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Abstract. In global hydrological models, groundwater stor-
ages and flows are generally simulated by linear reservoir
models. Recently, the first global gradient-based groundwa-
ter models were developed in order to improve the repre-
sentation of groundwater–surface-water interactions, capil-
lary rise, lateral flows, and human water use impacts. How-
ever, the reliability of model outputs is limited by a lack of
data and by uncertain model assumptions that are necessary
due to the coarse spatial resolution. The impact of data qual-
ity is presented in this study by showing the sensitivity of a
groundwater model to changes in the only available global
hydraulic conductivity dataset. To better understand the sen-
sitivity of model output to uncertain spatially distributed pa-
rameters, we present the first application of a global sen-
sitivity method for a global-scale groundwater model using
nearly 2000 steady-state model runs of the global gradient-
based groundwater model G3M. By applying the Morris
method in a novel domain decomposition approach that iden-
tifies global hydrological response units, spatially distributed
parameter sensitivities are determined for a computationally
expensive model. Results indicate that globally simulated hy-
draulic heads are equally sensitive to hydraulic conductiv-
ity, groundwater recharge, and surface water body elevation,
though parameter sensitivities vary regionally. For large ar-
eas of the globe, rivers are simulated to be either losing or
gaining, depending on the parameter combination, indicat-

ing a high uncertainty in simulating the direction of flow be-
tween the two compartments. Mountainous and dry regions
show a high variance in simulated head due to numerical in-
stabilities of the model, limiting the reliability of computed
sensitivities in these regions. This is likely caused by the un-
certainty in surface water body elevation. We conclude that
maps of spatially distributed sensitivities can help to under-
stand the complex behavior of models that incorporate data
with varying spatial uncertainties. The findings support the
selection of possible calibration parameters and help to an-
ticipate challenges for a transient coupling of the model.

1 Introduction

Global groundwater dynamics have been significantly altered
by human withdrawals and are projected to be further mod-
ified under climate change (Taylor et al., 2013). Groundwa-
ter withdrawals have led to lowered water tables, decreased
base flows, and groundwater depletion around the globe
(Konikow, 2011; Scanlon et al., 2012; Wada et al., 2012;
Wada, 2016; Döll et al., 2014). To represent groundwater–
surface-water body interactions, lateral and vertical flows,
and human water use impacts on head dynamics, it is nec-
essary to simulate the depth and temporal variation of the
groundwater table. Global-scale hydrological models have
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recently moved to include these processes by implementing a
gradient-based groundwater model approach (de Graaf et al.,
2015; Reinecke et al., 2019). This study is based on G3M
(Döll et al., 2009), one of the two global groundwater models
capable of calculating hydraulic head and surface water body
interaction on a global scale. However, the lack of available
input data and the necessary conceptual assumptions due to
the coarse spatial resolution limit the reliability of model out-
put. These substantial uncertainties suggest an opportunity
for diagnostic methods to prioritize efforts in data collection
and parameter estimation.

Sensitivity analysis is a powerful tool to assess how un-
certainty in model parameters affects model outcome, and it
can provide insights into how the interactions between pa-
rameters influence the model results (Saltelli et al., 2008).
Sensitivity methods can be separated into two classes: local
and global methods. Local methods compute partial deriva-
tives of the output with respect to an input factor at a fixed
point in the input space. By contrast, global methods explore
the full input space, though at higher computational costs
(Pianosi et al., 2016). The large number of model evalua-
tions required can render global methods unfeasible for com-
putationally demanding models, though increased computa-
tional resources have facilitated their application, e.g., Her-
man et al. (2013a), Herman et al. (2013b), and Ghasemizade
et al. (2017). Still, existing studies of global models either
focus on exploring uncertainties by running their model with
a limited set of different inputs for a quasi-local sensitivity
analysis (Wada et al., 2014; Müller Schmied et al., 2014,
2016; Koirala et al., 2018) or applying computationally in-
expensive methods based on a limited set of model evalua-
tions (Schumacher et al., 2015). For example, de Graaf et al.
(2015, 2017) determined the coefficient of variation for head
results in a global groundwater model with 1000 model runs
evaluating the impact of varying aquifer thickness, saturated
conductivity, and groundwater recharge. To the knowledge
of the authors, the only other study that applied a global sen-
sitivity analysis to a comparably complex global model is
Chaney et al. (2015). An overview of the application of dif-
ferent sensitivity analysis methods for hydrological models
can be found in Song et al. (2015) and Pianosi et al. (2016).

G3M uses input from, and it is intended to be coupled
with and integrated into, the global hydrological model Wa-
terGAP Global Hydrology Model (WGHM) (Döll et al.,
2014). This study investigates the sensitivity of steady-state
hydraulic heads and exchange flows between groundwa-
ter and surface water to variations in main model parame-
ters (e.g., groundwater recharge, hydraulic conductivity, and
riverbed conductance). To this end the method of Morris
(Morris, 1991) is applied.

Morris is a global sensitivity method as it provides an ag-
gregated measure of local sensitivity coefficients for each pa-
rameter at multiple points across the input space and analy-
ses the distribution properties (Razavi and Gupta, 2015). It
requires significantly fewer model runs, compared to other

global methods, to provide a meaningful ranking of sensitive
parameters enabling the exploration of computationally de-
manding models (Herman et al., 2013a). The application of a
global sensitivity method for a complex worldwide model of
groundwater flows is unique, and Morris is currently the best
available method to handle the computational constraints.

To reduce the number of necessary model runs when con-
ducting global sensitivity analysis for computationally de-
manding models we introduce the concept of global hydro-
logical response units (GHRUs) (Sect. 2.2.3) (similar to Hart-
mann et al., 2015, for example). Using the GHRUs we
present an application of the Morris method (Morris, 1991) to
the Global Gradient-based Groundwater Model, G3M (Rei-
necke et al., 2019).

Sensitivities of the model are explored in three steps: (1) to
understand the impact of improved input data, in particular
hydraulic conductivity, we investigate the changes in simu-
lated hydraulic head that result from changing the hydraulic
conductivity data from the GLHYMPS 1.0 dataset (Glee-
son et al., 2014) to 2.0 (Huscroft et al., 2018). (2) Based
on prior experiments (de Graaf et al., 2015; Reinecke et al.,
2019) eight parameters are selected for a Monte Carlo experi-
ment to quantify uncertainty in simulated hydraulic head and
groundwater–surface-water interactions. The parameters are
sampled with a newly developed global region-based sam-
pling strategy and build the framework for the (3) Morris
analysis. Elementary effects (EEs), a metric of sensitivity,
are calculated and their means and variances ranked to de-
termine global spatial distributions of parameter sensitivities
and interactions. The derived global maps show, for the first
time, the sensitivity and parameter interactions of simulated
hydraulic head and groundwater–surface-water flows in the
simulated steady-state global groundwater system to varia-
tions in uncertain parameters. Foremost, these maps help fu-
ture calibration efforts by identifying the most influential pa-
rameters and answer the question if the calibration should
focus on different parameters for different regions helping to
understand regional deviations from observations. Addition-
ally, they guide the further development of the model, espe-
cially in respect to the coupling efforts highlighting which
parameters will influence the coupled processes the most.
Lastly, they show in which regions global groundwater mod-
els might benefit the most from efforts in improving global
datasets like global hydraulic conductivity maps.

2 Methodology and data

2.1 The model G3M

G3M (Reinecke et al., 2019) is a global groundwater model
intended to be coupled with WaterGAP (Döll et al., 2003,
2012, 2014; Müller Schmied et al., 2014) and is based on
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the Open Source groundwater modeling framework G3M-f1

(Reinecke, 2018). It computes lateral and vertical groundwa-
ter flows as well as surface water exchanges for all land areas
of the globe except Antarctica and Greenland on a resolu-
tion of 5 arcmin with two vertical layers with a thickness of
100 m each, representing the aquifer. The groundwater flow
between cells is computed as
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where Kx,y,z [L T−1] is the hydraulic conductivity along
the x, y, and z axis between the cells with size 1x1y1z;
Ss [L−1] is the specific storage; h [L] is the hydraulic head;
and Q [L3 T−1] denotes the in- and outflows of the cells
to or from external sources of groundwater recharge from
soil (R) and surface water body flows (Qswb) (see also Rei-
necke et al., 2019[Eqs. (1, 2)]). The evaluation presented in
this study is based on a steady-state variant of the model rep-
resenting a quasi-natural equilibrium state, not taking into
account human interference (a full description of the steady-
state model and indented coupling can be found in Reinecke
et al., 2019). The stand-alone steady-state simulations were
performed as an initial step to identify the dominant param-
eters that are also likely to be important for controlling tran-
sient groundwater flow.

2.1.1 Groundwater recharge

Groundwater recharge (R) is based on mean annual R com-
puted by WaterGAP 2.2c for the period 1901–2013. Human
groundwater abstraction was not taken into account; not be-
cause it is not computed by WaterGAP but rather because
there is no meaningful way to include it into a steady-state
model which represents an equilibrium (abstractions do not
equilibrate).

2.1.2 Hydraulic conductivity

Hydraulic conductivity (K) is derived from GLHYMPS 2.0
(Huscroft et al., 2018) (shown in Fig. 2a). The original data
were gridded to 5 arcmin by using an area-weighted average
and used asK of the upper model layer. For the second layer,
K of the first layer is reduced by an e-folding factor f used
by Fan et al. (2013) (a calibrated parameter based on terrain
slope), assuming that hydraulic conductivity decreases ex-
ponentially with depth. Hydraulic conductivity of the lower
layer is calculated by multiplying the upper layer value by
exp(af−1)−1 where a =−50 (m) (Fan et al., 2013, Eq. 7).

Currently only two datasets, GLHMYPS 1.0 and 2.0
(Gleeson et al., 2014; Huscroft et al., 2018), are available

1Available on http://globalgroundwatermodel.org/ (last access:
12 November 2019).

and are used by a number of continental and global mod-
els (de Graaf et al., 2015; Maxwell et al., 2015; Keune
et al., 2016; Reinecke et al., 2019). GLHMYPS 1.0 (Glee-
son et al., 2014) is compiled based on the global lithol-
ogy map GLiM (Hartmann and Moosdorf, 2012) and data
from 92 regional groundwater models and derives perme-
abilities (for the first 100 m vertically) based on Gleeson
et al. (2011), differentiating the sediments into the categories
fine-grained, coarse-grained, mixed, consolidated, and un-
consolidated. Permafrost regions are assigned a K value of
10−13 m s−1 based on Gruber (2012). Areas of deeply weath-
ered laterite soil (mainly in tropical regions) are mapped
as unconsolidated sediments as they dominate K (Gleeson
et al., 2014).

The global permeability map was further improved with
the development of GLHYMPS 2.0 by Huscroft et al. (2018).
A two-layer setup was established in GLHYMPS 2.0 with
the lower layer matching the original GLHYMPS 1.0. For
the upper layer in GLHYMPS 2.0, a global database of un-
consolidated sediments (Börker et al., 2018) was integrated
into GLHYMPS 2.0, resulting in overall slightly increasedK
(Fig. 2a). The thickness of the upper layer was deduced
from the depth-to-bedrock information available from Soil-
Grid (Hengl et al., 2017). No thickness was assigned to the
lower layer.

2.1.3 Surface water body conductance

The in- and outflowsQ are described similar to MODFLOW
as flows from the cell: a flow from the cell to a surface water
body is negative, and the reverse flow is positive. Thus gains
and losses from surface water bodies (lakes, wetlands and
rivers) are described as

Qswb =

{
Cswb (Eswb−h), h > Bswb,

Cswb (Eswb−Bswb) , h≤ Bswb,
(2)

where h is the simulated hydraulic head, Eswb is the head of
the surface water body, and Bswb is the bottom elevation. The
conductance Cswb of the surface water body bed is calculated
as

Cswb =
KLW

Eswb−Bswb
, (3)

where K is the hydraulic conductivity, L the length, and
W the width of the surface water body. For lakes (includ-
ing reservoirs) and wetlands, the conductances Clak and Cwet
are estimated based on K of the aquifer and surface wa-
ter body area divided by a static thickness of 5 m (Eswb−

Bswb = 5 m). For a steady-state simulation the surface wa-
ter body data show the maximum spatial extent of wetlands,
an extent that is seldom reached, in particular in the case of
wetlands in dry areas. To account for that we assume for
global wetlands (Cgl.wet) that only 80 % of their maximum
extent is reached in the steady state (Reinecke et al., 2019).
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Figure 1. Parameterization and outputs of the G3M model.Qswb is the flow between the aquifer and surface water bodies, h is the simulated
hydraulic head, K is the hydraulic conductivity, Ke-fold is K scaled by an e-folding factor (see Sect. 2.1.2), Eswb is the surface water body
head, Bswb is the bottom elevation of the surface water body, Cswb is the conductance of the surface water bodies, and R is the groundwater
recharge. In red are the outputs and parameters that are of foremost importance for coupling.

Global wetlands are defined as wetlands that are recharged
by streamflow coming from an upstream 5 arcmin grid cell
in WaterGAP (Döll et al., 2009). For gaining rivers, the con-
ductance is quantified individually for each grid cell follow-
ing an approach proposed by Miguez-Macho et al. (2007).
According to Miguez-Macho et al. (2007), the river conduc-
tance Criv in a steady-state groundwater model needs to be
set in a way that the river is the sink for all the inflow to the
grid cell that is not transported laterally to neighboring cells.
This inflow consists of R and inflow from neighboring cells.

Criv =
R+Qeqlateral

heq−Eriv
h > Eriv, (4)

where Qeqlateral is the lateral flow based on the equilibrium
head heq of Fan et al. (2013) and Eriv is the head of the
river (Eswb = Eswb,riv in Table 1). These conductance equa-
tions are inherently empirical as they use a one-dimensional
flow equation to represent the three-dimensional flow pro-
cess that occurs between groundwater and surface water.
Future efforts will investigate using approaches appropriate
for large-scale models, such as those described by Morel-
Seytoux et al. (2017). An extensive description on the chosen
equations and implications can be found in Reinecke et al.
(2019).

2.1.4 Surface water body elevation

The vertical location of surface water bodies has a great
impact on model outcome (Reinecke et al., 2019). Their
vertical location Eswb is set to the 30th percentile of the
30 arcsec land surface elevation values of Fan et al. (2013)
per 5 arcmin cell, e.g., the elevation that is exceeded by
70 % of the hundred 30 arcsec elevation values within one
5 arcmin cell. Bswb is calculated based on that head ele-
vation with different values for wetlands and lakes (Rei-

necke et al., 2019, Table 1). For rivers, Bswb is equal to
hriv−0.349×Q0.341

bankfull (Allen et al., 1994), whereQbankfull is
the bankfull river discharge in the 5 arcmin grid cell (Verzano
et al., 2012).

2.1.5 Ocean boundary

The outer boundary condition in the model is described by
the ocean and uses an equation similar to MODFLOW’s gen-
eral head boundary condition as flow

Qocean = Coc (hocean−h), (5)

where hocean is the elevation of the ocean water table set to
0 m worldwide and Coc is the conductance of the boundary
condition set to 10 m2 d−1 based on average K and aquifer
thickness.

2.2 Sensitivity analysis

2.2.1 Sensitivity of simulated head to choice of
hydraulic conductivity dataset

Parameterization of aquifer properties based on hydrogeo-
logical data is an important decision in groundwater model-
ing. We first investigate the effect of switching to a newly
available global permeability dataset to explore the sensitiv-
ity of h to the variability in geologic data. The results are then
compared to the effects of parameter variability, as quantified
by the Monte Carlo experiments.

GLHYMPS 2.0 (Huscroft et al., 2018) provides an update
of the only available global permeability map (Gleeson et al.,
2014). To quantify how the new hydraulic conductivity es-
timates change the simulation outcome of the groundwater
model we calculate a basic sensitivity index:
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Figure 2. Impact of hydraulic conductivity datasets GLHYMPS 1.0 and GLHYMPS 2.0. (a) GLHYMPS 2.0 (m s−1), (b) K differ-
ences, expressed as K(GLHYMPS 2.0)/K(GLHYMPS 1.0). Blue indicates higher values in GLHYMPS 2.0, (c) h(GLHYMPS 2.0) minus
h(GLHYMPS 1.0) (m), (d) the sensitivity of h to change in the GLHYMPS dataset based on Eq. (6) (white indicates that no index could be
calculated).

S =

h2−h1
h1

K2−K1
K1

, (6)

where the sensitivity S of h to a change in K is calculated
based on the change in h (h1 is the hydraulic head calculated
with GLHYMPS 1.0 and h2 with GLHYMPS 2.0), and the
change inK1 andK2 (the hydraulic conductivity) is based on
GLHYMPS 1.0 and 2.0, respectively.

2.2.2 Sensitivity of head and surface water body flow to
choice in parameters

Along with K , additional parameters influence the model
outcome. In this study we apply the method of Morris
(Morris, 1991) as a screening method to identify which pa-
rameters are most important for the two main model out-
comes, namely h and groundwater–surface-water interac-
tions (Qswb). The Morris method provides a compromise
between accuracy and computational cost in comparison
to other Monte Carlo-like methods (Campolongo et al.,
2007). Compared to other global methods, like the more ro-
bust variance-based methods, e.g., Sobol (1993), Morris has
drawbacks as it may provide false conclusions (Razavi and
Gupta, 2015). The attribution of what is a direct effect (model

response only due to one parameter change) and what is an
effect of interaction (response to nonlinear interaction of pa-
rameters on model output) is not trivial. Morris is prone to
scale issues; that is, that the step size of the analysis can have
a significant impact on the conclusions, especially for signifi-
cantly nonlinear responses (Razavi and Gupta, 2015). In this
study we address this by limiting the parameter ranges of
the multipliers where we suspect nonlinearity in the model
response. In general the choice of the chosen global sen-
sitivity method may yield different results (Dell’Oca et al.,
2017). On the other hand, Janetti et al. (2019) showed for a
regional-scale groundwater study that different global meth-
ods showed similar results for hydraulic conductivity param-
eterization. Nevertheless, Morris is a well established and
recognized method (Razavi and Gupta, 2015) that has the
advantage of computational efficiency compared to variance-
based methods to screen the most sensitive parameters (Her-
man et al., 2013a).

Each model execution represents an individually random-
ized “one-factor-at-a-time” (OAT) experiment (Pianosi et al.,
2016), where one parameter is changed per simulation. Pa-
rameter samples are based on trajectories. Each trajectory
starts at a point in the parameter space and perturbs one pa-
rameter at a time. After all parameters are changed, a new tra-
jectory begins from a different point in the parameter space.

www.hydrol-earth-syst-sci.net/23/4561/2019/ Hydrol. Earth Syst. Sci., 23, 4561–4582, 2019
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Based on the model executions using these parameter per-
turbations, the Morris method calculates an elementary ef-
fect (EE) d for every trajectory of an ith parameter (in this
study parameter multipliers).

di(X)=

(
y (X1, . . ., Xi−1,Xi +1,Xi+1, . . ., Xk)− y(X)

1

)
, (7)

where 1 is the trajectory step size for the parameter mul-
tiplier Xi , X is the vector of model parameters multipliers
of size k and y(X) the model output (e.g., in the presented
model h or Qswb). Each EE is a local sensitivity measure
that is finally aggregated to a global measure. This total ef-
fect of the ith parameter is computed as the absolute mean
of the EEs for all trajectories and is denoted as µ∗ (Campo-
longo et al., 2007). If µ∗ is large, it means the parameter is
sensitive, on average, throughout the parameter space.

The standard deviation of EEs (σi) is an aggregated mea-
sure of the intensity of the interactions of the ith parameter
with the other parameters, representing the degree of non-
linearity in model response to changes in the ith parameter
(Morris, 1991). If σi is large, it means that the sensitivity of
the parameter varies a lot between different points in the pa-
rameter space. For a completely linear model, EEs are the
same everywhere (because the local gradients are the same
everywhere), and σi is zero. Therefore, a higher σi entails a
more nonlinear model with more interactive components.

The derived metrics µ∗ and σi are both measures of inten-
sity (higher values are more sensitive/interactive) and do not
represent absolute values of sensitivity or interaction. Both
can only be interpreted meaningfully in comparison with val-
ues derived for other parameters. To achieve that, µ∗ and
σi are used to rank the most sensitive parameters. Values for
all parameters are sorted from highest to lowest, and the pa-
rameter with the highest value is selected as the most influen-
tial parameter with the highest rank (hereafter called rank 1).
The parameter with the second highest value (rank 2) is the
second most influential parameter and so on. The robustness
of the parameter ranking is assessed by calculating confi-
dence intervals as described in detail in Appendix A.

Previous experiments (de Graaf et al., 2015; Reinecke
et al., 2019) showed the importance of hydraulic conductiv-
ity, groundwater recharge, and surface water body elevation
to the simulated hydraulic head. Together with the highly un-
certain surface water body and ocean conductance we thus
selected eight model parameters for the sensitivity analysis.
The analysis was conducted by using randomly sampled mul-
tipliers in the ranges presented in Table 1.

Throughout the analysis the following parameters, in-
cluding the convergence criterion and spatial resolution,
stay fixed: global mean sea-level, bottom elevation of sur-
face water bodies, and their width and length. The base-
line parameters are assumed to be equal to Reinecke et al.
(2019). Hydraulic conductivity is based on a global dataset
(Sect. 2.1.2), the conductance is calculated as previously
shown (Sect. 2.1.3), and the groundwater recharge baseline

is equal to the mean annual values calculated by WaterGAP
(Sect. 2.1.1). Parameter ranges were chosen to ensure that a
high percentage of model realizations converge numerically.
For example, the uncertainty of Eswb in the model is higher
than the ranges used in this study, but the sampling range was
restricted because a larger range led to nonconvergence. Fur-
thermore, the chosen river conductance approach uses R as
parameter and includes a nonlinear threshold between losing
and gaining surface water bodies, which strongly affects nu-
meric stability. As in any sensitivity analysis, the choice of
parameter ranges involves some subjectivity that may influ-
ence the ranking of sensitive parameters in the results.

2.2.3 Global hydrological response units

Even though the number of model evaluations are less for
OAT experiments than for “all-at-a-time” experiments (Pi-
anosi et al., 2016), varying every parameter independently
in every spatial grid cell leads to an unfeasible amount of
model runs. On the other hand, the use of global multipliers
that vary a parameter uniformly for all computational cells
may lead to inconclusive results, as the sensitivity for ev-
ery cell to this change is spread to the whole computational
domain. A possible solution would be to separate the globe
into zones with similar geological characteristics based on
the GLHYMPS dataset, but this may still result in an infea-
sible number of required simulations. Each simulation takes
about 30 min to 1 h on a commodity computer (more if the
parameters hinder a fast convergence).

To overcome these limitations, we introduce the use of
a global hydrological response unit (GHRU). Every GHRU
represents a region of similar characteristics, regarding three
characteristics: Eswb (Sect. 2.1.3 and 2.1.4), K (Sect. 2.1.2),
and R (Sect. 2.1.1). This does not constitute a zoning ap-
proach often used for calibration in traditional regional
groundwater modeling, only a separation into parameter mul-
tipliers. A uniform random distribution within the ranges
given in Table 1 is used to sample the parameter multipliers
for all GHRUs. Characteristics for each model cell are nor-
malized to [0, 1] and used to create a 3-D point space (based
on the three characteristics for each model cell). We apply a
k-means (Lloyd, 1982) clustering algorithm to identify these
regions.
K-means clustering partitions n points into k clusters,

where each point belongs to the cluster with a minimized
pairwise squared distance to the mean in that cluster. Fig-
ure 3a shows a map of k-means clustering (six clusters)
categories based on a normalized three-dimensional space
of Eswb, K , and R per grid cell.

The number of clusters was determined based on the fea-
sible number of model evaluations. K-means constitute an
unsupervised machine learning approach that builds the re-
quired number of clusters automatically; thus it is necessary
afterwards to examine what main characteristics these clus-
ters represent (shown in Table 2). Characteristics are encoded
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Table 1. Range of parameter multipliers used in the Morris experiments. Each parameter multiplier is sampled in log space (log10(Multiplier))
with sampling based on Campolongo et al. (2007) and optimized with Ruano et al. (2012).

Parameter Unit Multiplier range Description

K LT−1 0.1–100 Saturated hydraulic conductivity
Eswb L 0.9977–1.0023 SWB elevation
Clak L2 T−1 0.5–2 Conductance of lakebed
Cwet L2 T−1 0.5–2 Conductance of wetland bed
Cgl.wet L2 T−1 0.5–2 Conductance of global wetland bed
Criv L2 T−1 0.5–2 Conductance of riverbed
R L T−1 0.5–2 Groundwater recharge
Coc L2 T−1 0.1–10 Conductance of the ocean boundary

Coc is equal for all ocean cells.

Figure 3. Map of k-means clustering categories, each representing
a GHRU. Each color identifies a region where the combination of
all three parameters is similar.

as relative values – high (↑), medium (∼), low (↓) – of the
three parameter values based on their mean value per cluster.
These characteristics are used to connect calculated parame-
ter sensitivities to GHRUs when analyzing the results of the
experiment.

2.2.4 Experiment configuration

The total number of necessary simulations N is determined
with N = r(k+ 1) (Campolongo et al., 2007), where r is the
number of elementary effects and k is the number of param-
eters. For 7 parameters (without the ocean boundary) and
6 GHRUs we get a total number of parameters k = 42+ 1,
where +1 stands for the ocean boundary, which is not varied
by GHRU, resulting in 1848 simulations. Elementary effects
are based on an initial random sampling of 10 000 trajectories
using Campolongo et al. (2007) and then reduced by assum-
ing 42 (number of parameters times GHRUs without ocean
boundary) so-called optimized trajectories following Ruano
et al. (2012). Only random sampling might result in nonopti-
mal coverage of the input space; thus the initial random tra-
jectories are used to select only those that maximize the dis-
persion in the input space. This optimal set of trajectories is

approximated with a reasonable computational demand us-
ing the methodology developed by Ruano et al. (2012).

The experiment resulted in 1848 simulations with an over-
all runtime of 2 months on a machine with 20 computa-
tional cores (enabled hyper-threading) and 188 GB RAM.
Each simulation required about 8 GB of RAM and was as-
signed four computational threads while running the simula-
tions in cohorts of 10 simulations at once. Changes in param-
eters were stacked over all experiments. Thus, an experiment
may have changed R (also affecting Criv for gaining condi-
tions) while containing a Criv multiplier from a previous ex-
periment. Sampling and analysis was implemented with the
Python library SALib (Herman and Usher, 2017). For each
experiment, the model was run until it reached an equilibrium
state (steady-state model). All other parameters and conver-
gence criteria can be found in Reinecke et al. (2019). If a
simulation failed (6 of 1848 did not converge) the missing
results were substituted randomly from another simulation
within the cohort to preserve the required ordering of param-
eter samples for the used Python implementation of the Mor-
ris method. This number is low enough that it does not bias
the results in any significant way (Branger et al., 2015).

A converged simulation does not necessarily constitute a
valid result for all computed cells. Numeric difficulties based
on the model configuration (due to the selected parameter
multipliers) may lead to cells with calculated h that are un-
reasonable – more specifically, a hydraulic head that is far
above or below the land surface and/or leads to a large mass
budget error. In the presented study these simulations are re-
tained, as a removal would require either a rerun of simula-
tions with a different convergence criterion and inclusion of
this in the analysis or a modification of the Morris method
to allow the removal of simulations. Confidence intervals
(95 %) are derived via bootstrapping using 1000 bootstrap
resamples (see Appendix A).
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Table 2. Mean values of GHRU characteristics and their summarized description, where ↑ is read as a relatively high value, ∼ as medium,
and ↓ as low; e.g., ↑↑ E indicates a cluster with very high and relatively high (↑) average Eswb. Additionally, the last two columns show the
percentage of cells per GHRU where µ∗ of h and Qswb could be reliably determined (described in Sect. 3.2.6).

% of reliable µ∗

GHRU µ(Eswb) µ(K) µ(R) GHRU description h Qswb
(m) (m s−1) (mm d−1)

1 454 10−4 0.15 ∼ E, ↑K , ∼ R 9.54 % 6.58 %
2 286 10−6 0.15 ↓ E, ∼K , ∼ R 12.07 % 14.41 %
3 4107 10−6 0.13 ↑↑ E, ∼K , ↓ R 0.08 % 4.09 %
4 1355 10−6 0.11 ↑ E, ∼K , ↓ R 3.17 % 17.19 %
5 303 10−6 1.24 ↓ E, ∼K , ↑ R 31.62 % 26.37 %
6 194 10−4 1.25 ↓ E, ↑K , ↑ R 29.00 % 14.36 %

3 Results

3.1 Sensitivity to updated GLHMYPS dataset

Global-scale hydrogeological data are limited. Figure 2b
shows the change in K between GLHYMPS 1.0 (Gleeson
et al., 2014) and the upper layer of GLHYMPS 2.0 (Huscroft
et al., 2018), where an overall increase can be observed due
to the change in unconsolidated sediments. Although uncon-
solidated sediments cover roughly 50 % of the world’s ter-
restrial surface, their extent was underestimated in previous
lithologic maps by half (Börker et al., 2018). The largest in-
crease in K can be found between 50 and 70◦ N because of
glacial sediments that were assigned high K values. Differ-
ent lithologies, e.g., alluvial terrace sediments and glacial
tills, have all been grouped into the hydrolithological cate-
gory of sand. Areas of decreased hydraulic conductivity are,
for example, the Great Lakes, south of Hudson Bay, and
parts of Somalia. The area around Hudson Bay was assumed
to consist of unconsolidated sediments in GLHYMPS 1.0
(Gleeson et al., 2014) and was changed to consolidated. In
Somalia, evaporites, which are known for low K , were in-
corporated from the Global Unconsolidated Sediments Map
Database (GUM) (Börker et al., 2018). Furthermore, GUM
provides a detailed mapping of loess and loess-like deposi-
tions, which were assigned lower K values. These regions
can be observed to be the only regions with reduced K

(Fig. 2b). Overall, the increase in unconsolidated sediments
is probably the main cause for the increased K .

Due to the change in K , the simulated h changes accord-
ingly (Fig. 2c). In areas where the K decreased h increased,
e.g., eastern North America. Overall heads decreased, espe-
cially in central Russia by up to 10 to 100 m. A slight increase
in head can be observed in areas with no change in K . This
can be either due to changes in groundwater flow patterns
due to the overall increase in K or due to numerical noise.

Based on these results, a local sensitivity index was calcu-
lated using Eq. (6), shown in Fig. 2d. White constitutes areas
where either the relative change of K was zero or the head

of the GLHYMPS 1.0 simulation was zero. Overall, h and
K change in the opposite directions (positive values indicate
a change in the same direction). An overall increase in K
has led to a overall decrease in h as the higher K values are
able to transport more water for a given hydraulic gradient,
especially along coastlines and mountainous areas. Increased
sensitivity indexes can be observed at boundaries of areas of
large spatial extent where the initial K was equal, whereas
the h changes inside that area are relatively small (e.g., the
Arabian Peninsula). In regions where an increase in K leads
to a decrease in head, an increase in h at the boundary to
other hydrolithological structures can be observed. Areas
with changing indexes next to each other, e.g., in the Sahara,
possibly point to a numerically unstable model region with
a general sensitivity to parameter changes. GLHYMPS 2.0
represents the best available global data for hydraulic con-
ductivity, and the results of this initial experiment indicate
a significant sensitivity to updating the model with this new
dataset.

3.2 Monte Carlo experiments

To assess the variability of model outputs we used the Monte
Carlo-like OAT experiments to quantify the output uncer-
tainty as given in the 1848 model realizations.

3.2.1 Variability of hydraulic head

The spatial distribution of variability in the main model out-
put h provides insights into model stability and highlights
regions which are most sensitive to parameter changes. Ob-
servable differences between simulations can be caused by
(1) the parameter change of the OAT experiment, (2) the in-
teractive effects due to combinations of parameter changes,
(3) numerical noise (slight variations in outcome due to the
nature of the numerical algorithm or floating point errors
that cannot be attributed to a specific parameter change), and
(4) a nonoptimal solution of the groundwater equation (Eq. 1)
even if the convergence criterion is met. The latter error (4)
can be observed in the model where a strong nonlinear rela-
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Figure 4. Absolute coefficient of variation (σ(h)µ(|h|)−1) (%) of
simulated h per cell over all Monte Carlo realizations. Yellow indi-
cates that h results changed very little, white to gray values indicate
a growing difference in model results, and red values indicate a very
high variation of h over all model realizations.

tion may produce solutions that fit the convergence criterion
but should be considered nonvalid, e.g., because of a mass
balance that is unacceptably imprecise.

Figure 4 shows the absolute coefficient of variation (ACV)
of h per cell over all Monte Carlo experiments. The ACV is
used to make a sound comparison of variance taking into ac-
count the mean of the h value per cell (because the mean
might be negative the absolute value is used). Yellow indi-
cates that h changed little (mostly for regions with shallow
groundwater), white to gray values indicate a growing differ-
ence in model results, and red values indicate a high variation
of h over all model realizations. The latter areas represent ei-
ther very low R (Sahara, Australia, South Africa) or a high
variance in elevations, e.g., Himalaya, Andes, and the Rocky
Mountains. These are expected to have a high sensitivity to
parameter changes as the multiplier of Eswb produces the
highest shifts in regions with high elevation. Any changes
in Eswb might cause a switch from gaining to losing condi-
tions and vice versa (discussed in Sect. 3.2.2). Additionally,
a change in R directly influences the conductance term Criv
that might also be changed by a multiplier. These combina-
tions may yield conditions that are exceptionally challenging
for the numerical solver. Switches between the two condi-
tions constitute a nonlinearity in the equation which might
require a smaller temporal step-size to be solved. In a nut-
shell, if an iteration leads to a gaining condition and the
next to a losing condition, the switch renders the approxi-
mated heads of the preceding iterations invalid as the equa-
tion changed. In the worst case this can lead to an infinite
switch between the two conditions without finding the cor-
rect solution. Areas with a high variance in hydraulic heads
will also produce wide confidence intervals for parameters
which are highlighted in Fig. A2.

Figure 5 relates the uncertainty in h, due to a change
from GLHYMPS 1.0 to 2.0 to the interquartile range of h
of all Monte Carlo realizations, and thus uncertainty in h due
to parameter variation. Parameter variation is the dominant

Figure 5. Uncertainty in h caused by variability in hydraulic con-
ductivity data between GLHYMPS 1.0 and 2.0 (dominant in brown
to green) in relation to uncertainty in h caused by variability in pa-
rameters based on Monte Carlo simulations (dominant in blue to
light blue) calculated as |h1−h2|

IQR(hmc)
, where h1/2 is the simulated head

based on GLHMYPS 1.0 and 2.0 and hmc the simulated head of all
Monte Carlo experiments.

cause for h variability in mountainous regions, whereas the
change in geologic data has a dominant impact in northern
latitudes and the upper Amazon. In Australia, central Africa,
and northern India the impact of increasing K is almost as
high as the variability caused by the variation of parameters
in the Monte Carlo experiments. This suggests that a reduced
uncertainty in K in these regions will improve the model re-
sults.

3.2.2 Variability of losing/gaining surface water bodies

Surface water bodies that provide focused, indirect ground-
water recharge to the aquifer system are an impor-
tant recharge mechanism to support ecosystems alongside
streams (Stonestrom, 2007). They are important for agricul-
ture and industrial development, especially in arid regions.

Losing or gaining surface water bodies are determined
by h in relation to Eswb. When h drops below Eswb water is
lost to the aquifer (Eq. 4). Figure 6 shows for each grid cell
the percentage of the model runs in which the surface water
bodies in the cell lose water to the groundwater. Regions with
a higher percentage are in losing conditions for most of the
applied parameter values. Areas with the highest deviation
in h (Fig. 4), and thus the lowest agreement over all model
realizations, are similar to the regions where some parameter
combinations lead to losing surface water bodies, while oth-
ers lead to gaining surface water bodies (Fig. 6). Overall arid
and mountainous regions show high percentages of Monte
Carlo realizations with losing conditions, with dominantly
20 %–50 % of the realizations resulting in losing surface wa-
ter bodies. h in these regions falls below Eswb either due to
low recharge or high gradients. Surface-water–groundwater
interaction in these regions should be more closely inves-
tigated to improve model performance. The Sahara region
stands out with large areas that contain losing surface water
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Figure 6. Percentage of all Monte Carlo realizations that resulted in
a losing surface water body in a specific cell.

bodies in almost all model realizations. Values close to 100 %
are furthermore reached in the Great Lakes, the Colorado
Delta, the Andes, the Namib Desert, along the coast of So-
malia, the Aral lake, lakes and wetlands in northern Siberia,
and partially in Australian wetlands. Wetlands in Australia
and the Sahara are likely to be overestimated in size in the
context of a steady-state model.

3.2.3 Parameter sensitivities as determined by the
method of Morris

The global-scale sensitivity of h and Qswb is summarized
in Table 3, which lists the percentage fractions of all cells
for which a certain parameter has a certain rank regarding
sensitivity and parameter interaction.

Overall,Eswb and R are the most important parameters for
both model outputs over all ranks, followed by K . Qswb is
more sensitive to R than h, whereas h is more sensitive
to Eswb. Criv appears to be dominant in only the second and
third rank for both model outputs. This means that for the ma-
jority of cells a change in Eswb and R, rather than Criv, dom-
inates changes inQswb and h.K and R directly influence the
calculation of Criv and thus show a higher sensitivity.

The standard deviation of EEs (σi) is an aggregated mea-
sure of the intensity of the interactions of the ith parameter
with the other parameters, representing the degree of nonlin-
earity in the model response to changes in the ith parameter
(Morris, 1991). A high parameter interaction indicates that
the total output variance rises due to the interaction of the
parameter with other parameters.
Eswb shows higher interactions for h than for Qswb.

Criv shows a high interaction on the first rank even if it is not
the dominant effect. This interaction is likely due to changes
and K and R that directly influence the computation of Criv.
Both model outputs are sensitive to changes in R but show a
relatively low degree of interaction for the first rank. A higher
percentage of cells with an increased interaction of R is only
visible in the second and third rank.

Table 3. Percentage of cells for which parameters are ranked 1 to 3
based on µ∗ and σ . Percentages are shown for each model output, h
and Qswb. For example, h is the most sensitive to parameter Eswb
(rank 1) in 57.2 % of all grid cells, while R is the most important
parameter for Qswb in 59.8 % of those cells. Significant values are
highlighted in bold.

% of cells

Rank 1 Rank 2 Rank 3

Parameter Output µ∗ σ µ∗ σ µ∗ σ

K
h 24.2 18.8 21.7 12.9 7.1 4.3
Qswb 18.4 15.4 21.1 7.3 8.8 4.7

Eswb
h 57.2 46.3 14.8 19.9 13.4 18.9
Qswb 18.5 14.3 11.2 27.7 36.0 34.4

Clak
h 1.0 0.5 3.9 2.4 4.3 2.5
Qswb 0.5 0.6 2.2 0.9 2 0.9

Cwet
h 1.4 0.5 3.4 1.4 5.3 4.5
Qswb 0.5 0.8 3.6 2.1 4.2 2.8

Cgl.wet
h 0.9 0.9 1.8 10.2 8.4 8.1
Qswb 0.4 0.8 2.3 15.2 9.4 7.8

Criv
h 2.0 28.0 32.8 29.3 28.7 18.1
Qswb 1.4 62.6 47.8 16.2 28.8 10.0

R
h 13.4 4.1 22.7 23.6 33.8 43.2
Qswb 59.8 5.1 11.3 30.5 10.7 39.2

Coc
h 1.3 1.0 0.3 0.2 0.5 0.4
Qswb 0.5 0.4 0.5 0.2 0.2 0.2

Percentage of cells with nonoverlapping CIs (see Appendix A and Sect. 3.2.6) µ∗: 11.8 % (h) and
13.3 % (Qswb). Coc is rank 1 for h in 23 % of all ocean cells and in 11 % for Qswb.

Lakes and wetlands show low sensitivity and interaction in
relation to the total number of cells in Table 3 because they
only exist in a certain percentage of cells. Table 4 shows the
percentage fractions relative for cells with more than 25 %
coverage of a lakes, global wetlands, and/or wetlands. The
dominant parameter (by percentage) for all cells with respec-
tive surface water body is alwaysEswb for h (in 79.2 % of the
lakes and in (79.9 %) 66.3 % of the (global) wetlands) and R
(∼ 54 %–77 % of all cells) for Qswb. For the second rank the
conductance of the surface water body Clak,wet,gl.wet domi-
nated h, Criv for Qswb. Thus for lakes and wetlands Eswb
and R are more relevant to h and Qswb than the conductance
of these surface water bodies.

3.2.4 Maps of global sensitivity

To show the spatial distribution of the parameters that af-
fect h and Qswb the most, ranked parameters were plotted
for every cell in Fig. 7. The top of Fig. 7 represents the most
sensitive parameters in terms of h (left) andQswb (right). Ar-
eas that should be judged with caution due to overlapping CIs
are shown in Fig. A2.

For h Eswb stands out in mountainous regions with spots
of Criv and in regions with low recharge. These regions align
with highly variable outputs shown in Fig. 4. K is most im-

Hydrol. Earth Syst. Sci., 23, 4561–4582, 2019 www.hydrol-earth-syst-sci.net/23/4561/2019/



R. Reinecke et al.: Sensitivity of simulated global groundwater 4571

Table 4. Percentage fractions of the most frequent parameter for rank 1 (R1) and 2 (R2) of all cells with more than 25 % coverage of a lakes,
global wetland, or wetland.

µ∗(h) µ∗(Qswb)

% R1=Eswb % R2=Clak,wet,gl.wet % R1=R % R2=Criv

Lakes 79.2 64.6 54.2 38.8
Wetlands 66.3 47.3 77.2 46.9
Gl. Wetlands 79.9 56.4 66.3 31.7∗

∗ Criv = 31.7 %, Cgl.wet = 40.6 %. Percentage of second most frequent parameter not shown. Percentage in relation to
cells with lakes, global wetland, or wetland> 25 %. Percentage-wise R1(µ∗(h)) was always followed by R, except for
global wetlands, where the second most frequent R1 was Cgl.wet R1(µ∗(Qswb)) was followed percentage-wise by
Eswb except for local wetlands with K , R2(µ∗(Qswb)) by Clak,wet,gl.wet except for global wetlands with Criv.

portant for h in Australia, the northern Sahara, the Emirates,
and across Europe. The second rank (second row in Fig. 7)
shows values that are not as important as the top row but
dominant over all other parameters. In the regions with large
output variations (compare Fig. 4) K and for parts of the Hi-
malaya R are dominant in the second rank (for h). Clak is
clearly visible in parts of Nepal and along the Brahmaputra.

ForQswb Eswb is dominant in the first rank in, for example,
the Rocky Mountains, Andes, Hijaz Mountains in Saudi Ara-
bia, and the Himalaya. R stands out in regions in the Tropical
Convergence Zone as well as in northern latitudes. Cwet ap-
pears as a dominant parameter in areas with large wetlands
with a bigger impact on Qswb results than on h. K seems
to be equally spatially distributed for h as well as for Qswb.
There seems to be no correlation between the initialK spatial
distribution and a highly rankedK sensitivity for both model
outputs. Areas with a dominantK are possibly influenced by
a high interaction with other model components (K shows
a high interaction Table 3 that is also reflected spatially in
Sect. 3.2.5). For the second rank in the Tropical Convergence
Zone Criv and K dominate for Qswb. In general Qswb seems
to be more robust to show the effects in the highly variable
regions. That is, Qswb is not responding as extremely as h to
parameter changes. This further indicates the assumption that
Eswb is also mainly responsible for the h variations observed
in Sect. 3.2.1.

Zooming in on Europe (Fig. 8) for h, as an example,
shows, similar to the global picture, that R and K have the
highest impact on h along with Eswb. Eswb is dominant in
mountainous regions like the Alps and the Apennines as well
as in regions with lots of surface water bodies, e.g., the south-
ern part of Sweden in the area of lakes Vättern and Vän-
ern and in the Finnish Lakeland. R appears dominant in east
Italy in the Po Valley, the Netherlands, and the wetlands in
southwestern France. Almost invisible in the global picture
is Coc, a dominant parameter for most cells that have the
ocean as boundary condition (only observable for h). Pre-
dominantly Criv follows Eswb as the second most important
parameter. Only visible in the second rank are the wetlands,
e.g., in west Scotland.

3.2.5 Maps of global parameter interaction

Similar to the spatial parameter sensitivities, Fig. 9 shows
the parameter interactions for h and Qswb. Parallel to Fig. 7,
the first row of Fig. 9 represents the most interactive param-
eters in terms of h change (left) and Qswb (right). The high-
est interaction with other parameters can be observed for
Eswb for regions with high h variability, similar to Fig. 7.
This means that for Eswb the model is not only sensitive, but
also that the sensitivity of the parameter varies a lot between
different points throughout the parameter space, suggesting
a nonlinear model response. Criv showed no sensitivity on
rank 1 in Fig. 7, although it shows a high interaction in re-
gions sensitive to R (compare Figs. 7 and 9) and is more vis-
ible for Qswb. This means changes in Criv lead to nonlinear
model responses. K regions in the second rank are similar to
where K already showed a high sensitivity for h (compare
Fig. 7). In the Himalaya R and Criv show a large spatial pat-
tern. For Qswb, Cgl.wet is clearly visible where Criv was most
interactive before.

3.2.6 Sensitivity per GHRU

Average sensitivities and parameter interactions for each of
the six GHRUs are shown in Fig. 10a. A dominant average
per GHRU does not imply a rank 1 in each cell but rather
provides an indication of its average importance per GHRU.
Each GHRU is described by the notation in Table 2. The av-
erage sensitivities and interactions shown are normalized to
[0,1] because the calculated µ∗ and σ present no absolute
measure of sensitivity. Mean values of µ∗ and σ that are very
close to zero are not shown in Fig. 10.

The values shown in Fig. 10a should be judged with cau-
tion as they also include the regions that show possibly un-
reliable results, i.e., those where any overlap in CIs indicates
that the ranking of the parameters cannot be clearly deter-
mined (see additional explanation in Fig. A1).

To judge the reliability of the outcomes per GHRU Table 2
shows the percentage of reliable results for h and Qswb for
each GHRU, where reliable results exclude over 80 % of all
sensitivity values.
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Figure 7. Ranking of µ∗ of h (a, c, e) and Qswb (b, d, f). Panels (a, b) show the first rank, (c, d) the second, and (e, f) the third rank.

Figure 10b shows only cells with reliable results, based
on their confidence intervals, resulting in 11.8 % of all grid
cells for h and 13.3 % for Qswb. GHRUs in high and very
high elevations show low reliability concerning h results as
expected (compare Fig. 4). Qswb appears as more robust in
these regions.

Figure 10a shows a similar picture to the two global maps
(Figs. 7 and 9). All GHRUs show a linear correlation of sen-
sitivity and degree of interaction. The GHRU with average
elevation, average recharge, and high K (GHRU 1) shows a
higher average response in Qswb than h. h is most sensitive
to Criv, and less sensitive to the other parameters. Qswb is
clearly most sensitive to K and Cgl.wet and shows a high
interaction in this GHRU. Lower-lying regions with aver-
age K and R (GHRU 2) show high sensitivity of h only
to Eswb with a high interaction, while Qswb is affected in
decreasing order by Cgl.wet, and K . Results for h sensitiv-
ity in GHRU 3, with very high elevations, average K , and

low R, should be judged with caution because only a very
low fraction is based on results with nonoverlapping CIs (Ta-
ble 2). Compared to other GHRUs, GHRU 3 shows rather
clustered sensitivities and parameter interactions. h is most
sensitive to Eswb and R and Qswb to Clak, K , and Cwet.
GHRU 4, which differs from GHRU 3 by its high but not
very high land surface elevation, clearly shows Eswb, K , and
R as the most dominant and interactive parameter for Qswb,
followed by Cwet. Similarly Qswb is most sensitive to Eswb
andK . In low-lying and rather flat regions with high ground-
water recharge (GHRU 5), sensitivities of h are close to zero,
except for K , possibly because changes in h are too small
in flat regions (compare Fig. 4) due to small h gradients.
Qswb is most sensitive to Eswb and Cgl.wet. GHRU 6 is rel-
atively small and like GHRU 5 only occurs in the tropical
zone (Fig. 3a). In this GHRU, which differs from GHRU 5
only by K being high instead of average, the dominant pa-
rameters of Qswb are similar to other GHRUs where Eswb is
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Figure 8. Enlarged view of Europe of Fig. 7. Ranking of µ∗ of h (a: rank 1, b: rank 2).

clearly the most dominant followed by R and K . h shows a
response to wetlands but again like in GHRU 5 a very low
response to Eswb.

Taking into account only the reliable regions changes the
perception in Fig. 10b. GHRU 1 shows rather similar sen-
sitivities and parameter interactions as compared to other
GHRUs. h is most sensitive to Eswb, and only somewhat
less sensitive to Criv and Cwet. Qswb is clearly most sensitive
to Criv and shows a high interaction in this GHRU. GHRU 2
shows high sensitivity of h only to Eswb with a high interac-
tion while Qswb is equally affected by K , Eswb, and R. Re-
sults for h sensitivity in GHRU 3 are not very representative
for the whole GHRU as only a very small fraction of cells
shows reliable results (Table 2). Like in GHRU 2, Qswb is
equally affected by K , Eswb and R. GHRU 4 shows Eswb as
clearly most dominant and interactive parameter for h, fol-
lowed by K and Cwet. For GHRU 5, sensitivities of h could
not be determined reliably, possibly because changes in h
are too small in flat regions (compare Fig. 4) due to small
h gradients. Qswb is most sensitive to R (as rivers are gain-
ing rivers that need to drain groundwater recharge) followed
by K . In GHRU 6 the dominant parameters of Qswb are the
same as for GHRU 5 (except for Eswb) while h is most sen-
sitive to Clak.

4 Discussion

This study presents a novel spatially distributed sensitivity
analysis for a high-resolution global gradient-based ground-
water model encompassing 4.3 million grid cells. While
these maps are challenging to interpret, they yield new ways

of understanding model behavior based on spatial differences
and help to prepare calibration efforts by identifying parame-
ters that are most influential in specific regions. Furthermore,
they guide the future development of the model and the in-
tended coupling efforts of the groundwater model to the hy-
drological model. In particular, the sensitivity of Qswb and
the importance of Eswb, which are the two major coupling
components, are of interest.

However, the large number of grid cells with either sta-
tistically zero sensitivity values (overlapping CI with zero)
or unreliable results limit the relevance and applicability of
the study results. For most of the statistically zero sensitivity
values the CI is very large, and it is therefore very unlikely
that the parameter is not influential. The study suggests that
the highly nonlinear and conceptual approach to the surface
water body conductance (in particular the sudden change of
conductance between gaining and losing rivers) needs to be
revised as it may affect the stability of transient model re-
sults. Additionally the results suggest that elevation of the
water table of surface water bodies is a promising calibration
parameter alongside with hydraulic conductivity.

The presented results need to be considered against the
backdrop of the high h variability of the Monte Carlo ex-
periments (Sect. 3.2.1). Some of these simulations cannot
be considered as a valid result for a h distribution, an is-
sue not faced with other simpler traditional bucket-like hy-
drological models. This is due to multiple model challenges:
(1) the evaluated model approximates a differential equation
and can show nonlinear behavior for different parameteri-
zations, (2) the equations used for rivers present a nonlin-
ear model component (switch between equations for gain-
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Figure 9. Ranking of σ∗ of h (a, c, e) and Qswb (b, d, f). Panels (a, b) show the first rank, (c, d) the second, and (e, f) the third rank.

ing and losing conditions as well as relation to K and R),
(3) the convergence criterion for the steady-state solution is
solely based on a vector norm of residuals (metric of changes
of the solution inside the conjugate gradient approach) and
maximum h change between iterations and does not contain
an automated check for a reasonable mass balance. On the
other hand, it is challenging to include a validation mech-
anism in the presented analysis to alleviate these problems
while maintaining a reasonable model runtime (as a stricter
convergence criterion will most likely increase the number
of necessary iterations) and/or number of necessary model
runs. It is questionable whether results based on different
convergence criteria can be compared. This would necessi-
tate including the numeric stability in the sensitivity analysis
as well.

However, the results help to answer the research questions
at hand. While overlapping CIs blur the ranking of the param-
eters in some regions, they still provide evidence of what pa-

rameters the calibration should focus on and how the impor-
tance of parameters varies per region. The sensitivity ofQswb
to parameters, especially Eswb, will help to guide the future
model development and coupling to the hydrological model.
In general, the analysis helped to identify the elevation of
surface water bodies as a focus for future research.

Around 30 % of all µ∗ values had a confidence interval
that was larger than 10 % of the µ∗ value. This suggests that
even more model runs are required and that large extents of
the model experienced numerically unstable results as the
spatial distribution of head variance and large confidence in-
tervals overlap.

The selection of parameter ranges can influence the results
of a sensitivity analysis significantly (Pianosi et al., 2016).
Even parameters that are suspected of not being sensitive
can show highly nonlinear behavior in certain parts of the
parameter space that are only activated when one expands
the ranges of the parameters. The presented ranges in this

Hydrol. Earth Syst. Sci., 23, 4561–4582, 2019 www.hydrol-earth-syst-sci.net/23/4561/2019/



R. Reinecke et al.: Sensitivity of simulated global groundwater 4575

Figure 10. Normalized average sensitivity and parameter interaction per GHRU for h and Qswb (a). If a parameter is not present the mean
sensitivity for that GHRU was close to zero (overlapping CI with zero). Does not include ocean parameter sensitivity. Mean characteristics,
their symbols for each GHRU, and the reliability of the sensitivity measure (only µ∗ not σ ) are shown in Table 2. (b) Only reliable results
(after removing overlapping CI).
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study do not explore the full assumed uncertainty range.
Specifically, the small range of Eswb is likely influencing
the outcome of the parameter rankings. The range was cho-
sen to allow a reasonable number of simulations to converge
as the range of Eswb directly influences the convergence of
the model. The presented results, however, do show that the
model output is highly sensitive to changes in Eswb in most
areas of the globe. The response in mountainous regions can
be attributed to applying Eswb as a multiplier, which has a
higher impact in regions where the initial water body eleva-
tion is high. On the other hand, this is accounting for the fact
that the uncertainty of Eswb is largest in regions with highly
variable topography per 5 arcmin grid cell.

The only previous sensitivity analysis of a global gradient-
based groundwater model to our knowledge was done by
de Graaf et al. (2015). Based on varying K , aquifer thick-
ness, and R, the coefficient of variation of the steady-state
hydraulic head was computed (de Graaf et al., 2015, Fig. 5).
From that analysis it was determined that K has the highest
impact and aquifer thickness the lowest. It is not clear how
the coefficient of variation determined these outcomes. The
relatively low impact of aquifer thickness was also observed
by Reinecke et al. (2019). Therefore, this parameter was not
included in this study. Both de Graaf et al. (2015) and this
study show a high h variance in parts of Australia and the
Sahara (de Graaf et al., 2015, Fig. 5), possibly due to the low
initial R. Variations in the mountainous regions, on the other
hand, are not reflected in de Graaf et al. (2015) as their anal-
ysis did not vary Eswb.

Besides the large h variance, which is likely the main
cause for the low percentage of reliable cells, the confidence
intervals of the sensitivity indices in this experiment suggest
that additional simulations are necessary to determine more
reliable results. Additionally, the small parameter ranges, re-
quired for stable model runs, influenced the overall outcome
and might be a reason for cells with inconclusive results.

For cells with lakes and wetlands, Eswb dominates over
the variations in conductance for h (Table 4), confirming the
importance in determining the surface water body elevation.
For Qswb, on the other hand, R is most influential in these
cells even though it does not affect the conductance equation
for these surface water bodies. Apparently, available recharge
is driving the interaction more than it influences changes in
head. In regions with high recharge (GHRU 5) Qswb was
more robust to parameter changes than h. This is possibly due
to the generally lower response in Qswb to changes in Eswb,
which can be explained by the constant flow for losing sur-
face water bodies (including rivers) as soon as h drops be-
low Eswb. Thus changes is Eswb do not affect Qswb after-
wards (as long as the surface water body remains in losing
conditions). Both model outcomes show a high sensitivity
to R while the interaction of R is only visible at the third
rank, suggesting that if R changes other parameter changes
do not influence the model response further.

Separating the complex global domain into a selected
number of GHRUs enables a sensitivity analysis in accor-
dance with computational constraints (e.g., maximum num-
ber of core hours). It alleviates the drawbacks of global-scale
multipliers while keeping a reasonable number of total simu-
lations. The presented decomposition based on three param-
eters Eswb, K , and R was guided by the high sensitivity of
model output to these parameters. Other factors like lithology
and surface water body characteristics should be investigated
as additional characteristics for GHRUs.

5 Conclusions

For the first time, spatially distributed sensitivities of the
global steady-state distribution of hydraulic head and flows
between the groundwater and the surface water bodies were
calculated and presented. We found the Morris sensitivity
analysis method can yield insights for computationally chal-
lenging (concerning computation time and numerical diffi-
culties) models with reasonable computational demand. This
study applied a novel approach for domain decomposition
into GHRUs. Applying parameter multipliers simultaneously
to all grid cells within each of the six GHRUs allowed a more
meaningful sensitivity calculation than would be possible if
the parameters would have varied simultaneously in all grid
cells, while maintaining a feasible number of simulations.

Based on only a small fraction of grid cells for which
parameters could be ranked reliably according to their im-
portance for simulated model output, steady-state hydraulic
heads (h) were found to be comparably affected by hydraulic
conductivity (K), groundwater recharge (R), and the ele-
vation of the water table of surface water bodies (Eswb).
Rankings for individual grid cells vary, but globally none of
the three dominates with respect to h. The simulated flows
between groundwater and surface water bodies (Qswb) are
clearly most sensitive to R. This is due to the model pa-
rameterization of river conductance that is computed as a
function of R, assuming that under steady-state conditions,
groundwater discharge to rivers should tend to increase with
increasing R (Eq. 4). The results indicate that changes in R
between time steps for a fully coupled transient model could
pose a challenge to the model convergence and that the
equations might need to be reconsidered for a fully cou-
pled model. In general the uncertainty due to the parameter-
ization of groundwater–surface-water exchange flows (Eswb
and Criv,gl.wet,wet,lak) needs to be further investigated as they
have a high impact on h distribution and Qswb.

In high mountainous regions (Rocky Mountains, Andes,
Ethiopian Highlands, Arabian Peninsula, Himalaya) and re-
gions with low recharge (Sahara, southern Africa) the com-
puted h showed an unreasonably high variance due to the
numerical instability of the simulations in these areas. In the
case of high elevations and thus large variations in Eswb or
in the case of low groundwater recharge, it is not possible to
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solve steady-state groundwater flow equations with arbitrary
parameter combinations and a constant convergence param-
eter. Qswb was found to somewhat be more robust than h in
these regions. These results suggest that the parameterization
of Eswb needs to be reconsidered and is a likely parameter
for future calibration. In general more robust global sensitiv-
ity methods are required that allow the exclusion of certain
simulations from the analysis.

The lack of reliable data at the global scale, in particular
hydraulic conductivity data with high horizontal and vertical
resolution, hinders the development of global groundwater
models. A simple sensitivity analysis on the impact of small
changes to an existing global hydraulic conductivity dataset
(GLHYMPS 1.0 Gleeson et al., 2014 to 2.0 Huscroft et al.,
2018) showed that knowledge about the distribution of K is
pivotal for the simulation of h, as even slight changes in K
may change model results by up to 100 m.

The presented study results refer to the uncoupled steady-
state groundwater model G3M. As G3M is currently being
integrated into the global hydrological model WaterGAP, fu-
ture work will extend this sensitivity analysis to fully coupled
transient simulations.

Data availability. The data for this study can be provided
upon reasonable request. They are not publicly available due
to the very large outputs of all 2000 model executions
that exceed multiple hundred gigabytes. For the model code
see https://doi.org/10.5194/gmd-12-2401-2019 (Reinecke et al.,
2019). The sensitivity analysis framework is available at
https://doi.org/10.21105/joss.00097 (Herman and Usher, 2017).
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Appendix A

Confidence intervals are determined based on 1000 bootstrap
resamples following Archer et al. (1997) for all simulation
outputs. Bootstrapping is an established statistical method
that relies on random sampling with replacement using the
original data. This sampling from a set of independent, iden-
tically distributed data is equivalent to sampling from the em-
pirical distribution function of the data, allowing confidence
intervals to be determined (Archer et al., 1997).

The derived metrics µ∗ and σi are both measures of inten-
sity (higher values are more sensitive/interactive) and do not
represent absolute values of sensitivity. Both can only be in-
terpreted meaningfully in comparison with values derived for
other parameters. To achieve that, µ∗ and σi should be pre-
sented in so-called ranks. Values for all parameters are sorted
from highest to lowest, and the parameter with the highest
value is selected as the most influential parameter with the
highest rank. The parameter with the second highest value is
the second most influential parameter and so on.

Figure A1 shows the conceptual issues that are entailed
with this ranking approach. The absolute mean (µ∗) of all
EEs of parameter 1 (P1) might be bigger thanµ∗ of P2, but as
their CIs are overlapping a clear ranking is not possible. On
the other hand it is evident that P1 and P2 are clearly more
sensitive than P3. An overlapping suggests that even if the
µ∗ values are different a ranking should be considered with
care. Two parameters could be equally important or in some
regions inside one GRHU their importance could be inverse
to what the µ∗ values suggest. But even if they overlap, the
µ∗ provides a valuable measure of the overall importance of
the parameters, also in comparison with much less important
parameters.

Additionally, not only the overlapping should be consid-
ered but also the size of the CI in comparison to the µ∗. It
is a useful indicator of whether the sampling of the param-
eter space was too small and more simulations are required
to gain a clearer picture. 15 % is an arbitrary value that we
considered an appropriate boundary. Other studies used 10 %
(Herman et al., 2013a) or 3.5 % (Vanrolleghem et al., 2015).

Figure A2 shows regions where CIs were smaller than
15 % of the calculated µ∗ of the first rank and regions where
more simulations, or a more sophisticated approach to ensure
numerical stability, are likely required.

Figure A1. Illustration of derivation of presented metrics. Blue cir-
cles show the two criteria used to judge the quality of the results.
µ∗ is calculated based on the EEs (circles); however, the CI is cal-
culated based on bootstrap resamples of the simulation outputs.
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Figure A2. Confidence interval (95) in relation to the µ∗ for rank 1 of h and Qswb. Yellow regions indicate a sufficient sampling size.
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