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Supplementary Table 1: List of the 21 CMIP5 models used in the present study. 1 

Institution  Model Name 
Resolution 

(Lon.° × Lat.°) 

Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

ACCESS1.0 

ACCESS1.3 
1.8 × 1.2 

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 2.8 ×2.8 

College of Global Change and Earth System Science, Beijing Normal 

University, China 
BNU-ESM 2.8 ×2.8 

Canadian Centre for Climate Modelling and Analysis, Canada CanESM2 2.8 × 2.8 

National Center for Atmospheric Research, U.S.A. CCSM4 1.2 × 0.9 

Centre National de Recherches Météorologiques/Centre Européen de 

Recherche et Formation Avancée en Calcul Scientifique, France 
CNRM-CM5 1.4 × 1.4 

Commonwealth Scientific and Industrial Research Organization in 

collaboration with Queensland Climate Change Centre of Excellence, 

Australia 

CSIRO-Mk3.6.0 1.8 ×1.8 

LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua University, China 
FGOALS-g2 1.8 × 1.2 

NOAA Geophysical Fluid Dynamics Laboratory, U.S.A. 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

2.5 × 2.0 

Institute for Numerical Mathematics, Russia INM-CM4 2.0 × 1.5 

Institut Pierre-Simon Laplace, France 

IPSL-CM5A-LR 

IPSL-CM5A-MR 
3.7 × 1.9 

Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute and National Institute for Environmental 

Studies, Japan 

MIROC-ESM 2.8 × 2.8 

MIROC5 1.4 × 1.4 

Meteorological Research Institute, Japan MRI-CGCM3 1.1 × 1.1 

Max Planck Institute for Meteorology, Germany 

MPI-ESM-LR 

MPI-ESM-MR 
1.8 × 1.8 

Norwegian Climate Centre, Norway NorESM1-M 2.5 × 1.9 

All model outputs are for RCP 8.5, are statistically downscaled and bias-corrected using BCCAQ2 (Sec. 2.2), 

and are regridded to a common horizontal resolution of 0.25° to facilitate the VIC model simulations.  
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Supplementary Table 2: 30-year runoff mean and interannual variability (estimated by standard deviation). Values are 3 
calculated for each individual CMIP5-VIC simulation and are averaged to get the MME annual mean. The inter-model spread in 4 
runoff mean and its interannual variability are indicated as uncertainty ranges (±) estimated by a 5-95% models range. 5 

 6 

Basin 

Mean and interannual variability of Runoff (mm yr-1) 

1990s (1980-2009) 2050s (2040-2069) 2080s (2070-2099) 

Mean Variability Mean Variability Mean Variability 

Rocky Mountains 790 ± 9 129 ± 10 798 ± 25 128 ± 9 796 ± 32 133 ± 7 

Interior Plateau 220 ± 3 41 ± 3 228 ± 7 41 ± 3 236 ± 10 42 ± 3 

Coast Mountains 1250 ± 10 158 ± 8 1364 ± 25 177 ± 12 1410 ± 33 206 ± 14 

UF 554 ± 55 120 ± 15 548 ± 58 121 ± 15 535 ± 60 123 ± 14 

QU 551 ± 7 110 ± 8 550 ± 19 109 ± 8 545 ± 23 112 ± 6 

TN 347 ± 4 72 ± 5 349 ± 11 69 ± 5 347 ± 14 74 ± 4 

CH 417 ± 5 65 ± 4 461 ± 10 70 ± 5 493 ± 12 74 ± 5 

LF 358 ± 4 58 ± 4 369 ± 11 58 ± 4 376 ± 13 61 ± 3 
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Supplementary Figure 1: Cumulative departure from the water year’s mean observed flow for the Capilano River Above Intake 9 
(WSC ID 08GA010) (a) and Fraser River at Hope (WSC ID 08MF005) (b), for 10 years within the 1914-2010 time period. Panel 10 
(a) demonstrates a rainfall-dominant system where snowmelt pulses (SPs) are detected in only two of the 10 years whereas panel 11 
(b) illustrates a river where there are clear SPs in all the selected years. Black dots represent the day of water year (i.e. SP) when 12 
cumulative departure from the mean flow is a water year maximum. The discharge data are acquired from the Water Survey of 13 
Canada’s Hydrometric Dataset (HYDAT; Water Survey of Canada, 2018).  14 
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Supplementary Figure 2: Spatial patterns of change in MME mean (a, c) and interannual variability (b, d) of CMIP5 models 18 
precipitation in the 2080s relative to the 1990s. Panels (a-b) shows annual changes and panels (c-d) are for the cold season only. 19 
Units are in %. 20 
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 22 
Supplementary Figure 3: Spatial patterns of change in MME mean (a, c) and interannual variability (b, d) of CMIP5-VIC 23 
simulated cold season runoff in the 2050s and 2080s relative to the 1990s. Units are in %. 24 
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Supplementary Figure 4: CMIP5-VIC simulated daily runoff mean (a, d, g, j), variability (b, e, h, k) and 7-day moving average 27 
variability (c, f, i, l) for the UF, QU, TN and CH sub-basins. Black, blue and red curves represent the MME mean for the 1990s, 28 
2050s and 2080s respectively. Shading represents inter-model spread as represented by 5-95% models range. 29 
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Supplementary Figure 5: Decomposition of key drivers affecting cold season runoff changes in the 2080s. Contributions are in 31 
% estimated using the multivariate linear regression (MLR, described in section 2.4.2) model forced with time series from 21 32 
CMIP5 simulations. R

2
 provides the variance explained by all three variables. Gridcells are shown only with values significant at 33 

p-value < 0.05.  34 
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Supplementary Figure 6: CMIP5-VIC simulated MME mean fraction of years with snowmelt pulses (SP, %) in the 1990s (a), 36 
2050s (b), and 2080s (c). Zero values are assigned to gridcells where no snowmelt pulses are detected. Units are in %. 37 
 38 
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Supplementary Figure 7: CMIP5-VIC simulated cumulative flow departures for the 1990s, 2050s and 2080s for all sub-basins. 39 
Thick lines are for the MME mean and shading indicates the 5-95% models range. Units are in mm. 40 


