020
https://doi.org/10.5194/hess-24-381-2020
Hydrol. Earth Syst. Sci., 24, 381–396, 2020
https://doi.org/10.5194/hess-24-381-2020

Research article 24 Jan 2020

Research article | 24 Jan 2020

Inter-annual variability of the global terrestrial water cycle

Dongqin Yin and Michael L. Roderick

Related authors

Technical note: Decomposing a time series into independent trend, seasonal and random components
Dongqin Yin, Hannah Slatford, and Michael L. Roderick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-601,https://doi.org/10.5194/hess-2018-601, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Theory development
From mythology to science: the development of scientific hydrological concepts in Greek antiquity and its relevance to modern hydrology
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021,https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Comment on: “A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions” by Han and Tian (2020)
Richard D. Crago, Jozsef Szilagyi, and Russell Qualls
Hydrol. Earth Syst. Sci., 25, 63–68, https://doi.org/10.5194/hess-25-63-2021,https://doi.org/10.5194/hess-25-63-2021, 2021
Short summary
Global distribution of hydrologic controls on forest growth
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020,https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Using R in hydrology: a review of recent developments and future directions
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019,https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Multivariate stochastic bias corrections with optimal transport
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019,https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary

Cited articles

Agarwal, D. A., Humphrey, M., Beekwilder, N. F., Jackson, K. R., Goode, M. M., and van Ingen, C.: A data-centered collaboration portal to support global carbon-flux analysis, Concurr. Comp-Pract. E., 22, 2323–2334, https://doi.org/10.1002/cpe.1600, 2010. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015. 
Budyko, M. L.: Climate and Life. Academic Press, London, UK, 1974. 
Choudhury, B. J.: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, J. Hydrol., 216, 99–110, https://doi.org/10.1016/S0022-1694(98)00293-5, 1999. 
Download
Short summary
We focus on the initial analysis of inter-annual variability in the global terrestrial water cycle, which is key to understanding hydro-climate extremes. We find that (1) the partitioning of inter-annual variability is totally different with the mean state partitioning; (2) the magnitude of covariances can be large and negative, indicating the variability in the sinks can exceed variability in the source; and (3) the partitioning is relevant to the water storage capacity and snow/ice presence.