Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4561-2019
https://doi.org/10.5194/hess-23-4561-2019
Research article
 | 
14 Nov 2019
Research article |  | 14 Nov 2019

Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization

Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll

Related authors

Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
The global water resources and use model WaterGAP v2.2d: model description and evaluation
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021,https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021,https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model
Robert Reinecke, Laura Foglia, Steffen Mehl, Tim Trautmann, Denise Cáceres, and Petra Döll
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019,https://doi.org/10.5194/gmd-12-2401-2019, 2019
Short summary
Impact of climate forcing uncertainty and human water use on global and continental water balance components
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016,https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Uncertainty analysis
Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024,https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020,https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Interpretation of multi-scale permeability data through an information theory perspective
Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 24, 3097–3109, https://doi.org/10.5194/hess-24-3097-2020,https://doi.org/10.5194/hess-24-3097-2020, 2020
Short summary
Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019,https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019,https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary

Cited articles

Allen, P. M., Arnold, J. C., and Byars, B. W.: Downstream channel geometry for use in planning-level models, J. Am. Water Resour. Assoc., 30, 663–671, https://doi.org/10.1111/j.1752-1688.1994.tb03321.x, 1994. a
Archer, G., Saltelli, A., and Sobol, I.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap, J. Stat. Comput. Simul., 58, 99–120, 1997. a, b
Börker, J., Hartmann, J., Amann, T., and Romero-Mujalli, G.: Global Unconsolidated Sediments Map Database v1.0 (shapefile and gridded to 0.5 spatial resolution), https://doi.org/10.1594/PANGAEA.884822, supplement to: Börker, J., et al. (accepted): Terrestrial Sediments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM), Geochem. Geophy. Geosy., https://doi.org/10.1002/2017GC007273, 2018. a, b, c
Branger, F., Giraudet, L.-G., Guivarch, C., and Quirion, P.: Global sensitivity analysis of an energy–economy model of the residential building sector, Environ. Model. Softw., 70, 45–54, https://doi.org/10.1016/j.envsoft.2015.03.021, 2015. a
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007. a, b, c, d, e
Download
Short summary
Recently, the first global groundwater models were developed to better understand surface-water–groundwater interactions and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. In this study we present the first global maps of model sensitivity according to their parameterization and build a foundation to improve datasets, model design, and model understanding.