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Abstract. Microwave remote sensing is the most promis-
ing tool for monitoring near-surface soil moisture distribu-
tions globally. With the Soil Moisture and Ocean Salinity
(SMOS) and Soil Moisture Active Passive (SMAP) missions
in orbit, considerable efforts are being made to evaluate de-
rived soil moisture products via ground observations, mi-
crowave transfer simulation, and independent remote sensing
retrievals. Due to the large footprint of the satellite radiome-
ters of about 40 km in diameter and the spatial heterogeneity
of soil moisture, minimum sampling densities for soil mois-
ture are required to challenge the targeted precision. Here
we use 400 m resolution simulations with the regional Ter-
restrial System Modeling Platform (TerrSysMP) and its cou-
pling with the Community Microwave Emission Modelling
platform (CMEM) to quantify the maximum sampling dis-
tance allowed for soil moisture and brightness temperature
validation. Our analysis suggests that an overall sampling
distance of finer than 6 km is required to validate the targeted
accuracy of 0.04 cm3 cm−3 with a 70 % confidence level in
SMOS and SMAP estimates over typical mid-latitude Euro-
pean regions. The maximum allowed sampling distance de-
pends on the land-surface heterogeneity and the meteorologi-
cal situation, which influences the soil moisture patterns, and
ranges from about 6 to 17 km for a 70 % confidence level
for a typical year. At the maximum allowed sampling dis-
tance on a 70 % confidence level, the accuracy of footprint-
averaged soil moisture is equal to or better than brightness
temperature estimates over the same area. Estimates strongly
deteriorate with larger sampling distances. For the evalua-
tion of the smaller footprints of the active and active–passive

products of SMAP the required sampling densities increase;
e.g., when a grid resolution of 3 km diameter is sampled by
three sites of footprints of 9 km sampled by five sites re-
quired, only 50 %–60 % of the pixels have a sampling er-
ror below the nominal values. The required minimum sam-
pling densities for ground-based radiometer networks to es-
timate footprint-averaged brightness temperature are higher
than for soil moisture due to the non-linearities of radiative
transfer, and only weakly correlated in space and time. This
study provides a basis for a better understanding of the some-
times strong mismatches between derived satellite soil mois-
ture products and ground-based measurements.

1 Introduction

Information on the global soil moisture distribution is re-
quired, for example, for weather forecasting, climate re-
search, and agricultural applications. Due to the high spatial
variability of soil moisture, its in situ observation is prac-
tically impossible on continental scales. Passive microwave
satellite remote sensing at L-band frequencies may achieve
this goal because of the strong dependency of the soil dielec-
tric constant on soil moisture, the – compared to higher fre-
quencies – reduced sensitivity of the brightness temperatures
to surface roughness and vegetation (Njoku and Kong, 1977;
Ulaby et al., 1986), and the high transparency of the atmo-
sphere at these wavelengths. The first operational L-band soil
moisture detection satellite, SMOS (Soil Moisture and Ocean
Salinity), was launched in 2008 (Kerr et al., 2010) and was
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followed in 2015 by SMAP (Soil Moisture Active Passive),
which initially were performing with an active instrument to
achieve higher spatial resolution (Entekhabi et al., 2010); the
active component did fail, however, shortly after the full op-
eration of the satellite. Both satellites are currently continu-
ously and globally observing passive microwave brightness
temperatures, from which soil moisture products are derived
at a spatial resolution of 36 and 9 km.

Before and after the launch of SMOS and SMAP sev-
eral soil moisture monitoring networks for evaluation and
retrieval algorithm development were established, such as
ESA’s efforts at the Valencia Anchor Station (VAS) in east-
ern Spain, SMOSREX (Surface Monitoring Of Soil Reser-
voir Experiment) in France, the upper Danube watershed lo-
cated in southern Germany (Delwart et al., 2008; de Rosnay
et al., 2006; dall’Amico et al., 2012; Kerr et al., 2016), and
the SMAP calibration–validation (Cal/Val) project (Collian-
der et al., 2017a; Burgin et al., 2017; Chen et al., 2017, 2018).
All those networks have been established since ground truth
should be the only standard to evaluate these products. Ac-
cording to the Level 1 baseline and the minimum SMAP
science requirements (SMAP Science Data Cal/Val Plan,
O’Neill et al., 2015) the spatial resolution of Level 2 (passive
soil moisture product L2_SM_P) and Level 3 (daily com-
posite L3_SM_P) soil moisture products is 36 km, and they
have to reach an accuracy for soil moisture of 0.04 cm3 cm−3

with a probability of 70 %. A wide range of measurement
techniques and protocols exist for setting up and perform-
ing ground-based observations for such evaluations. SMAP
Cal/Val suggests that volumetric soil moisture should be ob-
served in situ at 5 and 100 cm depth; optimal sensing and
mounting depths are, however, still debated (Lv et al., 2016a,
2018, 2019). For core validation sites a minimum of six sta-
tions should cover one SMAP grid cell or footprint (O’Neill
et al., 2015; Famiglietti et al., 2008); but this value has not yet
been shown to guarantee the nominal accuracy by a thorough
analysis (Jackson et al., 2012; Crow et al., 2012). More recent
results show that the spatial representativeness of the soil
moisture tends to increase with the timescale of data series,
but so does their spread (Molero et al., 2018). For Cal/Val, it
is required to have instantaneous soil moisture values rather
than averages in different timescales. Relevant studies typi-
cally use ground-based soil moisture networks with fixed av-
erage sampling distance over rather homogeneous land sur-
faces, which are, however, not necessarily representative for
all land surface types. For SMAP core calibration and valida-
tion sites, the data product grid cell should be sampled with
at least eight stations to reach with 70 % confidence an es-
timated soil moisture uncertainty of 0.03 cm3 cm−3 given a
spatial soil moisture standard deviation of 0.07 cm3 cm−3 as
assessed from field measurements (Colliander et al., 2017b).
According to the same source, grid cells with a dimension
of 9 km (as for downscaled SMAP products) should be sam-
pled with at least five stations and pixels with 3 km diam-
eter with at least three stations to reach with 70 % confi-

dence an accuracy of 0.03 and 0.05 cm3 cm−3, respectively,
while assuming a spatial soil moisture standard deviation of
0.05 cm3 cm−3 within the grid cell.

Ochsner et al. (2013) point out that too few resources are
currently devoted to in situ soil moisture monitoring net-
works, and that despite their increasing number, a standard
for network density and sampling procedures is missing. The
International Soil Moisture Network (ISMN, https://ismn.
geo.tuwien.ac.at/en/, last access: 11 April 2020) is an effort
to unify global soil moisture observation networks (Dorigo
et al., 2011). Coopersmith et al. (2016) suggested temporary
network extensions around permanent installations to quan-
tify the representativeness of the latter. Qin et al. (2013) sug-
gested the use of MODIS-derived apparent thermal inertia to
interpolate between in situ soil moisture measurements. So
far, the required sampling density is discussed only concern-
ing in situ measurements, which heavily depend on sensor
quality and network location (Vereecken et al., 2008; Brocca
et al., 2010; Bhuiyan et al., 2018). Higher station numbers are
necessary, as well as the establishment of general rules for
their selection (Cosh et al., 2017). Chen et al. (2017, 2018,
2019) suggest the utilization of TC (triple collocation), which
is a statistic method to characterize systematic biases and
random errors, or ETC (extended triple collocation) to an-
alyze the noise component in soil moisture observations, and
to use correlation to evaluate the representativeness of soil
moisture networks. They also suggest that the core validation
sites should allow validation of the retrieved soil moisture to
an accuracy of 0.04 cm3 cm−3 with a probability of 70 % in
terms of unbiased RMSE because the bias itself is hard to
eliminate.

Establishing ground monitoring networks for calibration
and validation of soil moisture products from satellite L-band
observations is challenging partly due to the different spatial
scales between observations from soil moisture sensors and
satellites. Moreover, from a direct comparison between satel-
lite soil moisture products and ground-based measurements
from existing soil moisture networks, it is impossible to iso-
late the sampling error, and only very few studies system-
atically investigate the station density required to allow for a
given accuracy, taking the land heterogeneity into account. In
our study, we use a 400 m resolution virtual reality generated
with a regional terrestrial modeling system coupled with an
observation operator to estimate such minimum station den-
sities. The virtual reality contains realistic soil, land cover,
and topography variability and allows us to arbitrarily vary
the sampling density and, thus, average sampling distance in
steps of 400 m. Section 2 introduces the virtual reality, and
the observation operator used to transfer the terrestrial sys-
tem states into virtual observations. In Sect. 3, we derive the
error growth with increasing average sampling distance for
soil moisture and brightness temperatures. Conclusions and
discussion are provided in Sect. 4.
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2 Methodology and data

2.1 Virtual reality

The modeling system used to create the virtual reality
from which we draw the virtual soil moisture observations
and compute brightness temperatures is the Terrestrial Sys-
tems Modeling Platform (TerrSysMP, Shrestha et al., 2014;
Gasper et al., 2014; Sulis et al., 2015) developed within
the framework of the Transregional Collaborative Research
Center 32 (TR32, Simmer et al., 2015). TerrSysMP consists
of the atmospheric model COSMO (Consortium For Small
Scale Modelling, Baldauf, et al., 2011), the land surface
model CLM (Community Land Model Version 3.5, Oleson
et al., 2008), and the distributed hydrological model ParFlow
v693 (Ashby and Falgout, 1996; Kollet et al., 2010). The
platform, specially designed for high-performance comput-
ing environments (Gasper et al., 2014), has been extensively
evaluated against observations (Sulis et al., 2015; Shrestha et
al., 2018a) as well as similar regional terrestrial system mod-
els (Sulis et al., 2015). The effect of spatial resolution on
simulated soil moisture and the resulting exchange fluxes be-
tween land and atmosphere has been studied with TerrSysMP
by Shrestha et al. (2014, 2018b).

We use for this study available simulation results gener-
ated by the research unit FOR2131 (Schalge et al., 2016,
2019) over an area containing the Neckar catchment in south-
western Germany in its center (Fig. 1). CLM and ParFlow
were run at the horizontal computational grid with 400 m
resolution. ParFlow has 50 vertical soil layers in which the
upper 10 coincide with the 10 soil layers of CLM. The ver-
tical resolution is variable with smaller steps near the land
surface. The atmospheric model COSMO runs at a 1.1 km
horizontal resolution, and COSMO is forced at the lateral
boundaries with a COSMO-DE analysis from the operational
weather forecast run by the German national weather ser-
vice (Deutscher Wetterdienst, DWD) available at hourly time
steps. The main topographic features of the modeling area
are the upper Rhine valley in the west, the Black Forest in
the southwest, and the foothills of the Alps in the south. The
heights range from 80 to 1900 m. The area was selected by
the research unit because of its heterogeneity in topography
and land use, typical for midlatitude European river catch-
ments; thus, it is also well suited for our study. The objective
of the research unit is the setup and test of a strongly cou-
pled data assimilation system with a fully coupled regional
terrestrial model. Their virtual reality run (VR01), the results
of which we are exploiting in this study, is the so-called na-
ture run from which the research unit draws the virtual obser-
vations to be assimilated in a lower-resolved model version
using ensemble methods. The model area can be covered by
about 15×20 SMOS pixels, which suffices for the statistical
analyses performed to determine required sampling densi-
ties. There exist two soil moisture monitoring networks close
to the domain, which are used for soil moisture validation

studies with satellite-based L-band observations (Montzka et
al., 2013).

The topographic data for VR01 are obtained
from the European Environment Agency (EEA;
http://www.eea.europa.eu/data-and-maps/data/eu-dem,
last access: 11 April 2020), which is also the source for
the CORINE land-use data (http://www.eea.europa.eu/
data-and-maps/data/corine-land-cover-2006-raster-3, last
access: 11 April 2020) used to characterize vegetation in the
model domain. Since CORINE uses many more land-use
classes than CLM, the CORINE classes are aggregated to
the five classes discriminated in the CLM in the modeling
area: broadleaf forests which can be found mostly in hilly
areas throughout the domain in smaller patches, needle-leaf
forests which dominate at a higher elevation such as the
Black Forest, grassland which is relatively rare and only
appears in small patches, and crops which are the most
dominant land-use type throughout the domain and appear
almost anywhere. All other classes, such as urban areas, are
treated as bare soil in VR01.

The leaf area index (LAI) for the specific plant classes
is taken from MODIS estimates corrected for known biases
(Tian et al., 2004). Instead of the tiling approach imple-
mented in CLM, the dominant land-use type for each grid
cell is used, because the resolution of 400 m is high enough
to warrant this approach. The SAI (stem area index) is esti-
mated from the LAI by formulations slightly modified from
those implemented in the CLM. For crops, SAI is just 10 %
of the LAI; thus, SAI is larger in summer than in winter. For
all other types, SAI is 10 % of LAI plus a “dead leaf” com-
ponent. The “dead leaf” component is estimated empirically
from the change of the LAI from the previous and current
month. The “dead leaf” component is only a major contrib-
utor during fall, but even there the needle-leaf trees, for in-
stance, show only a small increase in SAI. The VR01 region
is mostly covered by deciduous trees that have 1–2 months
of high SAI because the dead-leaf component decays rather
quickly. Details about SAI calculation in VR01 are described
in Schalge et al. (2016), Lawrence and Chase (2007), and
Zeng et al. (2002).

The soil map (Fig. 1a–b) is derived from a product of
the German Federal Institute for Geosciences and Natural
Resources (BGR; https://www.bgr.bund.de/DE/Themen/
Boden/Informationsgrundlagen/Bodenkundliche_Karten_
Datenbanken/BUEK1000/Nutz_BUEK/nutz_buek_node.
html, last access: 11 April 2020). Soil values for regions near
the edge of the modeling domain in France and Switzerland
are extrapolated. Variability was added to the relatively large
polygons of constant soil parameters to better represent what
would be found in reality at higher resolutions, following
Baroni et al. (2017). The soil color is derived from the
carbon content of the soil, with carbon-rich soils being
darker, except for the bare soil areas, which all use the
same relatively light color class. There is deep soil geology
included in ParFlow as well as alluvial channels below rivers
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Figure 1. TerrSysMP simulation area at 400 m resolution with the Neckar catchment roughly in the center indicated by the black line. Soil
sand (a) and clay fractions (b) are displayed in (a, b), while the plant functional types (PTFs) used by CLM are shown in (c), and topography
(in m) in (d).

to account for deeper subsurface flow, but these features
will not directly impact the results shown here as they only
appear below the soil layers.

2.2 Generation of L-band passive microwave
observations

The radiative transfer model CMEM (de Rosnay et al., 2009)
computes the land emissivity based on a dielectric mixture
model for soil moisture, soil sand and clay fractions, soil
surface roughness, vegetation optical thickness, single scat-
tering albedo, and land surface orientation relative to the
satellite viewing perspective. Depending on the sand and
clay fractions, brightness temperatures may vary by tens of
Kelvins, given the same near-surface soil moisture. Vegeta-
tion optical thickness depends on LAI, which varies in the
VR01 with time depending on plant functional type (PFT).
Depending on the particular PFT, CMEM uses different pa-
rameters to calculate the vegetation optical thickness from
the respective LAI. Soil effective temperature is computed
with a new scheme introduced by Lv et al. (2014). The new
scheme is a discretization of the integral formulation and
takes advantage of multi-layer soil temperature and moisture
profile information with a broader range of soil properties.
This allows better adaptation of CMEM to the available land
surface model data. Also, soil temperature and snow depth

impact the simulated brightness temperatures. More details
can be found in the SMOS global surface emission model
handbook (de Rosnay et al., 2009).

From the 400 m resolution brightness temperatures, virtual
satellite observations are generated with CMEM, taking the
satellite antenna function into account. Figure 2 shows the
centers of the ∼ 320 footprints corresponding to the SMOS
L1 TB data product at a 41◦ incidence angle for a poten-
tial satellite overpass and – on the same scale – the satellite
antenna function for one footprint, which changes shape de-
pending on the elevation of the individual 400 m model grid
areas, orbit altitude, declination, satellite scanning and inci-
dence angle.

Not each SMOS overflight will cover the whole area in re-
ality. But in our study, we assume for simplicity that all foot-
prints indicated in Fig. 2 are observed once a day at 06:00
local time, which corresponds to the approximate ascending
and descending overpass time of SMOS and SMAP, respec-
tively. The satellite footprint is much larger than the nominal
satellite spatial resolution of 40 km that is defined by a 3 dB
contour of the main lobe; thus areas much larger in diame-
ter contribute to one satellite-observed brightness tempera-
ture (i.e., 50 % of one satellite-observed brightness tempera-
ture originates from an area roughly 10 times larger than the
nominal satellite footprint).
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Figure 2. Dots in (a) indicate the centers of SMOS footprints for one hypothetical satellite overpass, and (b) shows the antenna pattern of
one satellite footprint at nadir on the same scale as the map in (a).

The virtual reality employed in this study is a physically
consistent state of the terrestrial system in space and time be-
cause it has been produced by a numerical model based on
the conservations equations for mass, energy, and momen-
tum. When applying the satellite observation operator to this
model state, we assume that the model state is correct, as well
as the simulated brightness temperature. Thus, our study only
quantifies the impact of the sampling density of a surface net-
work on the comparison between area-averaged values and
their estimates from the surface network, i.e., we ignore er-
rors of the dynamic model (TerrSysMP) and the forward op-
erator (CMEM). Based on the modeling results, we analyze a
range of ground-based network configurations with sampling
points at least 400 m apart, and we assume that all quantities
(state of the terrestrial system and brightness temperature) do
not vary within 400 m. While this is an approximation, we
believe that our results and their outcome can be generalized.
We will come back to this point in the discussion section.

Since one SMOS and SMAP footprint covers approxi-
mately 106× 106 model grid columns in the VR01, the re-
spective area can be sampled up to a maximum of 106×106
(virtual) sites. If the footprint area is sampled with n sites,
there are Cn

106×106 sampling combinations (SCs, hereafter)
possible, with

SC= Cn
106×106 =

1062
!

n!(1062
− n)!

, (1)

which is an unordered, non-overlapping collection of distinct
elements of a prescribed size taken from a given set. For ex-
ample, with a 10 km distance between sampling sites, about
6× 6 sampling sites are possible within one footprint, which
can be spatially distributed in C6×6

106×106 ≈ 1.69×10104 ways.
It is computationally not feasible to consider all those com-

binations. When, however, we first divide each footprint into
equally sized subareas each containing exactly one sampling
site (this assumes a certain degree of homogeneity within the
network, which would in reality also be strived for), the num-
ber of potential sampling networks is drastically reduced. If
we set the sampling distance within a 43× 43 km2 area to

i km, we divide the footprint into
(

43
i

)2
subareas each con-

taining 106×106/
(

43
i

)2
≈ 6.08×i2 400 m-resolution model

columns. When we further select within each of the equally
sized subareas of a satellite footprint the same model col-
umn (i.e., the one with row number k and column number
l, both starting at 1 in the upper left column of each sub-
area), a regular equidistant observation network within the
SMOS–SMAP footprints is enforced similar to the one used
in the study by Famiglietti et al. (2008). For each footprint
(subscript f ) at a particular time (subscript t) of a certain
sampling distance (i km, subscript d), the number of network
configurations SCftd is

SCftd = 106× 106/

(
43
i

)2

≈

(
i

0.406

)2

. (2)

This results for a certain sampling distance (i km) for all 320
footprints and all 365 d of a year to a sample size of

SCft =

[
106× 106/

(
43
i

)2
]
× 365× 320, (3)

from which we will compute the PDF of the resulting sam-
pling errors. For each day, given one observation per day for
all 320 footprints and summed over all sampling distances,
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we get samples of size

SCtd =

18∑
i=0.8

[
106× 106/

(
43
i

)2
]
× 320, (4)

from which we will compute PDFs of the maximum allowed
sampling distances. For each grid cell with one observation
per day taken over 1 year and summed over all sampling dis-
tances, we get

SCfd =

18∑
i=0.8

[
106× 106/

(
43
i

)2

,

]
× 365 (5)

from which we determine the spatial distribution of the
maximum allowed sampling distances. For example, for
800 m sampling distance, we determine the maximum from(

0.8
0.4

)2
×365×320= 467200 samples, the number of which

increases with the square of the sampling distance.
The sampling described above is applied to soil mois-

ture (brightness temperature) with (without) considering the
satellite weighting function (Fig. 2b). Since SMAP Cal/Val
requires that the nominal accuracy of 0.04 cm3 cm−3 for re-
trievals should meet with a probability of 70 %, we take the
error at the 70th percentile, if not specified otherwise. In the
following, we mostly use the more intuitive sampling dis-
tance (km), but also the sampling density (sites per square
kilometer) when we are qualifying tendencies. The relation-
ship between the sampling distance and the sampling density
is simply

sampling density=
1

sampling distance2 . (6)

For example, the 15, 5, and 3 sites for grid cells with di-
ameters of 36, 9, and 3 km recommended by SMAP Cal/Val
would be around 0.0116, 0.0617, and 0.3333 sites per square
kilometer and correspond to sampling distances of 9.295,
4.025, and 1.732 km, respectively. We note here that the
grid size of the SMAP passive soil moisture product is
36 km×36 km per pixel, which is the ISEA-4H9 discrete
global grid for SMOS (43 km×43 km). The 43 km in all
equations shall be exchanged by 36 km when computing the
number of sampling networks by Eqs. (1) to (3).

3 Results

We first discuss in detail the results for soil moisture sam-
pling. Then we extend the same methodology to brightness
temperature and compare both results. We also evaluate the
potential sampling error for “footprints” with grid sizes of
3 and 9 km, because the SMAP products also include com-
bined active–passive soil moisture retrievals at higher spatial
resolutions (e.g., EASE-grid 9 km) and a product only based
on the active sensor (EASE-grid 3 km). Two kinds of percent-
ages are used in this study. One is the confidence level, which

is related to the number of potential network configurations
for one footprint as given by Eq. (2). The other percentage
is related to the PDF of the maximum allowed sampling dis-
tance with a confidence level of 70 % (we also use 100 % for
comparison), which is based on Eqs. (3), (4), and (5). The
site numbers defined by SMAP are equivalent to the latter.

3.1 Soil moisture

We compare the true (but virtual) spatial arithmetic aver-
age of soil moisture at the SMOS–SMAP resolution with
the arithmetic average of soil moisture at 0.05 m depth com-
puted from the sampling points taken at distances ranging
from 400 m (i.e., each VR01 grid column, no sampling er-
ror) to 18 km (about half the radius of a SMAP or SMOS
pixel. First, we analyze the probability density function of
the sampling error as it varies with the sampling distance,
taking the SCft samples for one whole year of all footprints
in the entire model area into account (Eq. 3, Figs. 3 and 6).
Then we analyze the evolution over the year of the daily PDF
of the maximum allowed sampling distance (for keeping the
sampling error below the nominal value of 0.04 cm3 cm−3

with 70 % confidence) from SCtd samples (Eq. 4, Figs. 4 and
7). Finally, we look at the spatial variability of the maxi-
mum allowed sampling distance (for keeping the sampling
error below the nominal value of 0.04 cm3 cm−3 with 70 %
confidence) based on all samples of one SMOS–SMAP pixel
over the year SCfd (Eq. 5, Figs. 5 and 8). When we analyze
the sampling errors for brightness temperatures, we use foot-
print averages weighted by the antenna function; using the
weighting function according to the dB pattern for soil mois-
ture leads to differences below 0.01 cm3 cm−3; thus, the av-
eraging procedure does not impact our conclusions for soil
moisture.

We compute the maximum sampling error for each sam-
pling distance and each footprint from the daily observations
over 1 year of all network configurations. The distributions
of the corresponding 320 values are displayed in the box–
whisker plots in Fig. 3a. Thus each value entering the distri-
bution at a given sampling distance (individual box-whisker
plot in Fig. 3) stems from that sampling network for one of
the 320 SMOS footprints, which leads to the largest sampling
error, taking all daily observations over a year into account
(Eq. 3). With a sampling distance of 400 m, we accurately
reproduce the true (but virtual) arithmetic soil moisture av-
erage, i.e., the maximum error is zero. Maximum errors nat-
urally increase with sampling distance, as demonstrated by
the widening of the maximum error distribution. The median
of the maximum sampling error increases almost linearly,
with about 0.022 cm3 cm−3 per kilometer increase in sam-
pling distance. The spread of the maximum error increases
from less than 0.01 cm3 cm−3 at 0.8 km to approximately
0.4 cm3 cm−3 at 18 km, with quite some variability between
the sampling steps. To guarantee a sampling error below
0.04 cm3 cm−3 (the assumed accuracy of SMOS–SMAP re-
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Figure 3. Box–whisker plots, with the median in red, 25th and 75th percentiles as bounds of the box, and whiskers encompassing all values
of the maximum sampling errors for the 320 satellite footprints of the arithmetic mean soil moisture estimated for all network configurations
observing twice a day over 1 year at the given sampling distances (abscissa). Panel (a) shows the absolute maximum error, while (b) displays
the results for the 70th percentile of the sampling error distribution at each satellite footprint. The horizontal dashed line is the 0.04 cm3 cm−3

retrieval error anticipated for SMOS and SMAP.

trievals) with 100 % confidence everywhere in the region at
any time of the year (Fig. 3a), the maximum sampling dis-
tance should not exceed 2.8 km. With a 4.8 km sampling dis-
tance, for 50 % of the area and/or days of the year, we get
sampling errors above 0.04 cm3 cm−3. At a sampling dis-
tance of 4.4 km (about 18 sites within a 43 km×43 km pixel);
the same would hold for only 25 % of the satellite pixels.

Figure 3c displays the PDF of the maximum sampling er-
ror corresponding to the 70th percentile of the sampling error
PDF computed for each satellite pixel over the year. Thus, to
guarantee a sampling error below 0.04 cm3 cm−3 for all net-
work configurations for only up to 70 % of all pixels and all
days of the year, a minimum sampling distance of 6 km is re-
quired. At a sampling distance of 12 km, already only 50 % of
the pixels fulfill this requirement. Overall, about one-quarter
of the stations needed for 100 % confidence is needed, when
the requirement to stay within the 0.04 cm3 cm−3 error mar-
gin is relaxed to 70 %.

As outlined above, we can also quantify from the simu-
lations the allowed maximum sampling distance on a daily
basis from the samples with the size given by Eq. (4). Ac-
cording to Fig. 4b, for 80 % of the SMOS–SMAP pixels,
the maximum allowed sampling distance is between 8.4 and
16 km, which is 7–26 stations for SMOS (43 km) and 5–18
stations for SMAP passive (36 km) to keep the sampling er-

ror below 0.04 cm3 cm−3 with 70 % confidence. A seasonal
variation is not apparent, but rainfall events (Fig. 4a) affect
the distributions by increasing the maximum allowed sam-
pling distances because the surface soil moisture becomes
more homogeneously distributed in space due to the typi-
cally quite widespread precipitation in that region. The oppo-
site occurs during dry periods because evaporation, draining,
and runoff over various soil and land cover types tend to cre-
ate spatially heterogeneous soil moisture distributions, which
typically reaches its maximum at intermediate soil moisture
levels (Brocca et al., 2010).

The spatial distribution of the annual maximum sam-
pling distance allowed to guarantee a sampling error be-
low 0.04 cm3 cm−3 with 70 % confidence computed from the
samples given by Eq. (5) and its RMS for the year 2015
(Fig. 5) indicates that the southeastern region requires sam-
pling distances of only below 16 km; thus only nine sites
are needed within a SMOS–SMAP pixel to estimate the
footprint-averaged soil moisture with a sampling error be-
low 0.04 cm3 cm−3. Also, the annual variation is particu-
larly small (blue). For the rest of the region, maximum al-
lowed sampling distances range from 7 to 10 km (radius);
thus, more than nine sites are required within one footprint.
The annual variation of the maximum sampling distances for
those footprints is larger than in the southeast. The mean
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Figure 4. Precipitation in VR01 (a) and time series of the distribution of the maximum allowed soil moisture sampling distance for each
SMOS or SMAP pixel to assure a sampling error below 0.04 cm3 cm−3 (70 % confidence) for the year 2015 (b). The colored intensity
is proportional to the probability of occurrence. The 10th and 90th percentiles are indicated as blue and read lines, respectively. Every
precipitation event makes the soil moisture field more homogenous regarding high PDF and larger maximum spatial sampling distance,
which means fewer stations are required.

allowed sampling distances and their day-to-day changes
are only weakly correlated (correlation coefficient 0.40), but
show larger-scale common patterns.

3.2 Brightness temperature

We now determine the maximum sampling distances for net-
works of ground-based microwave radiometers allowed to
estimate SMOS–SMAP footprint brightness temperatures.
To this goal, we transform the target accuracy of SMOS–
SMAP soil moisture retrievals of 0.04 cm3 cm−3 to the ac-
curacy of the corresponding brightness temperature, which
is approximately 10 K for H polarization and 5 K for V po-
larization (10 K/5 K) according to CMEM forward simula-
tions (Sabater et al., 2011; Monerris Belda, 2009). We note
that this brightness temperature accuracy is not the instru-
ment observing error of the (virtual) microwave radiometer,
but the sensitivity of the microwave forward transfer model
to soil moisture. We are aware that the radiometric accuracies
of ground-based and satellite-borne sensors are much better,
and that the accuracy of the soil-moisture–brightness temper-

ature relation is mainly responsible for the retrieval accuracy;
thus, we use the 10 K/5 K uncertainty only as a proxy for the
overall error.

By comparing the high-res TB for certain sampling dis-
tances with the antenna pattern TB from the satellite opera-
tor, Fig. 6 shows different patterns to the soil moisture. Even
at a sampling distance of 800 m, the sampling error might
exceed the 10 K for H polarization (5 K for V polarization)
limit in certain regions and times. If we want to keep the limit
with a probability of only 75 percentiles (the upper boundary
of the boxes in Fig. 6, 100 % confidence panels), the maxi-
mum sampling distance must stay below 4.4 km. For a sam-
pling distance of 5.2 km, the error may go beyond the nom-
inal 10 K (5 K) with a probability of 50 %. For 9.2 km sam-
pling distance, and the maximum sampling error is always
above the nominal values for some region and/or a day in
the year. Even if we require that the nominal error is under-
cut only with a probability of 70 % for all pixels and days,
a sampling distance of 800 m is not enough. If only 50 % of
all networks are required to fulfill the 10 K/(5 K) bound, a
sampling distance of 10 km is sufficient.
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Figure 5. Spatial distribution of the mean of the maximum allowed
soil moisture sampling distance in the model area required for keep-
ing the maximum sampling error below 0.04 cm3 cm−3 over the
whole year. The circle radius indicates the maximum allowed sam-
pling distance in the scale shown in the map, while its color (see
color bar) gives the RMS of the maximum allowed sampling dis-
tance over time for the year 2015.

The time series of the distribution of the maximum sam-
pling distances for brightness temperature (Fig. 7) is quite
similar to the one for the maximum sampling distances for
soil moisture. Figure 7 only illustrates the periods without
freeze–thaw state transformations, and liquid water in the soil
dominates the brightness temperature signal. Values range
from 6.8 to 16.4 km for most cases. The spread of the sam-
pling error has, however, a distinct seasonal variation; e.g.,
the maximum sampling distance for 90 % of the footprints is
11.6 km from DOY 100 to 275 and 8.8 km for the rest of the
year.

The spatial distribution of the annual maximum sampling
distance allowed to guarantee a sampling error less than
10 K/5 K for H/V polarized brightness temperatures, and its
RMS for the year 2015 (Fig. 8) are similar for H and V polar-
izations but shows a substantial spatial contrast compared to
the results for soil moisture (Fig. 5). Again, the southeast cor-
ner of the model region allows for larger maximum sampling
distances, but there are now also other distinct regions with
larger allowed maximum sampling distances. Additional in-
put parameters required – especially LAI – and internal pa-
rameters in CMEM impact the representativeness of sites for
brightness temperatures. LAI dominates the variation of the
representativeness of ground-based observations and also its
temporal variation, as can be inferred from the correlation be-
tween large maximum sampling distances with its variability
over the year (correlation coefficient is 0.84/0.83 for H/V

polarization), which is not observed for soil moisture. LAI is
the only input in CMEM, which can lead to such a temporal
variation because other parameters such as air temperature,
soil moisture, and soil properties are either fixed or do not
impact the brightness temperature as strongly.

3.3 Maximum sampling distance differences between
soil moisture and brightness temperature

The differences in the variability of the maximum allowed
sampling distance for soil moisture and brightness tempera-
ture can be explained by using the microwave transfer model
CMEM. The relationship between soil moisture and bright-
ness temperature is complex and non-unique (Fig. 9a, b). For
example, a soil moisture value of 0.4 cm3 cm−3 relates to
brightness temperatures from 180 to 250 K for H polariza-
tion and 225 to 265 K for V polarization due to the variation
of vegetation cover, soil properties, and terrain.

As already mentioned in the introduction, the spatial res-
olution for the SMAP active product is 3 km and for the
passive–active merged soil moisture product 9 km. SMAP
CAL/VAL requires three stations for the evaluation of the
prior and five stations for the following product (Colliander
et al., 2017b). We computed the station distance required to
keep the sampling error below the nominal 0.04 cm3 cm−3

for both products by using the same methodology used
above. Due to limited computation capacity, only the higher-
resolution pixels in the center of the 43 km SMOS footprints
are evaluated. According to the results (Fig. 10), the proba-
bility that 3 and 9 km pixels sampled with 3 and 5 stations,
respectively, have sampling errors below the nominal value
of 0.04 cm3 cm−3 is below 40 % and thus much lower than
the required 70 %. The temporal variation of the confidence
level is larger for the 3 km than for the 9 km grid size.

3.4 The impact of land surface inhomogeneity

Areas with vegetation water content above 5 kg m−2 (mostly
forests) are flagged in SMAP retrievals. The networks used
in the studies by Colliander et al. (2017b) and Famiglietti
et al. (2008) were selected because of their relative homo-
geneity; thus, forested patches, open water, permanent ice
and snow, urban areas, and wetlands are excluded. Soil mois-
ture maps from SMAP/SMOS are, however, global. Thus es-
timates are provided everywhere, and signals from open wa-
ter surfaces on subgrid scales may influence the products. We
used our simulated observations to study the impact of sub-
pixel contributions of forested areas on the sampling errors.

In total, only 16 of the 320 footprints covering the model
area have forest fractions below 15 % and negligible surface
water contributions; such footprints are usually considered
ideal for soil moisture Cal/Val. In terms of both soil moisture
and brightness temperature, their maximum sampling errors
are considerably lower compared to all sites for all sampling
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Figure 6. Same as Fig. 3 but for the sampling error of the brightness temperature. The respective brightness temperature errors are (equivalent
to a soil moisture accuracy of 0.04 cm3 cm−3) 10 K for H polarization and 5 K for V polarization and are indicated as dashed horizontal
lines.

distances (Fig. 11). Thus, excluding sites with larger forest
fractions leads to lower sampling errors.

The results shown in Fig. 11 do not mean that forest sites
always have higher soil moisture errors than non-forest sites,
but by picking Cal/Val sites with favorable conditions re-
duces the required sampling density, which may, however,
affect their representativeness. Moreover, the required sam-
pling density inferred from non-forest sites cannot be ex-
tended to forest sites.

4 Conclusion and discussion

We used a virtual reality generated with a fully cou-
pled subsurface–vegetation–atmosphere model platform over
southwestern Germany with a spatial resolution of 400 m for
the land components to quantify the sampling error for the
arithmetic averaged soil moisture and the weighted average
brightness temperatures estimated from in situ ground-based
observation networks covering SMOS–SMAP-like footprints
of 43 km diameter for a wide range of potential sampling

distances. By using a virtual reality at such high resolution,
we have a physically consistent three-dimensional evolution
of the terrestrial system at our disposal from which we can
take virtual soil moisture observations and – via the radia-
tive transfer model CMEM and a satellite antenna function
– microwave brightness temperature observations from the
highest resolution at 400 m to any larger resolution.

As an upper threshold for the sampling error of ground-
based sensor networks when estimating averages over
SMOS–SMAP pixels, we adopted the target SMOS–SMAP
soil moisture retrieval accuracy of 0.04 cm3 cm−3. We quan-
tified the maximum sampling distance, which still keeps
the sampling error below that accuracy either for all or for
70 % of all SMOS–SMAP pixels in the modeling region over
1 year for all network configurations possible. A primary as-
sumption in our study is that the estimation of soil moisture
for an area with a diameter of about 400 m is possible, or
in other words that a single station within a 400 m area is
representative for its spatial average, an assumption also dis-
cussed in Famiglietti et al. (2008). Compared to the region
analyzed in Famiglietti et al. (2008), our study uses a much
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Figure 7. Time series of the distribution of maximum sampling distances (70 % confidence in 10 K/5 K for H/V polarization) for brightness
temperature at every sites in 2015. The color indicates the probability of occurrence.

Figure 8. Spatial distribution of the maximum distances of stations (diameter of circles, see scale) for surface-based brightness temperature
observations required to keep the sampling error below 10 K for H polarization (a) and 5 K for V polarization (b). The color of the circles
(see color bar) gives the RMS of the maximum sampling distance over time for the year 2015.

more realistic terrain and excludes subjective factors in se-
lecting suitable Cal/Val sites. Because of this, the soil mois-
ture error in our study grows much faster with increasing
sampling distance. We also find that the estimation of area-
averaged brightness temperatures from a network of ground-

based stations has a different error growth with increasing
sampling distance compared to soil moisture despite an ini-
tial linear growth for both of them (compare Figs. 3 and 6).
Thus, a representative soil moisture network does not guar-
antee a representative radiometer network for the estimation
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Figure 9. Scatter plots of the joint PDF between brightness temperature at H (a) and V (b) polarization against soil moisture computed from
the 400 m resolution virtual reality for 1 year. Both the temporal and spatial variation is included.

Figure 10. The spatial distribution of the soil moisture sampling confidence to achieve the 0.04 cm3 cm−3 accuracy requirement by sampling
3 km (a) and 9 km footprints (b) with three and five sites, respectively (see the scale below the color bar). The colors show the minimum
confidence level throughout the year 2015 for every footprint. The scale is soil moisture accuracy that can be achieved.

of area-averaged brightness temperature, or that brightness
temperatures computed for the soil moisture stations can be
used for that estimate. But Figs. 3 and 6 also show that sam-
pling distances below 6 km still fulfill the 70th percentage
requirement for keeping the sampling error below the nomi-
nal error.

Besides plant types, there is no apparent pattern similarity
between clay, sand, and elevation (Fig. 1) and spatial sam-
pling distance (Fig. 5). Soil properties may be related to the
regional climate (annual precipitation, radiation flux balance,
etc.). For instance, arid regions usually contain higher sand
fractions, but such areas are seldom the focus of soil mois-
ture studies because of their low variation. Transition zones
like our model area usually encompass various soil proper-
ties, which are often correlated with land use and vegetation

and thus the plant function type used in the CLM. Topog-
raphy also affects the soil moisture and TB distribution, but
it is difficult to infer the impact of land use and vegetation
because soil properties determine both the water holding ca-
pacity and the plant cover. In practice, soil moisture monitor-
ing networks avoid complex terrain. Homogenous terrain and
landscape lead to an overestimation of satellite soil moisture
product accuracies.

The statistical results in our study differ from those in
Famiglietti et al. (2008) because our focus is on the satellite
footprint scale and not the representativeness of one station
within a network. For example, a particular sensor may not
represent the actual 400 m average, but one such sensor every
400 m may statistically sufficiently represent a much larger
footprint. A similar concept is adapted in ensemble forecasts

Hydrol. Earth Syst. Sci., 24, 1957–1973, 2020 www.hydrol-earth-syst-sci.net/24/1957/2020/



S. Lv et al.: Required sampling density of ground-based soil moisture 1969

Figure 11. The maximum sampling errors of the arithmetic mean of soil moisture (a) and brightness temperature (b) estimated from all sites
and from sites with forest cover below 15 % against average sampling distance.

using members, e.g., with different physics packages, none of
which is expected to be the truth (Lewis, 2005; Leutbecher
and Palmer, 2008). The space detected by a soil moisture sen-
sor, which is measuring the dielectric constant of the soil or
other media using capacitance/frequency domain technology,
is about a 10 cm sphere. Thus, the study by Famiglietti et
al. (2008) assumes soil moisture homogeneity on the scale of
meters. We believe that the 400 m soil moisture homogenous
assumption does not interfere with our conclusions and that
our study can be considered as a complement to the study by
Famiglietti et al. (2008).

The calibration and validation of passive satellite-based L-
band soil moisture estimates are difficult due to the large
subpixel variability (Lv et al., 2016b, 2019). Even with a
perfect microwave transfer model and precise sensors, we
can hardly find an appropriate in situ observation to com-
pare with. While soil moisture also varies in the vertical, sen-
sors are usually mounted at a fixed depth; thus, comparisons
with satellite observations require the knowledge of the mi-
crowave penetration depth, which is, however, unknown in
general. Lv et al. (2018) developed a model based on the soil
effective temperature which sheds light on this fundamen-
tal problem. This study isolates the sampling density issue
from other factors and is a test of the current Cal/Val net-
work standard without previous knowledge of the site. The
SMAP team suggests 15 sites for a 36 km by 36 km grid

size (Colliander et al., 2017b), and this study agrees with this
configuration for typical mid-latitude European regions from
the sampling error perspective. For a 36 km by 36 km grid
size, the required sampling sites would range from about 36
(6 km) to 4 (17 km). However, five sites for 9 km by 9 km
and three sites for 3 km by 3 km will miss the 70 % confi-
dence level requirements over this area. Since SMAP’s 9 and
3 km soil moisture products are from a combination of pas-
sive and active microwave signals, which have a lower ac-
curacy than the passive ones (Entekhabi et al., 2010), their
Cal/Val campaigns shall determine sampling distances with
less confidence level.

Our virtual reality contains extensive land cover variabil-
ity (Fig. 1); thus, it would be helpful to adapt our approach
for less complicated regions with variabilities closer to the
typical Cal/Val station networks. Overall, we find that a soil
moisture sampling distance of ∼3 km is necessary to always
keep the sampling errors below the nominal value. The al-
lowance for a failure probability of 30 % extends this dis-
tance to 10 km. For brightness temperatures, the sampling
requirements are much more strict; already, at 800 m sam-
pling distance, it cannot be guaranteed that the sampling er-
ror remains below the equivalent threshold of 10 K/5 K for
H and V polarization, respectively, even when allowing for
a 30 % probability of failure. The error sources in retrieving
soil moisture from TB data are also large in reality but are not
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of concern in this study because VR01 and the TB produced
by CMEM exclude the uncertainty, except for the sampling
distance.

Our results are not only useful for the planning of ground-
based soil moisture networks, they also contribute to a bet-
ter understanding of the relation between brightness temper-
atures observed on the ground – or simulated at high resolu-
tion – and the ones observed from satellites, apart from the
non-linearity effects of radiative transfer (e.g., Drusch et al.,
1999). The study allows, for example, to quantify to what
extent a bias between satellites’ brightness temperature and
forward simulation could be explained by the spatial sam-
pling (e.g., Figs. 5, 8, and 11), and to understand the sim-
ilarities and dissimilarities between observed soil moisture
and brightness temperature time-series (Figs. 4 and 7). Since
ground-based soil moisture networks will always cover only
certain parts of a satellite pixel, a bias must be expected be-
tween both. The different representativeness of the latter can
also cause biases in satellite and ground-based estimates of
soil moisture for soil moisture and brightness temperatures.

While the allowed maximum sampling distances do not
change much over the year for soil moisture – except af-
ter large-scale precipitation events which will enable larger
sampling distances – its equivalence for brightness temper-
ature has a strong seasonal variation because of the blurring
effect of vegetation during the growing season, when bright-
ness temperatures become more homogeneous. The spatial
distribution of the maximum sampling distances and their
local variances behave quite differently between soil mois-
ture and brightness temperature. The spatial patterns are dif-
ferent, and while the maximum allowed sampling distance
and its variation are firmly related to brightness temperature,
they are barely related to soil moisture; this unusual behav-
ior is caused by the complexity of other factors influencing
microwave radiative transfer.

Our study strongly suggests that the sampling density of
current SMOS–SMAP ground-based Cal/Val networks and
the resulting potential sampling error of estimated pixel-
mean soil moisture and brightness temperatures considered
in such studies should be reviewed carefully. We expect this
study will help us to understand the errors of satellite-derived
soil moisture better.
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