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Abstract. Variability of the terrestrial water cycle, i.e. pre-
cipitation (P ), evapotranspiration (E), runoff (Q) and wa-
ter storage change (1S) is the key to understanding hydro-
climate extremes. However, a comprehensive global assess-
ment for the partitioning of variability in P between E, Q
and 1S is still not available. In this study, we use the re-
cently released global monthly hydrologic reanalysis prod-
uct known as the Climate Data Record (CDR) to conduct
an initial investigation of the inter-annual variability of the
global terrestrial water cycle. We first examine global pat-
terns in partitioning the long-term mean P between the vari-
ous sinks E,Q and1S and confirm the well-known patterns
with P partitioned between E andQ according to the aridity
index. In a new analysis based on the concept of variabil-
ity source and sinks we then examine how variability in the
precipitation σ 2

P (the source) is partitioned between the three
variability sinks σ 2

E , σ 2
Q and σ 2

1S along with the three rele-
vant covariance terms, and how that partitioning varies with
the aridity index. We find that the partitioning of inter-annual
variability does not simply follow the mean state partitioning.
Instead we find that σ 2

P is mostly partitioned between σ 2
Q,

σ 2
1S and the associated covariances with limited partition-

ing to σ 2
E . We also find that the magnitude of the covariance

components can be large and often negative, indicating that
variability in the sinks (e.g. σ 2

Q, σ 2
1S) can, and regularly does,

exceed variability in the source (σ 2
P ). Further investigations

under extreme conditions revealed that in extremely dry en-
vironments the variance partitioning is closely related to the
water storage capacity. With limited storage capacity the par-
titioning of σ 2

P is mostly to σ 2
E , but as the storage capacity in-

creases the partitioning of σ 2
P is increasingly shared between

σ 2
E , σ 2

1S and the covariance between those variables. In other
environments (i.e. extremely wet and semi-arid–semi-humid)

the variance partitioning proved to be extremely complex and
a synthesis has not been developed. We anticipate that a ma-
jor scientific effort will be needed to develop a synthesis of
hydrologic variability.

1 Introduction

In describing the terrestrial branch of the water cycle, the
precipitation (P ) is partitioned into evapotranspiration (E),
runoff (Q) and change in water storage (1S). With averages
taken over many years, 1S is usually assumed to be zero
and it has long been recognized that the partitioning of the
long-term mean annual precipitation (P ) between E and Q
was jointly determined by the availability of both water (P )
and energy (represented by the net radiation expressed as an
equivalent depth of water and denoted Eo). Using data from
a large number of watersheds, Budyko (1974) developed an
empirical relation relating the evapotranspiration ratio (E/P )
to the aridity index (Eo/P ). The resultant empirical rela-
tion and other Budyko-type forms (e.g. Fu, 1981; Choudhury,
1999; Yang et al., 2008; Roderick and Farquhar, 2011; Spos-
ito, 2017) that partition P between E and Q have proven to
be extremely useful in both understanding and characteriz-
ing the long-term mean annual hydrological conditions in a
given region.

However, the long-term mean annual hydrologic fluxes
rarely occur in any given year. Instead, society must (rou-
tinely) deal with variability around the long-term mean. The
classic hydro-climate extremes are droughts and floods but
the key point here is that hydrologic variability is expressed
on a full spectrum of time and space scales. To accommodate
that perspective, we need to extend our thinking beyond the

Published by Copernicus Publications on behalf of the European Geosciences Union.



382 D. Yin and M. L. Roderick: Inter-annual variability of the global terrestrial water cycle

long-term mean to ask how the variability of P is partitioned
into the variability of E, Q and 1S (e.g. Orth and Destouni,
2018).

Early research on hydrologic variability focussed on
extending the Budyko curve. In particular, Koster and
Suarez (1999) used the Budyko curve to investigate inter-
annual variability in the water cycle. In their framework, the
evapotranspiration standard deviation ratio (defined as the ra-
tio of standard deviation for E to P , σE/σP ) was (also) es-
timated using the aridity index (Eo/P ). The classic Koster
and Suarez framework has been widely applied and extended
in subsequent investigations of the variability in both E and
Q, using catchment observations, reanalysis data and model
outputs (e.g. McMahon et al., 2011; Wang and Alimoham-
madi, 2012; Sankarasubramanian and Vogel, 2002; Zeng and
Cai, 2015). However, typical applications of the Koster and
Suarez framework have previously been at regional scales
and there is still no comprehensive global assessment for
partitioning the variability of P into the variability of E,
Q and 1S. One reason for the lack of a global comprehen-
sive assessment is the absence of gridded global hydrologic
data. Interestingly, the atmospheric science community have
long used a combination of observations and model outputs
to construct gridded global-scale atmospheric re-analyses
and such products have become central to atmospheric re-
search. Those atmospheric products also contain estimates
of some of the key water cycle variables (e.g. P , E), such
as in the widely used interim ECMWF Re-Analysis (ERA-
Interim; Dee et al. 2011). Though efforts have been taken
to develop land-based products from atmospheric reanaly-
ses, e.g. ERA-Land (Balsamo et al., 2015) and MERRA-
Land (Reichle et al., 2011) databases, the central aim of at-
mospheric re-analysis is to estimate atmospheric variables.
That atmospheric-centric aim, understandably, ignores many
of the nuances of soil water infiltration, vegetation water up-
take, runoff generation and many other processes of central
importance in hydrology.

Hydrologists have only recently accepted the challenge
of developing their own re-analysis-type products with per-
haps the first serious hydrologic re-analysis being published
as recently as a few years ago (Rodell et al., 2015). More
recently, the Princeton University group has extended this
early work by making available a gridded global terrestrial
hydrologic re-analysis product known as the Climate Data
Record (CDR) (Zhang et al., 2018). Briefly, the CDR was
constructed by synthesizing multiple in situ observations,
satellite remote sensing products and land surface model out-
puts to provide gridded estimates of global land precipitation
P , evapotranspiration E, runoff Q and total water storage
change 1S (0.5◦× 0.5◦, monthly, 1984–2010). In develop-
ing the CDR, the authors adopted local water budget closure
as the fundamental hydrologic principle. That approach pre-
sented one important difficulty. Global observations of 1S
start with the GRACE satellite mission from 2002. Hence
before 2002 there is no direct observational constraint on1S

and the authors made the further assumption that the mean
annual 1S over the full 1984–2010 period was zero at ev-
ery grid box. That is incorrect in some regions (e.g. Scan-
lon et al., 2018) and represents an observational problem that
cannot be overcome. However, our interest is in the year-to-
year variability and for that application, the assumption of
no change in the mean annual 1S over the full 1984–2010
period is unlikely to lead to major problems since we are
not looking for subtle changes over time. With that caveat in
mind, the aim of this study is to use this new 27-year gridded
hydrologic re-analysis product to conduct an initial investi-
gation of the inter-annual variability of the terrestrial branch
of the global water cycle.

The paper is structured as follows. We begin in Sect. 2
by describing the various climate and hydrologic databases
used in this study and also include a further assessment of
the suitability of the CDR database for this initial variabil-
ity study. In Sect. 3, we examine relationships between the
mean and variability in the four water cycle variables (P , E,
Q and 1S). In Sect. 4, we first relate the variabilities to the
classical aridity index and then use those results to evaluate
the theory of Koster and Suarez (1999). Subsequently we ex-
amine how the variance of P is partitioned into the variances
(and relevant covariances) of E,Q and1S and undertake an
initial survey that investigates some of the factors controlling
the variance partitioning. We conclude the paper with a dis-
cussion summarizing what we have learnt about water cycle
variability over land by using the CDR database.

2 Methods and data

2.1 Methods

The water balance is defined by

P(t)= E(t)+Q(t)+1S(t), (1)

with P the precipitation, E the evapotranspiration, Q the
runoff and 1S the total water storage change in time step
t (annual in this study). By the usual variance law, we have

σ 2
P = σ

2
E + σ

2
Q+ σ

2
1S + 2cov(E,Q)+ 2cov(E,1S)

+ 2cov(Q,1S), (2)

which includes all relevant variances (denoted σ 2) and co-
variances (denoted cov). Equation (2) can be thought of as
the hydrologic variance balance equation.

2.2 Hydrologic and climatic data

We use the CDR database (Zhang et al., 2018), which is
a recently released global land hydrologic re-analysis. This
product includes global precipitation P , evapotranspiration
E, runoff Q and water storage change 1S (0.5◦× 0.5◦,
monthly, 1984–2010). In this study we focus on the inter-
annual variability and the monthly water cycle variables (P ,
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E, Q and 1S) are aggregated to annual totals. The CDR
does not report additional radiation variables and we use the
NASA/GEWEX Surface Radiation Budget (SRB) Release-
3.0 (monthly, 1984–2007, 1◦× 1◦) database (Stackhouse et
al., 2011) to calculate Eo (defined as the net radiation ex-
pressed as an equivalent depth of liquid water, Budyko,
1974). We then calculate the aridity index (Eo/P ) using P
from the CDR and Eo from the SRB databases (see Fig. S1a
in the Supplement).

In general, we anticipate two important factors, i.e. the
water storage capacity and the presence of ice/snow at the
surface, which are most likely to have influence on the par-
titioning of hydrologic variability. For the storage, the ac-
tive range of the monthly water storage variation was used
to approximate the water storage capacity (Smax). In more
detail, the water storage S(t) at each time step t (monthly
here) was first calculated from the accumulation of 1S(t),
i.e. S(t)= S(t − 1)+1S(t), where we assumed zero stor-
age at the beginning of the study period (i.e. S(0)= 0). With
the resulting time series available, Smax was estimated as the
difference between the maximum and minimum S(t) during
the study period at each grid box (see Fig. S1b in the Sup-
plement). The estimated Smax shows a large range from 0
to 1000 mm with the majority of values from 50 to 600 mm
(Fig. S1b), which generally agrees with global rooting depth
estimates assuming that water occupies from 10 % to 30 % of
the soil volume at field capacity (Jackson et al., 1996; Wang-
Erlandsson et al., 2016; Yang et al., 2016). To characterize
snow/ice cover, and to distinguish extremely hot and cold re-
gions, we also make use of a gridded global land air temper-
ature dataset from the Climatic Research Unit (CRU TS4.01
database, monthly, 1901–2016, 0.5◦× 0.5◦) (Harris et al.,
2014) (see Fig. S1c in the Supplement).

2.3 Spatial mask to define study extent

The CDR database provides an estimate of the uncertainty
(±1σ ) for each of the hydrologic variables (P , E, Q, 1S)
in each month. We use those uncertainty estimates to iden-
tify and remove regions with high relative uncertainty in the
CDR data. The relative uncertainty is calculated as the ratio
of root mean square of the uncertainty (±1σ ) to the mean
annual P , E and Q at each grid box following the procedure
used by Milly and Dunne (2002). Note that the long-term
mean 1S is zero by construction in the CDR database, and
for that reason we did not use1S to calculate the relative un-
certainty. Grid boxes with a relative uncertainty (in P , E and
Q) of more than 10 % are deemed to have high relative un-
certainty (Milly and Dunne, 2002) and were excluded from
the study extent. The excluded grid boxes were mostly in the
Himalayan region, the Sahara Desert and in Greenland. The
final spatial mask is shown in Fig. S2 and this has been ap-
plied throughout this study.

2.4 Further evaluation of CDR data for variability
analysis

In the original work, the CDR database was validated
by comparison with independent observations including
(i) mean seasonal cycle ofQ from 26 large basins (see Fig. 8
in Zhang et al., 2018), (ii) mean seasonal cycle of 1S from
12 large basins (Fig. 10 in Zhang et al., 2018), (iii) monthly
runoff from 165 medium size basins and a further 862 small
basins (Fig. 14 in Zhang et al., 2018), and (iv) summer E
from 47 flux towers (Fig. 16 in Zhang et al., 2018). Those
evaluations did not directly address variability in various wa-
ter cycle elements. With our focus on the variability we de-
cided to conduct further validations of the CDR database be-
yond those described in the original work. In particular, we
focussed on further independent assessments of E and we
use monthly (as opposed to summer) observations of E from
FLUXNET to evaluate the variability in E. We also compare
the evapotranspiration E in the CDR with two other gridded
global E products that were not used to develop the CDR in-
cluding the LandFluxEval database (1◦×1◦, monthly, 1989–
2005) (Mueller et al., 2013) and the Max Planck Institute
database (MPI, 0.5◦×0.5◦, monthly, 1982–2011) (Jung et al.,
2010). The runoffQ in the CDR is further compared with the
gridded European Q product E-RUN (0.5◦× 0.5◦, monthly,
1951–2015) (Gudmundsson and Seneviratne, 2016a).

For the comparison to FLUXNET observations (Baldoc-
chi et al., 2001; Agarwal et al., 2010) we identified 32 flux
tower sites (site locations are shown in Fig. S3 and details
are shown in Table S1) with at least 3 years of continu-
ous (monthly) measurements using the FluxnetLSM R pack-
age (v1.0) (Ukkola et al., 2017). The monthly totals and an-
nual climatology of P and E from CDR generally follow
FLUXNET observations, with high correlations and reason-
able root mean square error (Figs. S4–S5, Table S1). Com-
parison of the point-based FLUXNET (∼ 100 m–1 km scale)
with the grid-based CDR (∼ 50 km scale) is problematic
since the CDR represents an area that is at least 2500 times
larger than the area represented by the individual FLUXNET
towers and we anticipate that the CDR record would be
“smoothed” relative to the FLUXNET record. With that in
mind, we chose to compare the ratio of the standard devia-
tion of E to P between the CDR and FLUXNET databases
and this normalized comparison of the hydrologic variability
proved encouraging (Fig. S6).

The comparison of E between the CDR and the Land-
FluxEval and MPI databases also proved encouraging. We
found that the monthly mean E from the CDR database is
slightly underestimated compared with the LandFluxEVAL
database (Fig. S7a) but agrees closely with the MPI database
(Fig. S8a). In terms of variability, the standard deviations of
monthly E from the CDR are in very close agreement with
the LandFluxEVAL database (Fig. S7c), but there is a bias
and scaling offset for the comparison with the MPI database,
particularly for the grid cells with low standard deviation of
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E (Fig. S8c). The comparison of runoff Q between the E-
RUN and CDR databases shows that the two databases have
very similar spatial patterns of both the long-term mean (Q)
and standard deviation (σQ) of the monthlyQ (Fig. S10). The
grid-by-grid comparison results are also encouraging, show-
ing slight bias of both the long-term mean and standard devi-
ation of monthly Q in the CDR database compared with the
E-RUN database (Fig. S11).

We concluded that while the CDR database was unlikely
to be perfect, it was nevertheless suitable for an initial ex-
ploratory survey of inter-annual variability in the terrestrial
branch of the global water cycle.

3 Mean and variability of water cycle components

3.1 Mean annual P , E and Q and the Budyko curve

The global pattern of mean annual P , E and Q using the
CDR data (1984–2007) is shown in Fig. 1. The mean annual
P (P ) is prominent in tropical regions, southern China, and
eastern and western North America (Fig. 1a). The magnitude
of mean annualE (E) more or less follows the pattern of P in
the tropics (Fig. 1b) while the mean annual Q (Q) is partic-
ularly prominent in the Amazon, South and Southeast Asia,
tropical parts of western Africa, and in some other coastal
regions at higher latitudes (Fig. 1c).

We relate the grid-box level ratio of E to P in the CDR
database to the classical Budyko (1974) curve using the arid-
ity index (Eo/P ) (Fig. 2a). As noted previously, in the CDR
database, 1S is forced to be zero and this enforced steady
state (i.e. P = E+Q) allowed us to also predict the ratio of
Q to P using the same Budyko curve (Fig. 2b). The Budyko
curves follow the overall pattern in the CDR data, which
agrees with previous studies showing that the aridity index
can be used to predict water availability (e.g. Gudmunds-
son et al., 2016). However, there is substantial scatter due to,
for example, regional variations related to seasonality, wa-
ter storage change and the landscape characteristics (Milly,
1994a, b; Padrón et al., 2017). With that caveat in mind, the
overall patterns are as expected, with E following P in dry
environments (Eo/P > 1.0) while E follows Eo in wet envi-
ronments (Eo/P ≤ 1.0) (Fig. 2).

3.2 Inter-annual variability in P , E, Q and 1S

We use the variance balance equation (Eq. 2) to partition the
inter-annual σ 2

P into separate components due to σ 2
E , σ 2

Q, σ 2
1S

along with the three covariance components [2cov(EQ),
2cov(E,1S), 2cov(Q,1S)] (Fig. 3). The spatial pattern of
σ 2
P (Fig. 3a) is very similar to that of P (Fig. 1a), which im-

plies that the σ 2
P is positively correlated with P . In contrast

the partitioning of σ 2
P to the various components is very dif-

ferent from the partitioning of P (cf. Figs. 1 and 3). First
we note that while the overall spatial pattern of σ 2

E more
or less follows σ 2

P , the overall magnitude of σ 2
E is much

Figure 1. Mean annual (1984–2010) (a) P , (b) E and (c) Q. Note
that the mean annual 1S in the CDR database is zero by construc-
tion and is not shown.

smaller than σ 2
P and σ 2

Q in most regions, and in fact σ 2
E is also

generally smaller than σ 2
1S . The prominence of σ 2

1S (com-
pared to σ 2

E) surprised us. The three covariance components
[cov(E,Q), cov(E,1S), cov(Q,1S)] are also important in
some regions. In more detail, the cov(E,Q) term is promi-
nent in regions where σ 2

Q is large and is mostly negative in
those regions (Fig. 3e), indicating that years with lower E
are associated with higher Q and vice versa. There are also
a few regions with prominent positive values for cov(EQ)
(e.g. the seasonal hydroclimates of northern Australia) indi-
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Figure 2. Relationship of mean annual (a) evapotranspiration (E/P ) and (b) runoff (Q/P ) ratios to the aridity index (Eo/P ) from the CDR
and SRB databases. For comparison, the Budyko (1974) curve is shown on panel (a). The curve on panel (b) is calculated assuming a steady
state (Q/P = 1−E/P ).

cating that in those regions, years with a higher E are as-
sociated with higher Q. The cov(E,1S) term (Fig. 3f) has
a similar spatial pattern to the cov(E,Q) term (Fig. 3e) but
with a smaller overall magnitude. Finally, the cov(Q,1S)
term shows a more complex spatial pattern, with both promi-
nent positive and negative values (Fig. 3g) in regions where
σ 2
Q (Fig. 3c) and σ 2

1S (Fig. 3d) are both large.
These results show that the spatial patterns in variability

are not simply a reflection of patterns in the long-term mean
state. On the contrary, we find that of the three primary vari-
ance terms, the overall magnitude of (inter-annual) σ 2

E is the
smallest, implying the least (inter-annual) variability in E.
This is very different from the conclusions based on spatial
patterns in the mean P , E and Q (see Sect. 3.1). Further,
while σ 2

Q more or less follows σ 2
P as expected, we were sur-

prised by the magnitude of σ 2
1S which, in general, substan-

tially exceeds the magnitude of σ 2
E . Further, the magnitude of

the covariance terms can be important, especially in regions
with high σ 2

Q. However, unlike the variances, the covariance
can be both positive and negative and this introduces addi-
tional complexity. For example, with a negative covariance
it is possible for the variance in Q (σ 2

Q) to exceed the vari-
ance in P (σ 2

P ). To examine that in more detail we calculated
the equivalent frequency distribution for each of the plots in
Fig. 3. The results (Fig. S9) further emphasize that in general,
σ 2
E is the smallest of the variances (Fig. S9b). We also note

that the frequency distributions for the covariances (Fig. S9e,
f, g) are not symmetrical. In summary, it is clear that spa-
tial patterns in the inter-annual variability of the water cycle
(Fig. 3) do not simply follow the spatial patterns for the inter-
annual mean (Fig. 1).

3.3 Relation between variability and the mean state for
P , E, Q

Differences in the spatial patterns of the mean (Fig. 1) and
inter-annual variability (Fig. 3) in the global water cycle led
us to further investigate the relation between the mean and
the variability for each separate component. Here we relate
the standard deviation (σP , σE , σQ) instead of the variance
to the mean of each water balance flux (Fig. 4) since the stan-
dard deviation has the same physical units as the mean, mak-
ing the results more comparable. As inferred previously, we
find σP to be positively correlated with P but with substan-
tial scatter (Fig. 4a). The same result more or less holds for
the relation between σQ and Q (Fig. 4c). In contrast the re-
lation between σE and E is very different (Fig. 4b). In par-
ticular, σE is a small fraction of E and this complements the
earlier finding (Fig. 4b) that the inter-annual variability for
E is generally smaller than for the other physical variables
(P , Q and 1S). (The same result was also found using both
LandFluxEVAL and MPI databases; see Fig. S12 in the Sup-
plement.) Importantly, unlike P and Q, E is constrained by
both water and energy availability (Budyko, 1974) and the
limited inter-annual variability in E presumably reflects lim-
ited inter-annual variability in the available (radiant) energy
(Eo). This is something that could be investigated in a future
study.

4 Relating the variability of water cycle components to
aridity

In the previous section, we investigated spatial patterns of the
mean and the variability in the global water cycle. In this sec-
tion, we extend that by investigating the partitioning of σ 2

P to
the three primary physical terms (σ 2

E , σ 2
Q, σ 2

1S) along with
the three relevant covariances. For that, we begin by com-
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Figure 3. Water cycle variances (σ 2
P

, σ 2
E

, σ 2
Q

, σ 2
1S

) and covariances [cov(EQ), cov(E,1S), cov(Q,1S)]. Note that we have multiplied the
covariances by two (see Eq. 2).

paring the Koster and Suarez (1999) theory against the CDR
data and then investigate how the partitioning of the variance
is related to the aridity index Eo/P (see Fig. S1a in the Sup-
plement). Following that, we investigate variance partition-
ing in relation to both our estimate of the storage capacity
Smax (see Fig. S1b in the Supplement) as well as the mean
annual air temperature Ta (see Fig. S1c in the Supplement)
that we use as a surrogate for snow/ice cover. We finish this
section by examining the partitioning of variance at three se-
lected study sites that represent extremely dry/wet, high/low
water storage capacity and the hot/cold spectrums.

4.1 Comparison with the Koster and Suarez (1999)
theory

We first evaluate the classical empirical curve of Koster and
Suarez (1999) by relating ratios σE/σP and σQ/σP to the
aridity index (Fig. 5). The ratio σE/σP in the CDR database
is generally overestimated by the empirical Koster and
Suarez curve, especially in dry environments (e.g. Eo/P >

3) (Fig. 5a). The inference here is that the Koster and Suarez
theory predicts σE/σP to approach unity in dry environments
while the equivalent value in the CDR data is occasionally

unity but is generally smaller. With σE/σP generally overes-
timated by the Koster and Suarez theory we expect, and find,
that σQ/σP is generally underestimated by the same theory
(Fig. 5b). The same overestimation was found based on the
other two independent databases for E (LandFluxEVAL and
MPI) (Fig. S13). This overestimation is discussed further in
Sect. 5.

4.2 Relating inter-annual variability to aridity

Here we examine how the fraction of the total variance in pre-
cipitation accounted for by the three primary variance terms
along with the three covariance terms varies with the arid-
ity index (Eo/P ) (Fig. 6). (Also see Fig. S14 for the spatial
maps.) The ratio σ 2

E/σ
2
P is close to zero in extremely wet re-

gions and has an upper limit noted previously (Fig. 5a) that
approaches unity in extremely dry regions (Fig. 6a). The ra-
tio σ 2

Q/σ
2
P is close to zero in extremely dry regions but ap-

proaches unity in extremely wet regions but with substantial
scatter (Fig. 6b). The ratio σ 2

1S/σ
2
P is close to zero in both ex-

tremely dry/wet regions (Fig. 6c) and shows the largest range
at an intermediate aridity index (Eo/P ∼ 1.0).
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Figure 4. Relation between inter-annual mean and standard devia-
tion for (a) P , (b) E and (c) Q from the CDR database. Note that
the mean annual 1S is zero by construction and is not shown.

The covariance ratios are all small in extremely dry (e.g.
Eo/P ≥ 6.0) environments and generally show the largest
range in semi-arid and semi-humid environments. The peak
magnitudes for the three covariance components consistently
occur whenEo/P is close to 1.0, which is the threshold often
used to separate wet and dry environments.

4.3 Further investigations on the factors controlling
partitioning of the variance

Results in the previous section demonstrated that spatial vari-
ation in the partitioning of σ 2

P into σ 2
E , σ 2

Q, σ 2
1S and the three

covariance components is complex (Fig. 6). To help further
understand inter-annual variability of the terrestrial water cy-
cle, we conduct further investigations in this section using
two factors likely to have a major influence on the variance
partitioning of σ 2

P . The first is the storage capacity Smax (see
Fig. S1b in the Supplement). The second is the mean annual
air temperature Ta (see Fig. S1c in the Supplement), which is
used here as a surrogate for snow/ice presence.

4.3.1 Relating inter-annual variability to storage
capacity

We first relate the partitioning of σ 2
P to water storage capacity

(Smax) by repeating Fig. 6 but instead we use a logarithmic
scale for the x axis and we distinguish Smax via the back-
ground colour (Fig. 7). To eliminate the possible overlap of
grid cells in the colouring process, all the grid cells over land
are further separated using different latitude ranges (as shown
in the four columns of Fig. 7), i.e. 90–60◦ N, 60–30◦ N, 30–
0◦ N and 0–90◦ S. We find that Smax is relatively high in wet
environments (Eo/P ≤ 1.0, Fig. 7a) but shows no obvious
relation to the partitioning of σ 2

P . However, in dry environ-
ments (Eo/P > 1.0) the ratio σ 2

E/σ
2
P apparently decreases

with the increase in Smax (Fig. 7a–d). That relation is partic-
ularly obvious in extremely dry environments (Eo/P ≥ 6.0)
at equatorial latitudes where there is an upper limit of σ 2

E/σ
2
P

close to 1.0 when Smax is small (blue grid cells in Fig. 7c).
The interpretation for those extremely dry environments is
that when Smax is small, σ 2

P is almost completely partitioned
into σ 2

E (Fig. 7b, c) with the other variance and covariance
components close to zero. While for those same extremely
dry environments, as Smax increases, the partitioning of σ 2

P is
shared between σ 2

E and σ 2
1S and their covariance (Fig. 7c, k,

s), while σ 2
Q and its covariance components remain close to

zero (Fig. 7g, o, w). However, at polar latitudes in the North-
ern Hemisphere (panels in the first and second columns of
Fig. 7) there are variations that could not be easily associated
with variations in Smax, which led us to further investigate the
role of snow/ice on the variance partitioning in the following
section.

4.3.2 Relating inter-annual variability to mean air
temperature

To understand the potential role of snow/ice in modifying the
variance partitioning, we repeat the previous analysis (Fig. 7)
but here we use the mean annual air temperature (Ta) to
colour the grid cells to (crudely) indicate the presence of
snow/ice (Fig. 8). The results are complex and not easy to
simply understand. The most important difference revealed
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Figure 5. Relationship of inter-annual standard deviation of (a) evapotranspiration (σE/σP ) and (b) runoff (σQ/σP ) ratios to aridity (Eo/P ).
The curves represent the semi-empirical relations from Koster and Suarez (1999).

Figure 6. Relation between water cycle variances and covariances (see Fig. 3b–g) as a fraction of the variance of P (σ 2
P

) and the aridity
index (Eo/P ) coloured by density. Note that we have multiplied the covariance components by two (see Eq. 2).

by this analysis is in the hydrologic partitioning between cold
(first column) and hot (third column) conditions in wet envi-
ronments (Eo/P ≤ 0.5). In particular, when Ta is high, σ 2

P is
almost completely partitioned into σ 2

Q in wet environments
(e.g. Eo/P ≤ 0.5, Fig. 8g). In contrast, when Ta is low in
a wet environment (Eo/P ≤ 0.5 in first column of Fig. 8),
there are substantial variations in the hydrologic partitioning.
That result reinforces the complexity of variance partitioning
in the presence of snow/ice.

4.4 Case studies

The previous results (Sect. 4.3) have demonstrated that the
partitioning of σ 2

P is influenced by the water storage capac-
ity (Smax) in extremely dry environments (Eo/P ≥ 6.0) and
that the presence of snow/ice is important (as indicated by
mean air temperature, Ta) in extremely wet environments
(Eo/P ≤ 0.5). In this section, we examine, in greater de-
tail, several sites to gain deeper understanding of the par-
titioning of σ 2

P . For that purpose, we selected three sites
based on extreme values for the three explanatory parame-
ters, i.e. Eo/P (Fig. S1a), Smax (Fig. S1b) and Ta (Fig. S1c).
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Figure 7. Relation between water cycle variances and covariances (see Fig. 3b–g) as a fraction of the variance for P (σ 2
P

) and the aridity
index (Eo/P ) for grid cells over different latitude ranges (i.e. 90–60◦ N, 60–30◦ N, 30–0◦ N and 0–90◦ S). The colours relate to the water
storage capacity Smax. Note that we have multiplied the covariances by two (see Eq. 2). The vertical grey dashed lines represent thresholds
used to separate extremely dry (Eo/P ≥ 6.0) and wet (Eo/P ≤ 0.5) environments. Note the use of a logarithmic x axis and scale bar for
Smax.
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Figure 8. Relation between water cycle variances and covariances (see Fig. 3b–g) as a fraction of the variance for P (σ 2
P

) and the aridity
index (Eo/P ) for grid cells over different latitude ranges (i.e. 90–60◦ N, 60–30◦ N, 30–0◦ N and 0–90◦ S). The colours relate to the mean air
temperature (Ta). Note that we have multiplied the covariances by two (see Eq. 2). The vertical grey dashed lines represent thresholds used
to separate extremely dry (Eo/P ≥ 6.0) and wet (Eo/P ≤ 0.5) environments.
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Figure 9. Locations of three representative grid cells used as case
study sites.

The criteria to select three climate sites are as follows –
Site 1: dry (Eo/P ≥ 6.0) and small Smax (Smax ≈ 0), Site 2:
dry (Eo/P ≥ 6.0) and relatively large Smax (Smax� 0) and
Site 3: wet (Eo/P ≤ 0.5) and hot (Ta > 25 ◦C). For each of
the three classes, we use a representative grid cell (Fig. 9) to
show the original time series (Fig. 10) and the partitioning of
the variability (Fig. 11).

We show the P , E, Q and 1S time series along with
the relevant variances and covariances in Fig. 10. Start-
ing with the two dry sites, at the site with low storage ca-
pacity (Site 1), the time series shows that E closely fol-
lows P , leaving annual Q and 1S close to zero (Fig. 10a).
The variance of P (σ 2

P = 206.9 mm2) is small and al-
most completely partitioned into the variance of E (σ 2

E =

196.9 mm2), leaving very limited variance for Q, 1S and
all three covariance components (Fig. 10b). At the dry site
with larger storage capacity (Site 2), E, Q and 1S do not
simply follow P (Fig. 10c). As a consequence, the vari-
ance of P (σ 2

P = 2798.0 mm2) is shared between E (σ 2
E =

1150.2 mm2), 1S (σ 2
1S = 800.5 mm2) and their covariance

component (2cov(E,1S)= 538.4 mm2, Fig. 10d). Switch-
ing now to the remaining wet and hot site (Site 3), we note
that Q closely follows P , with 1S close to zero and E

showing little inter-annual variation (Fig. 10e). The vari-
ance of P (σ 2

P = 57374.4 mm2) is relatively large and al-
most completely partitioned into the variance of Q (σ 2

Q =

57296.4 mm2), leaving very limited variance for E and 1S
and the three covariance components (Fig. 10f). We also ex-
amined numerous other sites with similar extreme conditions
as the three case study sites and found the same basic patterns
as reported above.

To put the data from the three case study sites into a
broader variability context we position the site data onto a
backdrop of Fig. 6. As noted previously, at Site 1, the ratio
σ 2
E/σ

2
P is very close to unity (Fig. 11a), and under this ex-

treme condition, we have the following approximation:

σ 2
P ≈ σ

2
E (Site 1, dry and Smax ≈ 0) (3)

In contrast, for Site 2 with the same aridity index but higher
Smax, we have

σ 2
P ≈ σ

2
E + σ

2
1S + 2cov(E,1S)

(Site 2, dry and Smax� 0). (4)

Finally, at Site 3, we have

σ 2
P ≈ σ

2
Q (Site 3, wet and hot). (5)

4.5 Synthesis

The above simple examples demonstrate that aridity Eo/P ,
storage capacity Smax and, to a lesser extent, air temperature
Ta, all play some role in the partitioning of σ 2

P to the various
components. Our synthesis of the results for the partitioning
of σ 2

P is summarized in Fig. 12. In dry environments with
low storage capacity (Smax ≈ 0) we have minimal runoff and
expect that σ 2

P is more or less completely partitioned into σ 2
E

(Fig. 12a). In those environments, (inter-annual) variations in
storage σ 2

1S play a limited role in setting the overall variabil-
ity. However, in dry environments with larger storage capac-
ity (Smax� 0), σ 2

E is only a small fraction of σ 2
P (Fig. 12a),

leaving most of the overall variance in σ 2
P to be partitioned to

σ 2
1S and the covariance between E and 1S (Fig. 12c and e).

This emphasizes the hydrological importance of water stor-
age capacity in buffering variations of the water cycle under
dry conditions.

Under extremely wet conditions, the largest difference in
variance partitioning is not due to differences in storage ca-
pacity but is instead related to differences in mean air tem-
perature. In wet and hot environments, we have maximum
runoff and find that σ 2

P is more or less completely parti-
tioned into σ 2

Q (Fig. 12b) while the partitioning to σ 2
E and

σ 2
1S is small. However, in wet and cold environments, the

variance partitioning shows great complexity, with σ 2
P be-

ing partitioned into all possible components. We suggest that
this emphasizes the hydrological importance of thermal pro-
cesses (melting/freezing) under extremely cold conditions.

However, the most complex patterns to interpret are those
for semi-arid to semi-humid environments (i.e. Eo/P ∼ 1.0).
Despite a multitude of attempts over an extended period we
were unable to develop a simple useful synthesis to sum-
marize the partitioning of variability in those environments.
We found that the three covariance terms all play important
roles and we also found that simple environmental gradi-
ents (e.g. dry/wet, high/low storage capacity, hot/cold) could
not easily explain the observed patterns. We anticipate that
vegetation-related processes (e.g. phenology, rooting depth,
gas exchange characteristics, disturbance) may prove to be
important in explaining hydrologic variability in these bio-
logically productive regions that support most of the human
population. This result implies that a major scientific effort
will be needed to develop a synthesis of the controlling fac-
tors for variability of the water cycle in these environments.
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Figure 10. Inter-annual time series (P , E, Q and 1S) and the associated variance-covariance matrix (E, Q and 1S) for case study Sites 1–
3. Left column shows time series for (a) Site 1, (c) Site 2 and (e) Site 3, with right column, i.e. panels (b), (d) and (f), the associated
variance–covariance matrix for three sites. Note that the covariance values in the tables should be multiplied by two to agree with the
variance–covariance balance in Eq. (2).

5 Discussion and conclusions

Importantly, hydrologists have long been interested in hy-
drologic variability, but without readily available databases
it has been difficult to quantify water cycle variability. For
example, we are not aware of maps showing global spatial
patterns in variance for any terms of the water balance (ex-
cept for P ). In this study, we describe an initial investiga-
tion of the inter-annual variability of the terrestrial branch in
the global water cycle that uses the recently released global
monthly Climate Data Record (CDR) database for P , E, Q
and 1S. The CDR is one of the first dedicated hydrologic
reanalysis databases and includes data for a 27-year period.
Accordingly, we could only examine hydrologic variability
over this relatively short period. Further, we expect future
improvements and modifications as the hydrologic commu-
nity seeks to further develop and refine these new reanalysis
databases. With those caveats in mind, we started this anal-

ysis by first investigating the partitioning of P in the water
cycle in terms of long-term mean and then extended that to
the inter-annual variability using a theoretical variance bal-
ance equation (Eq. 2). Despite the initial nature of this inves-
tigation we have been able to establish some useful general
principles.

The mean annual P is mostly partitioned into mean annual
E and Q, as is well known, and the results using the CDR
were generally consistent with the earlier Budyko framework
(Fig. 2). Having established that, the first general finding is
that the spatial pattern in the partitioning of inter-annual vari-
ability in the water cycle is not simply a reflection of the
spatial pattern in the partitioning of the long-term mean. In
particular, with the variance calculations, the annual anoma-
lies are squared and hence the storage anomalies do not can-
cel out like they do when calculating the mean. With that in
mind, we were surprised that the inter-annual variability of
water storage change (σ 2

1S) is typically larger than the inter-
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Figure 11. Location of three case study sites in the water cycle variability space. The grey background dots are from Fig. 6.

annual variability of evapotranspiration (σ 2
E) (cf. Fig. 3b and

d). The consequence is that σ 2
1S is more important than σ 2

E

for understanding inter-annual variability of the global wa-
ter cycle. A second important generalization is that unlike
the variance components which are all positive, the three co-
variance components in the theory (Eq. 2) can be both posi-
tive and negative. We report results here showing both large
positive and negative values for the three covariance terms
(Fig. 3e, f, g). This was especially prevalent in biologically
productive regions (0.5<Eo/P < 1.5, Fig. 3e, g). When ex-
amining the mean state, we are accustomed to think that P
sets a limit to E, Q and 1S, as per the mass balance (Eq. 1).
But the same thinking does not extend to the variance bal-
ance since the covariance terms on the right-hand side of
Eq. (2) can be both large and negative, leading to circum-
stances where the variability in the sinks (σ 2

E , σ 2
Q, σ 2

1S) could
actually exceed variability in the source (σ 2

P ). These general
principles of variance partitioning in the water cycle above
may vary at different timescales (e.g. monthly, daily), and
we expect more details of the variability partitioning across
various temporal scales to be investigated in future studies.

Our initial attempt to develop deeper understanding of
variance partitioning was based on a series of case studies

located in extreme environments (wet/dry vs. hot/cold vs.
high/low water storage capacity). The results offered some
further insights about hydrologic variability. For example,
under extremely dry (water-limited) environments, with lim-
ited storage capacity (Smax), we found that E follows P and
σ 2
E follows σ 2

P , with σ 2
Q and σ 2

1S both approaching zero.
However, as Smax increases, the partitioning of σ 2

P progres-
sively shifts to a balance between σ 2

E , σ 2
1S and cov(E,1S)

(Figs. 10–12). This result explains the overestimation of
σE/σP by the empirical theory of Koster and Suarez (1999)
which implicitly assumed no inter-annual change in storage.
The Koster and Suarez empirical theory is perhaps better de-
scribed as an upper limit that is based on minimal storage ca-
pacity, and that any increase in storage capacity would pro-
mote the partitioning of σ 2

P to σ 2
1S , particularly under dry

conditions (Figs. 10–12).
In extremely wet/hot environments (i.e. no snow/ice pres-

ence) we found σ 2
P to be mostly partitioned to σ 2

Q (with
both σ 2

E and σ 2
1S approaching zero, Fig. 10). In con-

trast, in extremely wet/cold environments, the partitioning
of σ 2

P was highly (spatially) variable, presumably because
of spatial variability in the all-important thermal processes
(freeze/melt).
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Figure 12. Synthesis of factors controlling variance partitioning. The arrows denote trends with increasing Smax. The grey background dots
are from Fig. 6.

The most complex results were found in mesic biolog-
ically productive environments (0.5<Eo/P < 1.5), where
all three covariance terms (Eq. 2) were found to be relatively
large and therefore they all played critical roles in the overall
partitioning of variability (Fig. 6). As noted above, in many
of these regions, the (absolute) magnitudes of the covariances
were actually larger than the variances of the water balance
components E, Q and 1S (e.g. Fig. 3). That result demon-
strates that deeper understanding of the process-level interac-
tions that are embedded within each of the three covariance
terms (e.g. the role of seasonal vegetation variation) will be
needed to develop process-based understanding of variabil-
ity in the water cycle in these biologically productive regions
(0.5<Eo/P < 1.5).

The syntheses of the long-term mean water cycle origi-
nated in 1970s (Budyko, 1974), and it took several decades
for those general principles to become widely adopted in the
hydrologic community. The hydrologic data needed to un-
derstand hydrologic variability are only now becoming avail-
able. With those data we can begin to develop a process-
based understanding of hydrologic variability that can be
used for a variety of purposes; e.g. deeper understanding of
hydro-climatic behaviour, hydrologic risk analysis, climate

change assessments and hydrologic sensitivity studies are
just a few applications that spring to mind. The initial re-
sults presented here show that a major intellectual effort will
be needed to develop a general understanding of hydrologic
variability.

Data availability. The global terrestrial water budget used in
this study can be accessed at http://stream.princeton.edu:8080/
opendap/MEaSUREs/WC_MULTISOURCES_WB_050/ (Zhang
et al., 2018). The NASA/GEWEX Surface Radiation Budget (SRB)
is available at https://eosweb.larc.nasa.gov/project/srb/srb_table
(last access: 10 August 2018; Stackhouse et al., 2011). The
global land air temperature dataset from the Climatic Re-
search Unit (CRU TS4.01 database) can be downloaded
from http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.01
(Harris et al., 2014). The FLUXNET data are available at
https://fluxnet.fluxdata.org/ (last access: 8 March 2018). The Land-
FluxEval, MPI and E-RUN databases used for further validation
are published by Mueller et al. (2013), Jung et al. (2010) and
Gudmundsson and Seneviratne (2016b), respectively.
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