Articles | Volume 24, issue 4
Hydrol. Earth Syst. Sci., 24, 1957–1973, 2020
https://doi.org/10.5194/hess-24-1957-2020
Hydrol. Earth Syst. Sci., 24, 1957–1973, 2020
https://doi.org/10.5194/hess-24-1957-2020
Research article
17 Apr 2020
Research article | 17 Apr 2020

Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality

Shaoning Lv et al.

Related authors

A Novel Global Freeze-Thaw State Detection Algorithm Based on Passive L-Band Microwave Remote Sensing
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369,https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022,https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022,https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary

Cited articles

Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, 1996. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. 
Baroni, G., Zink, M., Kumar, R., Samaniego, L., and Attinger, S.: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales, Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, 2017. 
Bhuiyan, H. A. K. M., McNairn, H., Powers, J., Friesen, M., Pacheco, A., Jackson, T. J., Cosh, M. H., Colliander, A., Berg, A., Rowlandson, T., Bullock, P., and Magagi, R.: Assessing SMAP Soil Moisture Scaling and Retrieval in the Carman (Canada) Study Site, Vadose Zone J., 17, 180132, https://doi.org/10.2136/vzj2018.07.0132, 2018. 
Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R.: Spatial-temporal variability of soil moisture and its estimation across scales, Water Resour. Res., 46, W02516, https://doi.org/10.1029/2009wr008016, 2010. 
Download
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.