Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4561-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-4561-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
Robert Reinecke
CORRESPONDING AUTHOR
Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
Laura Foglia
Department of Land, Air and Water Resources, University of California, Davis, USA
Steffen Mehl
Department of Civil Engineering, California State University, Chico, USA
Jonathan D. Herman
Department of Civil & Environmental Engineering, University of California, Davis, USA
Alexander Wachholz
Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
Tim Trautmann
Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
Petra Döll
Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), Frankfurt am Main, Germany
Related authors
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Robert Reinecke, Laura Foglia, Steffen Mehl, Tim Trautmann, Denise Cáceres, and Petra Döll
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, https://doi.org/10.5194/gmd-12-2401-2019, 2019
Short summary
Short summary
G³M is a new global groundwater model (http://globalgroundwatermodel.org) that simulates lateral and vertical flows as well as exchanges with surface water bodies like rivers, lakes, and wetlands for the whole globe except Antarctica and Greenland. The newly developed model framework enables an efficient integration into established global hydrological models. This paper presents the G³M concept and specific model design decisions together with first results under a naturalized equilibrium.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016, https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary
Short summary
We analyzed simulated water balance components on global and continental scale as impacted by the uncertainty of climate forcing datasets. On average, around 62 % of precipitation on global land area evapotranspires and 38 % is discharge to oceans and inland sinks. Human water use increased during the 20th century by a factor of 5. Uncertainty of precipitation variable has most impact on model results, followed by shortwave downward radiation. Model calibration reduces this uncertainty.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Seyed-Mohammad Hosseini-Moghari and Petra Döll
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-291, https://doi.org/10.5194/hess-2024-291, 2024
Preprint under review for HESS
Short summary
Short summary
Modeling reservoir outflow and storage is challenging due to limited publicly available data and human decision-making. For 100 reservoirs in the USA, we examined how calibrating reservoir algorithms against outflow and storage-related variables affects performance. We found that calibration notably improves storage simulations, while outflow simulations are more influenced by the quality of inflow data. We recommend using remotely sensed storage anomalies to calibrate reservoir algorithms.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Laura Müller and Petra Döll
Geosci. Commun., 7, 121–144, https://doi.org/10.5194/gc-7-121-2024, https://doi.org/10.5194/gc-7-121-2024, 2024
Short summary
Short summary
To be able to adapt to climate change, stakeholders need to be informed about future uncertain climate change hazards. Using freely available output of global hydrological models, we quantified future local changes in water resources and their uncertainty. To communicate these in participatory processes, we propose using "percentile boxes" to support the development of flexible strategies for climate risk management worldwide, involving stakeholders and scientists.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213, https://doi.org/10.5194/gmd-2023-213, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP which has been used for numerous water resources assessments since 1996. We show the effects of new model features and model evaluations against observed streamflow and water storage anomalies as well as water abstractions statistics. The publically available model output for several variants is described.
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324, https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular streamflow. We also showed uncertainties in the calibration results, which is often useful for making informed decisions. We emphasis to consider observation uncertainty in model calibration.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Claudia Herbert and Petra Döll
Nat. Hazards Earth Syst. Sci., 23, 2111–2131, https://doi.org/10.5194/nhess-23-2111-2023, https://doi.org/10.5194/nhess-23-2111-2023, 2023
Short summary
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
Nusrat Molla, John DeIonno, Thilo Gross, and Jonathan Herman
Earth Syst. Dynam., 13, 1677–1688, https://doi.org/10.5194/esd-13-1677-2022, https://doi.org/10.5194/esd-13-1677-2022, 2022
Short summary
Short summary
How the structure of resource governance systems affects how they respond to change is not yet well understood. We model the stability of thousands of different governance systems, revealing that greater diversity and interdependence among actors are destabilizing, while venue shopping and advocacy organizations are stabilizing. This study suggests that complexity in governance corresponds to responsiveness to change, while providing insight into managing them to balance adaptivity and stability
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, https://doi.org/10.5194/nhess-21-1337-2021, 2021
Short summary
Short summary
Two drought hazard indices are presented that combine drought deficit and anomaly aspects: one for soil moisture drought (SMDAI) where we simplified the DSI and the other for streamflow drought (QDAI), which is to our knowledge the first ever deficit anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, providing more differentiated spatial and temporal patterns distinguishing the actual degree of respective drought hazard.
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Stephen R. Maples, Laura Foglia, Graham E. Fogg, and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, https://doi.org/10.5194/hess-24-2437-2020, 2020
Short summary
Short summary
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the relative importance of (1) the configuration of subsurface alluvial geology and (2) the hydraulic properties of geologic facies on recharge processes. Results show that there is a large variation of recharge rates possible in a typical alluvial aquifer system and that the configuration proportion of sand and gravel deposits in the subsurface have a large impact on recharge rates.
Seyed-Mohammad Hosseini-Moghari, Shahab Araghinejad, Mohammad J. Tourian, Kumars Ebrahimi, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020, https://doi.org/10.5194/hess-24-1939-2020, 2020
Short summary
Short summary
This paper uses a multi-objective approach for calibrating the WGHM model to determine the role of human water use and climate variations in the recent loss of water storage in Lake Urmia basin, Iran. We found that even without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the drought year 2008.
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020, https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary
Short summary
The paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rainfed agricultural systems while considering drought hazard indicators, exposure and expert-weighted vulnerability indicators. We identify global patterns of drought risk and, by disaggregating risk into its underlying components and factors, provide entry points for risk reduction.
Robert Reinecke, Laura Foglia, Steffen Mehl, Tim Trautmann, Denise Cáceres, and Petra Döll
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, https://doi.org/10.5194/gmd-12-2401-2019, 2019
Short summary
Short summary
G³M is a new global groundwater model (http://globalgroundwatermodel.org) that simulates lateral and vertical flows as well as exchanges with surface water bodies like rivers, lakes, and wetlands for the whole globe except Antarctica and Greenland. The newly developed model framework enables an efficient integration into established global hydrological models. This paper presents the G³M concept and specific model design decisions together with first results under a naturalized equilibrium.
Fahad Saeed, Ingo Bethke, Stefan Lange, Ludwig Lierhammer, Hideo Shiogama, Dáithí A. Stone, Tim Trautmann, and Carl-Friedrich Schleussner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107, https://doi.org/10.5194/gmd-2018-107, 2018
Revised manuscript has not been submitted
Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, https://doi.org/10.5194/hess-22-2117-2018, 2018
Short summary
Short summary
This study generate a historical global monthly gridded water withdrawal data (0.5 × 0.5 degrees) for the period 1971–2010, distinguishing six water use sectors (irrigation, domestic, electricity generation, livestock, mining, and manufacturing). This dataset is the first reconstructed global water withdrawal data product at sub-annual and gridded resolution that is derived from different models and data sources, and was generated by spatially and temporally downscaling country-scale estimates.
Tingju Zhu, Petra Döll, Hannes Müller Schmied, Claudia Ringler, and Mark W. Rosegrant
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-216, https://doi.org/10.5194/gmd-2017-216, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The global hydrological model IGHM was developed to simulate water availability over global land areas month by month. The simulated water availability is for analyzing irrigation water supply and crop production in a global water and food projections model, IMPACT. Water availability simulated by another global hydrological model, WGHM, was used to determine parameter values in IGHM. This paper describes the structure of IGHM, the method of its parameter determination, and its performance.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016, https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary
Short summary
We analyzed simulated water balance components on global and continental scale as impacted by the uncertainty of climate forcing datasets. On average, around 62 % of precipitation on global land area evapotranspires and 38 % is discharge to oceans and inland sinks. Human water use increased during the 20th century by a factor of 5. Uncertainty of precipitation variable has most impact on model results, followed by shortwave downward radiation. Model calibration reduces this uncertainty.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, https://doi.org/10.5194/hess-19-3239-2015, 2015
Short summary
Short summary
Land surface modeling is playing an increasing role in global monitoring and prediction of extreme hydrologic events. However, uncertainties in parameter identifiability limit the reliability of model predictions. This study makes use of petascale computing to perform a comprehensive evaluation of land surface modeling for global flood and drought monitoring and suggests paths forward to overcome the challenges posed by parameter uncertainty.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
H. Müller Schmied, S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll
Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, https://doi.org/10.5194/hess-18-3511-2014, 2014
H. Hoff, P. Döll, M. Fader, D. Gerten, S. Hauser, and S. Siebert
Hydrol. Earth Syst. Sci., 18, 213–226, https://doi.org/10.5194/hess-18-213-2014, https://doi.org/10.5194/hess-18-213-2014, 2014
J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener
Hydrol. Earth Syst. Sci., 17, 5109–5125, https://doi.org/10.5194/hess-17-5109-2013, https://doi.org/10.5194/hess-17-5109-2013, 2013
J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener
Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, https://doi.org/10.5194/hess-17-2893-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Uncertainty analysis
Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Interpretation of multi-scale permeability data through an information theory perspective
Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions
Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks
On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam
Testing alternative uses of electromagnetic data to reduce the prediction error of groundwater models
Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)
Analyses of uncertainties and scaling of groundwater level fluctuations
Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time
Interpolation of groundwater quality parameters with some values below the detection limit
An approach to identify urban groundwater recharge
Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024, https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Short summary
In this study, we have presented two different advances for the field of subsurface geostatistics. First, we present data of variogram functions from a variety of different locations around the world. Second, we present a series of geostatistical analyses aimed at examining some of the statistical properties of such variogram functions and their relationship to a number of widely used variogram model functions.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 24, 3097–3109, https://doi.org/10.5194/hess-24-3097-2020, https://doi.org/10.5194/hess-24-3097-2020, 2020
Short summary
Short summary
Permeability of natural systems exhibits heterogeneous spatial variations linked with the size of the measurement support scale. As the latter becomes coarser, the system appearance is less heterogeneous. As such, sets of permeability data associated with differing support scales provide diverse amounts of information. In this contribution, we leverage information theory to quantify the information content of gas permeability datasets collected with four diverse measurement support scales.
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019, https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Short summary
This study evaluates the effect of conceptual hydro(geo)logical model (CHM) structure, climate change and groundwater abstraction on future groundwater-level prediction uncertainty. If the current groundwater abstraction trend continues, groundwater level is predicted to decline quickly. Groundwater abstraction in NW Bangladesh should decrease by 60 % to ensure sustainable use. Abstraction scenarios are the dominant uncertainty source, followed by CHM uncertainty and climate model uncertainty.
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019, https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary
Short summary
We evaluated the uncertainty propagation from the inputs (forcings) and parameters to the predictions of groundwater travel time distributions (TTDs) using a fully distributed numerical model (mHM-OGS) and the StorAge Selection (SAS) function. Through detailed numerical and analytical investigations, we emphasize the key role of recharge estimation in the reliable predictions of TTDs and the good interpretability of the SAS function.
Zexuan Xu, Bill X. Hu, and Ming Ye
Hydrol. Earth Syst. Sci., 22, 221–239, https://doi.org/10.5194/hess-22-221-2018, https://doi.org/10.5194/hess-22-221-2018, 2018
Short summary
Short summary
This study helps hydrologists better understand the parameters in modeling seawater intrusion in a coastal karst aquifer. Local and global sensitivity studies are conducted to evaluate a density-dependent numerical model of seawater intrusion. The sensitivity analysis indicates that karst features are critical for seawater intrusion modeling, and the evaluation of hydraulic conductivity is biased in continuum SEAWAT model. Dispervisity is no longer important in the advection-dominated aquifer.
Mohamad E. Gharamti, Johan Valstar, Gijs Janssen, Annemieke Marsman, and Ibrahim Hoteit
Hydrol. Earth Syst. Sci., 20, 4561–4583, https://doi.org/10.5194/hess-20-4561-2016, https://doi.org/10.5194/hess-20-4561-2016, 2016
Short summary
Short summary
The paper addresses the issue of sampling errors when using the ensemble Kalman filter, in particular its hybrid and second-order formulations. The presented work is aimed at estimating concentration and biodegradation rates of subsurface contaminants at the port of Rotterdam in the Netherlands. Overall, we found that accounting for both forecast and observation sampling errors in the joint data assimilation system helps recover more accurate state and parameter estimates.
Nikolaj Kruse Christensen, Steen Christensen, and Ty Paul A. Ferre
Hydrol. Earth Syst. Sci., 20, 1925–1946, https://doi.org/10.5194/hess-20-1925-2016, https://doi.org/10.5194/hess-20-1925-2016, 2016
Short summary
Short summary
Our primary objective in this study is to provide a virtual environment that allows users to determine the value of geophysical data and, furthermore, to investigate how best to use those data to develop groundwater models and to reduce their prediction errors. When this has been carried through for alternative data sampling, parameterization and inversion approaches, the best alternative can be chosen by comparison of prediction results between the alternatives.
A. Hernández-Antonio, J. Mahlknecht, C. Tamez-Meléndez, J. Ramos-Leal, A. Ramírez-Orozco, R. Parra, N. Ornelas-Soto, and C. J. Eastoe
Hydrol. Earth Syst. Sci., 19, 3937–3950, https://doi.org/10.5194/hess-19-3937-2015, https://doi.org/10.5194/hess-19-3937-2015, 2015
Short summary
Short summary
A conceptual model of groundwater flow processes and mixing was developed using a combination of hydrogeochemistry, isotopes and multivariate analysis. The implementation to the case of Guadalajara showed that groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. A multivariate mixing model was used to calculate the proportion of different fluids in sampled well water. The result helps authorities in decision making.
X. Y. Liang and Y.-K. Zhang
Hydrol. Earth Syst. Sci., 19, 2971–2979, https://doi.org/10.5194/hess-19-2971-2015, https://doi.org/10.5194/hess-19-2971-2015, 2015
Short summary
Short summary
The error or uncertainty in head, obtained with an analytical or numerical solution, at an early time is mainly caused by the random initial condition. The error reduces with time, later reaching a constant error. The constant error at a later time is mainly due to the effects of the uncertain source/sink. The error caused by the uncertain boundary is limited to a narrow zone. Temporal scaling of head exists in most parts of a low permeable aquifer, mainly caused by recharge fluctuation.
X. He, T. O. Sonnenborg, F. Jørgensen, A.-S. Høyer, R. R. Møller, and K. H. Jensen
Hydrol. Earth Syst. Sci., 17, 3245–3260, https://doi.org/10.5194/hess-17-3245-2013, https://doi.org/10.5194/hess-17-3245-2013, 2013
A. Bárdossy
Hydrol. Earth Syst. Sci., 15, 2763–2775, https://doi.org/10.5194/hess-15-2763-2011, https://doi.org/10.5194/hess-15-2763-2011, 2011
E. Vázquez-Suñé, J. Carrera, I. Tubau, X. Sánchez-Vila, and A. Soler
Hydrol. Earth Syst. Sci., 14, 2085–2097, https://doi.org/10.5194/hess-14-2085-2010, https://doi.org/10.5194/hess-14-2085-2010, 2010
R. Rojas, O. Batelaan, L. Feyen, and A. Dassargues
Hydrol. Earth Syst. Sci., 14, 171–192, https://doi.org/10.5194/hess-14-171-2010, https://doi.org/10.5194/hess-14-171-2010, 2010
Cited articles
Allen, P. M., Arnold, J. C., and Byars, B. W.: Downstream channel geometry for use in planning-level models, J. Am. Water Resour. Assoc., 30, 663–671, https://doi.org/10.1111/j.1752-1688.1994.tb03321.x, 1994. a
Börker, J., Hartmann, J., Amann, T., and Romero-Mujalli, G.:
Global Unconsolidated Sediments Map Database v1.0 (shapefile and gridded to
0.5∘ spatial resolution), https://doi.org/10.1594/PANGAEA.884822,
supplement to: Börker, J., et al. (accepted): Terrestrial Sediments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM), Geochem. Geophy. Geosy., https://doi.org/10.1002/2017GC007273, 2018. a, b, c
Branger, F., Giraudet, L.-G., Guivarch, C., and Quirion, P.: Global sensitivity analysis of an energy–economy model of the residential building sector, Environ. Model. Softw., 70, 45–54, https://doi.org/10.1016/j.envsoft.2015.03.021, 2015. a
Chaney, N., Herman, J., Reed, P., and Wood, E.: Flood and drought hydrologic
monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015. a
de Graaf, I. E., van Beek, R. L., Gleeson, T., Moosdorf, N., Schmitz, O.,
Sutanudjaja, E. H., and Bierkens, M. F.: A global-scale two-layer transient
groundwater model: Development and application to groundwater depletion,
Adv. Water Resour., 102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017. a
Dell'Oca, A., Riva, M., and Guadagnini, A.: Moment-based metrics for global
sensitivity analysis of hydrological systems, Hydrol. Earth Syst. Sci., 21, 6219–6234, https://doi.org/10.5194/hess-21-6219-2017, 2017. a
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for
deriving water availability indicators: model tuning and validation, J. Hydrol., 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003. a
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A.,
Rodell, M., Strassberg, G., and Scanlon, B.: Impact of water withdrawals from
groundwater and surface water on continental water storage variations, J. Geodynam., 59, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012. a
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker,
A.: Global-scale assessment of groundwater depletion and related groundwater
abstractions: Combining hydrological modeling with information from well
observations and GRACE satellites, Water Resour. Res., 50, 5698–5720,
https://doi.org/10.1002/2014WR015595, 2014. a, b, c
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009. a, b
Fan, Y., Li, H., and Miguez-Macho, G.: Global patterns of groundwater table
depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, 2013. a, b, c, d
Ghasemizade, M., Baroni, G., Abbaspour, K., and Schirmer, M.: Combined analysis of time-varying sensitivity and identifiability indices to diagnose the response of a complex environmental model, Environ. Model. Softw., 88, 22–34, https://doi.org/10.1016/j.envsoft.2016.10.011, 2017. a
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., and Jellinek, A. M.: Mapping permeability over the
surface of the Earth, Geophys. Res. Lett., 38, L02401, https://doi.org/10.1029/2010GL045565, 2011. a
Gruber, S.: Derivation and analysis of a high-resolution estimate of global
permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012. a
Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., and Wagener, T.: A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean, Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, 2015. a
Hartmann, J. and Moosdorf, N.: Global Lithological Map Database v1.0
(gridded to 0.5∘ spatial resolution), https://doi.org/10.1594/PANGAEA.788537, 2012. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Herman, J. D. and Usher, W.: SALib: an open-source Python library for sensitivity analysis, J. Open Source Softw., 2, 97, https://doi.org/10.21105/joss.00097, 2017. a, b
Herman, J. D., Kollat, J., Reed, P., and Wagener, T.: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013a. a, b, c, d
Herman, J. D., Reed, P. M., and Wagener, T.: Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior, Water Resour. Res., 49, 1400–1414, https://doi.org/10.1002/wrcr.20124, 2013b. a
Janetti, E. B., Guadagnini, L., Riva, M., and Guadagnini, A.: Global
sensitivity analyses of multiple conceptual models with uncertain parameters
driving groundwater flow in a regional-scale sedimentary aquifer, J. Hydrol., 574, 544–556, https://doi.org/10.1016/j.jhydrol.2019.04.035, 2019. a
Keune, J., Gasper, F., Goergen, K., Hense, A., Shrestha, P., Sulis, M., and
Kollet, S.: Studying the influence of groundwater representations on land
surface-atmosphere feedbacks during the European heat wave in 2003, J. Geophys. Res.-Atmos., 121, 13301–13325, https://doi.org/10.1002/2016JD025426, 2016. a
Koirala, S., Kim, H., Hirabayashi, Y., Kanae, S., and Oki, T.: Sensitivity of
global hydrological simulations to groundwater capillary flux
parameterizations, Water Resour. Res., 55, 402–425, https://doi.org/10.1029/2018WR023434, 2018. a
Konikow, L. F.: Contribution of global groundwater depletion since 1900 to
sea-level rise, Geophys. Res. Lett., 38, L17401, https://doi.org/10.1029/2011GL048604, 2011. a
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982. a
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8,
923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015. a
Miguez-Macho, G., Fan, Y., Weaver, C. P., Walko, R., and Robock, A.:
Incorporating water table dynamics in climate modeling: 2. Formulation,
validation, and soil moisture simulation, J. Geophys. Res.-Atmos., 112, D13108, https://doi.org/10.1029/2006JD008112, 2007. a, b
Morel-Seytoux, H. J., Miller, C. D., Miracapillo, C., and Mehl, S.: River
seepage conductance in large-scale regional studies, Groundwater, 55,
399–407, https://doi.org/10.1111/gwat.12491, 2017. a
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale
freshwater fluxes and storages to input data, hydrological model structure,
human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014. a, b
Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use, Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, 2016. a
Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models, Water Resour. Res., 51, 3070–3092,
https://doi.org/10.1002/2014WR016527, 2015. a, b, c, d
Reinecke, R.: G3M-f a global gradient-based groundwater modelling framework, J. Open Sour. Soft., 3, 548, https://doi.org/10.21105/joss.00548, 2018. a
Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model,
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Ruano, M., Ribes, J., Seco, A., and Ferrer, J.: An improved sampling strategy
based on trajectory design for application of the Morris method to systems
with many input factors, Environ. Model. Softw., 37, 103–109,
https://doi.org/10.1016/j.envsoft.2012.03.008, 2012. a, b, c
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global sensitivity analysis: the primer, John Wiley & Sons, New York, USA, 2008. a
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M.,
McGuire, V. L., and McMahon, P. B.: Groundwater depletion and sustainability
of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325, https://doi.org/10.1073/pnas.1200311109, 2012. a
Schumacher, M., Eicker, A., Kusche, J., Schmied, H. M., and Döll, P.: Covariance Analysis and Sensitivity Studies for GRACE Assimilation into WGHM, in: IAG 150 Years, International Association of Geodesy Symposia, Vol. 143, edited by: Rizos, C. and Willis, P., Springer, Cham, 2015. a
Sobol, I. M.: Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., 1, 407–414, 1993. a
Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications, J. Hydrol., 523, 739–757,
https://doi.org/10.1016/j.jhydrol.2015.02.013, 2015. a
Stonestrom, D. A.: Ground-water recharge in the arid and semiarid southwestern United States, USGS, 1703, available at: http://pubs.usgs.gov/pp/pp1703 (last access: 12 November 2019), 2007. a
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013. a
Vanrolleghem, P. A., Mannina, G., Cosenza, A., and Neumann, M. B.: Global
sensitivity analysis for urban water quality modelling: Terminology,
convergence and comparison of different methods, J. Hydrol., 522, 339–352, https://doi.org/10.1016/j.jhydrol.2014.12.056, 2015. a
Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., and Alcamo, J.: Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe, J. Hydrol., 424, 238–251, https://doi.org/10.1016/j.jhydrol.2012.01.005, 2012.
a
Wada, Y.: Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects, Surv. Geophys., 37, 419–451,
https://doi.org/10.1007/s10712-015-9347-x, 2016. a
Wada, Y., Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable groundwater
sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012. a
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal,
allocation and consumptive use of surface water and groundwater resources,
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014. a
Short summary
Recently, the first global groundwater models were developed to better understand surface-water–groundwater interactions and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. In this study we present the first global maps of model sensitivity according to their parameterization and build a foundation to improve datasets, model design, and model understanding.
Recently, the first global groundwater models were developed to better understand...