Articles | Volume 23, issue 2
Hydrol. Earth Syst. Sci., 23, 811–828, 2019
https://doi.org/10.5194/hess-23-811-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Understanding and predicting Earth system and hydrological...
Research article
13 Feb 2019
Research article
| 13 Feb 2019
Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia
Siraj Ul Islam et al.
Related authors
Siraj Ul Islam and Stephen J. Déry
Hydrol. Earth Syst. Sci., 21, 1827–1847, https://doi.org/10.5194/hess-21-1827-2017, https://doi.org/10.5194/hess-21-1827-2017, 2017
Short summary
Short summary
This study focuses on predictive uncertainties in the snow hydrology of British Columbia's Fraser River Basin (FRB), using the Variable Infiltration Capacity (VIC) model forced with several gridded climate datasets. Intercomparisons of forcing datasets and VIC simulations are performed to identify their strengths and weaknesses. This reveals widespread differences over FRB's mountains in precipitation and air temperature forcing datasets and their VIC simulations of runoff/snow water equivalent.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-21, https://doi.org/10.5194/hess-2023-21, 2023
Preprint under review for HESS
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modelling domains. Here, using a large-scale VIC deployment, we show that watershed classification helps to identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Marco A. Hernández-Henríquez, Aseem R. Sharma, Mark Taylor, Hadleigh D. Thompson, and Stephen J. Déry
Earth Syst. Sci. Data, 10, 1655–1672, https://doi.org/10.5194/essd-10-1655-2018, https://doi.org/10.5194/essd-10-1655-2018, 2018
Short summary
Short summary
This article presents the development of a sub-hourly database on atmospheric conditions collected at 11 active weather stations in British Columbia's Cariboo Mountains extending from 2006 to present. Air and soil temperature, relative humidity, atmospheric pressure, wind speed and direction, rainfall and snow depth are measured at 15 min intervals. Details on deployment sites, the instrumentation used, the collection and quality control process are provided.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Charles L. Curry and Francis W. Zwiers
Hydrol. Earth Syst. Sci., 22, 2285–2309, https://doi.org/10.5194/hess-22-2285-2018, https://doi.org/10.5194/hess-22-2285-2018, 2018
Short summary
Short summary
Key predictors of annual peak daily streamflow (APF) in the Fraser River Basin are investigated. While annual maximum snow amount is a robust predictor of APF, the role of other climatic factors in the largest historical floods is less well understood. Using observations and a process-based hydrological model as input to a multivariate regression approach, we show that the snowmelt rate, indices of large-scale climate variability, and spring warming rate also influence APF in the Fraser Basin.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Valentina Radić, Brian Menounos, Joseph Shea, Noel Fitzpatrick, Mekdes A. Tessema, and Stephen J. Déry
The Cryosphere, 11, 2897–2918, https://doi.org/10.5194/tc-11-2897-2017, https://doi.org/10.5194/tc-11-2897-2017, 2017
Short summary
Short summary
Our overall goal is to improve the numerical modeling of glacier melt in order to better predict the future of glaciers in Western Canada and worldwide.
Most commonly used models rely on simplifications of processes that dictate melting at a glacier surface, in particular turbulent processes of heat exchange. We compared modeled against directly measured turbulent heat fluxes at a valley glacier in British Columbia, Canada, and found that more improvements are needed in all the tested models.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Siraj Ul Islam and Stephen J. Déry
Hydrol. Earth Syst. Sci., 21, 1827–1847, https://doi.org/10.5194/hess-21-1827-2017, https://doi.org/10.5194/hess-21-1827-2017, 2017
Short summary
Short summary
This study focuses on predictive uncertainties in the snow hydrology of British Columbia's Fraser River Basin (FRB), using the Variable Infiltration Capacity (VIC) model forced with several gridded climate datasets. Intercomparisons of forcing datasets and VIC simulations are performed to identify their strengths and weaknesses. This reveals widespread differences over FRB's mountains in precipitation and air temperature forcing datasets and their VIC simulations of runoff/snow water equivalent.
Stephen J. Déry, Tricia A. Stadnyk, Matthew K. MacDonald, and Bunu Gauli-Sharma
Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016, https://doi.org/10.5194/hess-20-4801-2016, 2016
Short summary
Short summary
This manuscript focuses on observed changes to the hydrology of 42 rivers in northern Canada draining one-half of its land mass over the period 1964–2013. Statistical and trend analyses are presented for the 42 individual rivers, 6 regional drainage basins, and collectively for all of northern Canada. A main finding is the reversal of a statistically significant decline in the first half of the study period to a statistically significant 18.1 % incline in river discharge across northern Canada.
George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Taylor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade
Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, https://doi.org/10.5194/gmd-9-3751-2016, 2016
Short summary
Short summary
The Decadal Climate Prediction Project (DCPP) investigates our ability to skilfully predict climate variations from a year to a decade ahead by means of a series of retrospective forecasts. Quasi-real-time forecasts are also produced for potential users. In addition, the DCPP investigates how perturbations such as volcanoes affect forecasts and, more broadly, what new information can be learned about the mechanisms governing climate variations by means of case studies of past climate behaviour.
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 19, 1287–1292, https://doi.org/10.5194/hess-19-1287-2015, https://doi.org/10.5194/hess-19-1287-2015, 2015
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 17, 1681–1691, https://doi.org/10.5194/hess-17-1681-2013, https://doi.org/10.5194/hess-17-1681-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Development of a national 7-day ensemble streamflow forecasting service for Australia
Future snow changes and their impact on the upstream runoff in Salween
Technical note: Do different projections matter for the Budyko framework?
Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
An algorithm for deriving the topology of belowground urban stormwater networks
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Flood forecasting with machine learning models in an operational framework
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
High-resolution satellite products improve hydrological modeling in northern Italy
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient
Deep learning rainfall–runoff predictions of extreme events
Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling does
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment
Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach
The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites
Storylines of UK drought based on the 2010–2012 event
Uncertainty estimation with deep learning for rainfall–runoff modeling
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
Anna Msigwa, Celray James Chawanda, Hans C. Komakech, Albert Nkwasa, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 4447–4468, https://doi.org/10.5194/hess-26-4447-2022, https://doi.org/10.5194/hess-26-4447-2022, 2022
Short summary
Short summary
Studies using agro-hydrological models, like the Soil and Water Assessment Tool (SWAT), to map evapotranspiration (ET) do not account for cropping seasons. A comparison between the default SWAT+ set-up (with static land use representation) and a dynamic SWAT+ model set-up (with seasonal land use representation) is made by spatial mapping of the ET. The results show that ET with seasonal representation is closer to remote sensing estimates, giving better performance than ET with static land use.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Taher Chegini and Hong-Yi Li
Hydrol. Earth Syst. Sci., 26, 4279–4300, https://doi.org/10.5194/hess-26-4279-2022, https://doi.org/10.5194/hess-26-4279-2022, 2022
Short summary
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Short summary
Our catchment-scale transit time modeling study shows that including stable isotope data on evapotranspiration in addition to the commonly used stream water isotopes helps constrain the model parametrization and reveals that the water taken up by plants has resided longer in the catchment storage than the water leaving the catchment as stream discharge. This finding is important for our understanding of how water is stored and released, which impacts the water availability for plants and humans.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022, https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
Short summary
In this work, we introduce a methodology for devising reliable future high streamflow scenarios from climate change simulations. The calibration of a hydrological model is carried out to maximize the probability that the modeled and observed high flow extremes belong to the same statistical population. Application to the Adige River catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow for use in assessment studies.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022, https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary
Short summary
This paper introduces educational materials that can be used to teach students about model structure uncertainty in hydrological modelling. There are many different hydrological models and differences between these models impact their usefulness in different places. Such models are often used to support decision making about water resources and to perform hydrological science, and it is thus important for students to understand that model choice matters.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022, https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022, https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary
Short summary
We found that rainfall data with spatial information can improve the model's performance, especially when simulating the future multi-day discharges. We did not observe that regional LSTM as a regional model achieved better results than LSTM as individual model. This conclusion applies to both one-day and multi-day simulations. However, we found that using spatially distributed rainfall data can reduce the difference between individual LSTM and regional LSTM.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
Short summary
Rainfall estimates are usually obtained from rain gauges, weather radars, or satellites. An alternative is the measurement of the signal loss induced by rainfall on commercial microwave links (CMLs). In this work, we assess the hydrologic response of Lambro Basin when CML-retrieved rainfall is used as model input. CML estimates agree with rain gauge data. CML-driven discharge simulations show performance comparable to that from rain gauges if a CML-based calibration of the model is undertaken.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Rui Tong, Juraj Parajka, Borbála Széles, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jürgen Komma, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 1779–1799, https://doi.org/10.5194/hess-26-1779-2022, https://doi.org/10.5194/hess-26-1779-2022, 2022
Short summary
Short summary
The role and impact of using additional data (other than runoff) for the prediction of daily hydrographs in ungauged basins are not well understood. In this study, we assessed the model performance in terms of runoff, soil moisture, and snow cover predictions with the existing regionalization approaches. Results show that the best transfer methods are the similarity and the kriging approaches. The performance of the transfer methods differs between lowland and alpine catchments.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/hess-26-1673-2022, https://doi.org/10.5194/hess-26-1673-2022, 2022
Short summary
Short summary
This contribution evaluates distributional runoff predictions from deep-learning-based approaches. We propose a benchmarking setup and establish four strong baselines. The results show that accurate, precise, and reliable uncertainty estimation can be achieved with deep learning.
Cited articles
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global
climate change for snowmelt hydrology in the twenty-first century, Hydrol.
Process., 23, 962–972, https://doi.org/10.1002/hyp.7201, 2009.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Benke, A. C. and Cushing, C. E.: Rivers of North America, Elsevier Press,
New York, 607–732, 2005.
Burn, D. H.: Climatic influences on streamflow timing in the headwaters of
the Mackenzie River Basin, J. Hydrol., 352, 225–238,
https://doi.org/10.1016/j.jhydrol.2008.01.019, 2008.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959, 2015.
Cayan, D., Kammerdiener, S., Dettinger, M., Caprio, J., and Peterson, D.:
Changes in the onset of spring in the western United States, B. Am. Meteorol. Soc., 82, 399–415, 2001.
Cherkauer, K. A., Bowling, L. C., and Lettenmaier, D. P.: Variable
infiltration capacity cold land process model updates, Global Planet. Change,
38, 151–159, https://doi.org/10.1016/S0921-8181(03)00025-0, 2003.
Chezik, K. A., Anderson, S. C., and Moore, J. W.: River networks dampen
long-term hydrological signals of climate change, Geophys. Res. Lett.,
44, 7256–7264, https://doi.org/10.1002/2017GL074376, 2017.
Cuo, L., Lettenmaier, D. P., Alberti, M., and Richey, J. E.: Effects of a
century of land cover and climate change on the hydrology of the Puget Sound
basin, Hydrol. Process., 23, 907–933, https://doi.org/10.1002/hyp.7228, 2009.
Curry, C. L., Islam, S. U., Zwiers, F. W., and Déry, S. J.: Atmospheric
rivers increase future flood risk in Western Canada's largest Pacific river,
Geophys. Res. Lett., 46, https://doi.org/10.1029/2018GL080720, 2019.
Danard, M. and Murty, T. S.: On recent climate trends in selected
salmon-hatching areas of British Columbia, J. Climate, 7, 1803–1808, 1994.
Déry, S. J., Hernández-Henríquez, M. A., Burford, J. E., and
Wood, E. F.: Observational evidence of an intensifying hydrological cycle in
northern Canada, Geophys. Res. Lett., 36, L13402, https://doi.org/10.1029/2009GL038852,
2009.
Déry, S. J., Hernández-Henríquez, M. A., Owens, P. N., Parkes, M. W.,
and Petticrew, E. L.: A century of hydrological variability and trends in the
Fraser River Basin, Environ. Res. Lett., 7, 024019,
https://doi.org/10.1088/1748-9326/7/2/024019, 2012.
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., and Cayan, D. R.:
Atmospheric Rivers, Floods and the Water Resources of California, Water, 3,
455–478, https://doi.org/10.3390/w3020445, 2011.
Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J.
A., Mickelson, K. E. B., Lee, S. Y., and Lettenmaier, D. P.: Implications of
21st century climate change for the hydrology of Washington State, Clim.
Change, 102, 225–260, https://doi.org/10.1007/s10584-010-9855-0, 2010.
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., and Ralph, F. M.:
Global Analysis of Climate Change Projection Effects on Atmospheric Rivers,
Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968, 2018.
Ferrari, M. R., Miller, J. R., and Russell, G. L.: Modeling changes in summer
temperature of the Fraser River during the next century, J. Hydrol.,
342, 336–346, https://doi.org/10.1016/j.jhydrol.2007.06.002, 2007.
Fleming, S. and Clarke, G. K. C.: Attenuation of high-frequency interannual
streamflow variability by watershed glacial cover, J. Hydraul. Eng., 131, 615–618, 2005.
Fountain, A. G. and Tangborn, W. V.: The effect of glaciers on streamflow
variations, Water Resour. Res., 21 579–586, https://doi.org/10.1029/WR021i004p00579,
1985.
Fritze, H., Stewart, I. T., and Pebesma, E.: Shifts in western North
American snowmelt runoff regimes for the recent warm decades, J.
Hydrometeorol., 12, 989–1006, 2011.
Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P.:
Estimating the water budget of major US river basins via remote sensing,
Int. J. Remote Sens., 31, 3955–3978, https://doi.org/10.1080/01431161.2010.483488,
2010.
Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., Sheffield, J.,
Pan, M., Lettenmaier, D. P., and Wood, E. F.: Water Budget Record from
Variable Infiltration Capacity (VIC) Model, in: Algorithm Theoretical Basis
Document for Terrestrial Water Cycle Data Records, unpublished, 2009.
Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A.,
Krylenko, I., and Lavrenov, A.: Climate change impact on the water regime of
two great Arctic rivers: modeling and uncertainty issues, Clim. Change, 141,
499–515, https://doi.org/10.1007/s10584-016-1710-5, 2017.
Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., and Rutz, J. J.:
Assessing the climate-scale variability of atmospheric rivers affecting
western North America, Geophys. Res. Lett., 44, 7900–7908,
https://doi.org/10.1002/2017GL074175, 2017.
Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., and Neiman, P. J.:
Extreme snowfall events linked to atmospheric rivers and surface air
temperature via satellite measurements, Geophys. Res. Lett., 37, L20401,
https://doi.org/10.1029/2010GL044696, 2010.
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and
application of an algorithm for global studies, J. Geophys. Res., 120,
12514–12535, https://doi.org/10.1002/2015JD024257, 2015.
Havel, A., Tasdighi, A., and Arabi, M.: Assessing the hydrologic response to wildfires
in mountainous regions, Hydrol. Earth Syst. Sci., 22, 2527–2550,
https://doi.org/10.5194/hess-22-2527-2018, 2018.
Hidalgo, H. G., Das, T., Dettinger, M. D., Cayan, D. R., Pierce, D. W.,
Barnett, T. P., Bala, G., Mirin, A., Wood, A. W., Bonfils, C., Santer, B. D., and Nozawa, T.:
Detection and attribution of streamflow timing changes to
climate change in the western United States, J. Climate, 22, 3838–3855,
https://doi.org/10.1175/2009JCLI2470.1, 2009.
Hodgkins, G. A. and Dudley, R. W.: Changes in the timing of winter-spring
streamflows in eastern North America, 1913–2002, Geophys. Res. Lett., 33,
L06402, https://doi.org/10.1029/2005GL025593, 2006.
Hopkinson, R. F., McKenney, D. W., Milewska, E. J., Hutchinson, M. F.,
Papadopol, P., and Vincent, L. A.: Impact of aligning climatological day on
gridding daily maximum-minimum temperature and precipitation over Canada, J. Appl. Meteorol. Clim., 50, 1654–1665, https://doi.org/10.1175/2011JAMC2684.1,
2011.
Hunter, R. D. and Meentemeyer, R. K.: Climatologically aided mapping of
daily precipitation and temperature, J. Appl. Meteorol., 44, 1501–1510,
2005.
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson,
R. F., Milewska, E., and Papadopol, P.: Development and testing of
Canada-wide interpolated spatial models of daily minimum-maximum
temperature and precipitation for 1961–2003, J. Appl. Meteorol. Clim.,
48, 725–741, https://doi.org/10.1175/2008JAMC1979.1, 2009.
Islam, S. U. and Déry, S. J.: Evaluating uncertainties in modelling the snow hydrology
of the Fraser River Basin, British Columbia, Canada, Hydrol. Earth Syst. Sci., 21,
1827–1847, https://doi.org/10.5194/hess-21-1827-2017, 2017.
Islam, S. U., Déry, S. J., and Werner, A. T.: Future climate change
impacts on snow and water resources of the Fraser River Basin, British
Columbia, J. Hydrometeorol., 18, 473–496, https://doi.org/10.1175/JHM-D-16-0012.1,
2017.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kang, D. H., Shi, X., Gao, H., and Déry, S. J.: On the changing
contribution of snow to the hydrology of the Fraser River Basin, Canada, J.
Hydrometeorol., 15, 1344–1365, https://doi.org/10.1175/JHM-D-13-0120.1, 2014.
Kang, D. H., Gao, H., Shi, X., Islam, S. U., and Déry, S. J.: Impacts of
a rapidly declining mountain snowpack on streamflow timing in Canada's
Fraser River Basin, Sci. Rep., 6, 19299, https://doi.org/10.1038/srep19299, 2016.
Kapnick, S. B. and Delworth, T. L.: Controls of global snow under a changed
climate, J. Climate, 26, 5537–5562, https://doi.org/10.1175/JCLI-D-12-00528.1, 2013.
Lavers, D. A. and Villarini, G.: The nexus between atmospheric rivers and
extreme precipitation across Europe, Geophys. Res. Lett., 40, 3259–3264,
https://doi.org/10.1002/grl.50636, 2013.
Lavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A., and Dettinger, M.
D.: Climate change intensification of horizontal water vapor transport in
CMIP5, Geophys. Res. Lett., 42, 5617–5625, https://doi.org/10.1002/2015GL064672, 2015.
Li, G., Zhang, X., Cannon, A. J., Murdock, T., Sobie, S., Zwiers, F.,
Anderson, K., and Qian, B.: Indices of Canada's future climate for general
and agricultural adaptation applications, Clim. Change, 148, 249–263,
https://doi.org/10.1007/s10584-018-2199-x, 2018.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L Model: Evaluation and modifications, Global Planet. Change, 13, 195–206, 1996.
Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal
routing model to be coupled to land surface parametrization schemes, Tellus A, 48, 708–721,
https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x, 1996.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale
hydrology: I. Formulation of the VIC-2L model coupled to a routing model,
Hydrol. Sci. J., 43, 131–141, https://doi.org/10.1080/02626669809492107, 1998a.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale
hydrology: II. Application of the VIC-2L model to the Weser River, Germany,
Hydrol. Sci. J., 43, 143–158, https://doi.org/10.1080/02626669809492108, 1998b.
MacDonald, M. K., Stadnyk, T. A., Déry, S. J., Braun, M., Gustafsson,
D., Isberg, K., and Arheimer, B.: Impacts of 1.5 and 2.0 ∘C
warming on Pan-Arctic river discharge into the Hudson Bay Complex through
2070, Geophys. Res. Lett., 45, 7561–7570, https://doi.org/10.1029/2018GL079147, 2018.
Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J.,
Edwards, M. E., Higuera, P. E., Power, M. J., Anderson, R. S., Briles, C.,
Brunelle, A., Carcaillet, C., Daniels, M., Hu, F. S., Lavoie, M., Long, C.,
Minckley, T., Richard, P. J. H., Scott, A. C., Shafer, D. S., Tinner, W.,
Umbanhowar, C. E., and Whitlock, C.: Wildfire responses to abrupt climate
change in North America., P. Natl. Acad. Sci. USA, 106, 2519–2524,
https://doi.org/10.1073/pnas.0808212106, 2009.
Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., and Cayan, D. R.: The utility of
daily large-scale climate data in the assessment of climate change impacts on daily
streamflow in California, Hydrol. Earth Syst. Sci., 14, 1125–1138, https://doi.org/10.5194/hess-14-1125-2010, 2010.
Moore, R. D.: Hydrology and water supply in the Fraser River Basin, in: Water
in sustainable development: exploring our common future in the Fraser River
Basin, edited by: Dorcey, A. H. J. and Griggs, J. R., Wastewater Research Centre, The
University of British Columbia, Vancouver, British Columbia, Canada, 21–40,
1991.
Moore, J. N., Harper, J. T., and Greenwood, M. C.: Significance of trends
toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters,
western United States, Geophys. Res. Lett., 34, L16402,
https://doi.org/10.1029/2007GL031022, 2007.
Morrison, J., Quick, M. C., and Foreman, M. G. G.: Climate change in the
Fraser River watershed: flow and temperature projections, J. Hydrol.,
263, 230–244, https://doi.org/10.1016/S0022-1694(02)00065-3, 2002.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Neiman, P. J., White, A. B., Ralph, F. M., Gottas, D. J., and Gutman, S. I.:
A water vapour flux tool for precipitation forecasting, Proc. Inst. Civ.
Eng.-Water Manag., 162, 83–94, https://doi.org/10.1680/wama.2009.162.2.83, 2009.
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., and Dettinger, M.
D.: Meteorological Characteristics and Overland Precipitation Impacts of
Atmospheric Rivers Affecting the West Coast of North America Based on Eight
Years of SSM/I Satellite Observations, J. Hydrometeorol., 9, 22–47,
https://doi.org/10.1175/2007JHM855.1, 2008.
Nijssen, B., Schnur, R., and Lettenmaier, D. P.: Global retrospective
estimation of soil moisture using the Variable Infiltration Capacity land
surface model, 1980–93, J. Climate, 14, 1790–1808,
https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2,
2001a.
NRCan: Regional, national and international climate modelling, available
at: http://cfs.nrcan.gc.ca/projects/3?lang=en_CA, last access:
15 December 2014.
Payne, A. E. and Magnusdottir, G.: An evaluation of atmospheric rivers over
the North Pacific in CMIP5 and their response to warming under RCP 8.5, J.
Geophys. Res., 120, 11173–11190, https://doi.org/10.1002/2015JD023586, 2015.
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.:
Precipitation variability increases in a warmer climate, Sci. Rep., 7,
17966, https://doi.org/10.1038/s41598-017-17966-y, 2017.
Radic, V., Cannon, A. J., Menounos, B., and Gi, N.: Future changes in autumn
atmospheric river events in British Columbia, Canada, as projected by CMIP5
global climate models, J. Geophys. Res.-Atmos., 120, 9279–9302,
https://doi.org/10.1002/2015JD023279, 2015.
Ralph, F. M., Neiman, P. J., and Wick, G. A.: Satellite and CALJET Aircraft
Observations of Atmospheric Rivers over the Eastern North Pacific Ocean
during the Winter of 1997/98, Mon. Weather Rev., 132, 1721–1745,
https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2,
2004.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D.,
Cayan, D. R., and White, A. B.: Flooding on California's Russian River: Role
of atmospheric rivers, Geophys. Res. Lett., 33, L13801,
https://doi.org/10.1029/2006GL026689, 2006.
Rand, P. S., Hinch, S. G., Morrison, J., Foreman, M. G. G., MacNutt, M. J.,
Macdonald, J. S., Healey, M. C., Farrell, A. P., and Higgs, D. A.: Effects of
river discharge, temperature, and future climates on energetics and
mortality of adult migrating Fraser River sockeye salmon, Trans. Am. Fish.
Soc., 135, 655–667, https://doi.org/10.1577/T05-023.1, 2006.
Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How will climate change
modify river flow regimes in Europe?, Hydrol. Earth Syst. Sci., 17, 325–339,
https://doi.org/10.5194/hess-17-325-2013, 2013.
Schnorbus, M., Bennett, K., and Werner, A.: Quantifying the water resource
impacts of mountain pine beetle and associated salvage harvest operations
across a range of watershed scales: Hydrologic modelling of the Fraser River
Basin, Information Report, BC-X-423, Natural Resources Canada, Canadian
Forestry Service, Pacific Forestry Centre, Victoria, BC, 79 pp, 2010.
Schnorbus, M., Bennett, K., Werner, A., and Berland, A. J.: Hydrologic
impacts of climate change in the Peace, Campbell and Columbia sub-basins,
British Columbia, Canada, Pacific Climate Impacts Consortium, University of
Victoria, Victoria, BC, 157 pp., 2011.
Schnorbus, M., Werner, A., and Bennett, K.: Impacts of climate change in
three hydrologic regimes in British Columbia, Canada, Hydrol. Process.,
28, 1170–1189, https://doi.org/10.1002/hyp.9661, 2014.
Shrestha, R. R., Schnorbus, M. A., Werner, A. T., and Berland, A. J.:
Modelling spatial and temporal variability of hydrologic impacts of climate
change in the Fraser River basin, British Columbia, Canada, Hydrol.
Process., 26, 1841–1861, https://doi.org/10.1002/hyp.9283, 2012.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes in snowmelt
runoff timing in western North America under a “business as usual” climate
change scenario, Clim. Change, 62, 217–232,
https://doi.org/10.1023/B:CLIM.0000013702.22656.e8, 2004.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward earlier
streamflow timing across western North America, J. Climate, 62, 217–232,
https://doi.org/10.1175/JCLI3321.1, 2005.
Tan, A., Adam, J. C., and Lettenmaier, D. P.: Change in spring snowmelt
timing in Eurasian Arctic rivers, J. Geophys. Res.-Atmos., 116, D03101,
https://doi.org/10.1029/2010JD014337, 2011.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons D. B.: The changing
character of precipitation, B. Am. Meteorol. Soc., 84, 1205–1217, 2003.
Wade, N. L., Martin, J., and Whitfield, P. H.: Hydrologic and climatic
zonation of Georgia Basin, British Columbia, Can. Water Resour. J., 26,
43–70, https://doi.org/10.4296/cwrj2601043, 2001.
Warner, M. D., Mass, C. F., and Salathé, E. P.: Changes in winter
atmospheric rivers along the North American west coast in CMIP5 climate
models, J. Hydrometeorol., 16, 118–128, https://doi.org/10.1175/JHM-D-14-0080.1,
2015.
Warner, M. D. and Mass, C. F.: Changes in the climatology, structure, and
seasonality of Northeast Pacific atmospheric rivers in CMIP5 climate
simulations, J. Hydrometeorol., 18, 2131–2141,
https://doi.org/10.1175/JHM-D-16-0200.1, 2017.
Water Survey of Canada: HYDAT database, available at: http://www.ec.gc.ca/rhc-wsc/, last access: 1 April
2018.
Wei, X., Liu, W., and Zhou, P.: Quantifying the relative contributions of
forest change and climatic variability to hydrology in large watersheds, A
critical review of research methods, Water, 5, 728–746,
https://doi.org/10.3390/w5020728, 2013.
Wen, L., Lin, C. A., Wu, Z., Lu, G., Pomeroy, J., and Zhu, Y.: Reconstructing
sixty year (1950–2009) daily soil moisture over the Canadian Prairies using
the Variable Infiltration Capacity model, Can. Water Resour. J., 36,
83–102, https://doi.org/10.4296/cwrj3601083, 2011.
Werner, A. T. and Cannon, A. J.: Hydrologic extremes – an intercomparison of multiple
gridded statistical downscaling methods, Hydrol. Earth Syst. Sci., 20, 1483–1508,
https://doi.org/10.5194/hess-20-1483-2016, 2016.
Wu, H., Kimball, J. S., Mantua, N., and Stanford, J.: Automated upscaling of
river networks for macroscale hydrological modelling, Water Resour. Res.,
47, W03517, https://doi.org/10.1029/2009WR008871, 2011.
Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y.,
and Liu, S.: A global review on hydrological responses to forest change
across multiple spatial scales: Importance of scale, climate, forest type
and hydrological regime, J. Hydrol., 546, 44–59,
https://doi.org/10.1016/j.jhydrol.2016.12.040, 2017.
Zhou, T., Nijssen, B., Gao, H., and Lettenmaier, D. P.: The contribution of
reservoirs to global land surface water storage variations, J.
Hydrometeorol., 17, 309–325, https://doi.org/10.1175/JHM-D-15-0002.1, 2016.