Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4397-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-4397-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A review of methods for measuring groundwater–surface water exchange in braided rivers
Katie Coluccio
CORRESPONDING AUTHOR
Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
Leanne Kaye Morgan
Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
College of Science and Engineering, Flinders University, G.P.O. Box 2100, Adelaide SA 5001, Australia
Related authors
No articles found.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Instruments and observation techniques
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes
Technical note: Effects of iron(II) on fluorescence properties of dissolved organic matter at circumneutral pH
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Using multiple methods to investigate the effects of land-use changes on groundwater recharge in a semi-arid area
Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach
Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer
Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer
Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons
Groundwater–glacier meltwater interaction in proglacial aquifers
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
The effect of sediment thermal conductivity on vertical groundwater flux estimates
Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics
Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes
Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system
Comment on “Origin of water in the Badain Jaran Desert, China: new insight from isotopes” by Wu et al. (2017)
Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence
Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses
Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer
Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania
Halon-1301 – further evidence of its performance as an age tracer in New Zealand groundwater
Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange
Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA
Quantifying the influence of surface water–groundwater interaction on nutrient flux in a lowland karst catchment
Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4
Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale
Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method
Assessment of Halon-1301 as a groundwater age tracer
Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia
Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater
Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France)
A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses
Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China
Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China
Using hydrologic measurements to investigate free-phase gas ebullition in a Maine peatland, USA
Spatially resolved information on karst conduit flow from in-cave dye tracing
The usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data
Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach
Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy
Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns
Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023, https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
Short summary
In this paper, we use a novel surface nuclear magnetic resonance (SNMR) method for rapid high-quality data acquisition. The SNMR results from more than 100 soundings in three different case studies were used to map groundwater. The soundings successfully track the water table through the three areas and are compared to boreholes and other geophysical measurements. The study highlights the use of SNMR in hydrological surveys and as a tool for regional mapping of the water table.
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023, https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022, https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
Odiney Alvarez-Campos, Elizabeth J. Olson, Lisa R. Welp, Marty D. Frisbee, Sebastián A. Zuñiga Medina, José Díaz Rodríguez, Wendy R. Roque Quispe, Carol I. Salazar Mamani, Midhuar R. Arenas Carrión, Juan Manuel Jara, Alexander Ccanccapa-Cartagena, and Chad T. Jafvert
Hydrol. Earth Syst. Sci., 26, 483–503, https://doi.org/10.5194/hess-26-483-2022, https://doi.org/10.5194/hess-26-483-2022, 2022
Short summary
Short summary
We present results of a hydrologic study of groundwater recharge near the city of Arequipa, Peru. There are a number of springs below a high-elevation salar that show some chemical evidence of connectivity to the salar basin, possibly facilitated by faults in region. These results suggest that this salar basin is not a strictly terminal lake but that some interbasin groundwater flow exists. In addition, a high-elevation forest ecosystem seems important for groundwater recharge as well.
Kun Jia, Cara C. M. Manning, Ashlee Jollymore, and Roger D. Beckie
Hydrol. Earth Syst. Sci., 25, 4983–4993, https://doi.org/10.5194/hess-25-4983-2021, https://doi.org/10.5194/hess-25-4983-2021, 2021
Short summary
Short summary
The effect of soluble reduced iron, Fe(II), on fluorescence data (excitation–emission matrix spectra parsed using parallel factor analysis) is difficult to quantitatively assign. We added varying quantities of Fe(II) into groundwater from an anaerobic aquifer. We showed that the overall fluorescence intensity decreased nonlinearly as Fe(II) increased from 1 to 306 mg L-1 but that the parallel factor analysis component distribution was relatively insensitive to Fe(II) concentration.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabian Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martínez, Laura del Val, David Bosch, and Jesús Carrera
Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, https://doi.org/10.5194/hess-24-2121-2020, 2020
Short summary
Short summary
Coastal areas are highly populated and seawater intrusion endangers the already scarce freshwater resources. We use, for the first time, a geophysical experiment called cross-hole electrical resistivity tomography to monitor seawater intrusion dynamics. The technique relies on readings of rock and water electrical conductivity to detect salt in the aquifer. Two years of experiment allowed us to reveal variations in aquifer salinity due to natural seasonality, heavy-rain events and droughts.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Brighid É. Ó Dochartaigh, Alan M. MacDonald, Andrew R. Black, Jez Everest, Paul Wilson, W. George Darling, Lee Jones, and Mike Raines
Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, https://doi.org/10.5194/hess-23-4527-2019, 2019
Short summary
Short summary
We provide evidence of high groundwater storage and flow in catchments with active glaciers. Groundwater is found within gravels at the front of glaciers and replenished by both ice melt and precipitation. We studied a glacier in Iceland for 3 years, characterising the aquifer properties and measuring groundwater, river flow and precipitation. The results are important for accurately measuring meltwater and show that groundwater can provide strategic water supplies in de-glaciating catchments.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019, https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Short summary
Exchange fluxes between groundwater and surface waters can be quantified using temperature measurements from the upper sediment layers of streams and lakes assuming the thermal properties of sediments. This study quantified the natural variabiilty in sediment thermal conductivity in the vertical direction at the bed of surface waters and showed that fluxes can change by up to +/-75 % depending on using standard literature values or in situ measurements for sediment thermal conductivity.
Benoit Vittecoq, Pierre-Alexandre Reninger, Frédéric Lacquement, Guillaume Martelet, and Sophie Violette
Hydrol. Earth Syst. Sci., 23, 2321–2338, https://doi.org/10.5194/hess-23-2321-2019, https://doi.org/10.5194/hess-23-2321-2019, 2019
Short summary
Short summary
Water resource management on volcanic islands is challenging and faces several issues. Taking advantage of new heliborne geophysical technology, correlated with borehole and spring data, we develop a watershed-scale conceptual model and demonstrate that permeability increases with age for the studied formations. Moreover, complex geological structures lead to preferential flow circulations and to discrepancy between topographical and hydrogeological watersheds, influencing river flow rates.
Carme Barba, Albert Folch, Núria Gaju, Xavier Sanchez-Vila, Marc Carrasquilla, Alba Grau-Martínez, and Maira Martínez-Alonso
Hydrol. Earth Syst. Sci., 23, 139–154, https://doi.org/10.5194/hess-23-139-2019, https://doi.org/10.5194/hess-23-139-2019, 2019
Short summary
Short summary
Managed aquifer recharge allows increasing water resources and can be used to improve water quality. We assess the degradative capabilities of infiltrating pollutants by mapping the composition of microbial communities linked to periods of infiltration/drought. From samples of soil, surface and groundwater, we found some microbial species involved in the nitrogen and carbon cycles. Furthermore, we found that, during infiltration, microbial abundance rises, increasing degradative capabilities.
Katarina David, Wendy Timms, Catherine E. Hughes, Jagoda Crawford, and Dayna McGeeney
Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, https://doi.org/10.5194/hess-22-6023-2018, 2018
Short summary
Short summary
We investigated the wetland system classified as a threatened ecological community and found that organic-rich soil close to surfaces retains significant moisture necessary for ecosystems. At the base of the swamp an identified sand layer allows relatively rapid drainage and lateral groundwater interaction. Evaporation estimated from stable water isotopes from sediments indicated that groundwater contribution to the swamp is significant in dry periods, supporting ecosystems when water is scarce.
Lucheng Zhan, Jiansheng Chen, Ling Li, and David A. Barry
Hydrol. Earth Syst. Sci., 22, 4449–4454, https://doi.org/10.5194/hess-22-4449-2018, https://doi.org/10.5194/hess-22-4449-2018, 2018
Short summary
Short summary
Using the arithmetic averages of precipitation isotope values, Wu et al. (2017) concluded that the Badain Jaran Desert (BJD) groundwater is recharged by modern local meteoric water. However, based on weighted mean precipitation isotope values, our further analysis shows that modern precipitation on the Qilian Mountains is more likely to be the main source of the groundwater and lake water in the BJD, as found. We believe this comment provides an important improvement for their study.
Dongmei Han and Matthew J. Currell
Hydrol. Earth Syst. Sci., 22, 3473–3491, https://doi.org/10.5194/hess-22-3473-2018, https://doi.org/10.5194/hess-22-3473-2018, 2018
Short summary
Short summary
Based on hydrochemical and isotopic analysis, we investigated the potential hydrogeological processes responsible for the increasing groundwater salinity in the coastal aquifer of Yang–Dai River coastal plain, northern China. Seawater intrusion is the major aspect and can be caused by vertical infiltration along the riverbed at the downstream areas, and lateral inflow into fresh aquifer. Geothermal water also makes a significant contribution to increasing the groundwater salinity.
Stephan Costabel, Christoph Weidner, Mike Müller-Petke, and Georg Houben
Hydrol. Earth Syst. Sci., 22, 1713–1729, https://doi.org/10.5194/hess-22-1713-2018, https://doi.org/10.5194/hess-22-1713-2018, 2018
Short summary
Short summary
Laboratory experiments using water-filled sand and gravel samples with significant contents of iron oxide coatings were performed to identify the relationship between effective hydraulic radius and nuclear magnetic resonance (NMR) response. Our interpretation approach for the NMR data leads to reliable estimates of hydraulic conductivity without calibration, but is limited to coarse material for physical reasons. An NMR-based observation system for iron clogging in boreholes is planned.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Virgil Drăguşin, Sorin Balan, Dominique Blamart, Ferenc Lázár Forray, Constantin Marin, Ionuţ Mirea, Viorica Nagavciuc, Iancu Orăşeanu, Aurel Perşoiu, Laura Tîrlă, Alin Tudorache, and Marius Vlaicu
Hydrol. Earth Syst. Sci., 21, 5357–5373, https://doi.org/10.5194/hess-21-5357-2017, https://doi.org/10.5194/hess-21-5357-2017, 2017
Monique Beyer, Uwe Morgenstern, Rob van der Raaij, and Heather Martindale
Hydrol. Earth Syst. Sci., 21, 4213–4231, https://doi.org/10.5194/hess-21-4213-2017, https://doi.org/10.5194/hess-21-4213-2017, 2017
Short summary
Short summary
The determination of groundwater age can aid characterization of aquifers, providing information on groundwater mixing, flow, volume, and recharge rates. Here we assess a recently discovered groundwater age tracer, Halon-1301. Its performance as an age tracer is assessed against six other well-established, widely used age tracers in 302 groundwater samples. We show Halon-1301 reliably inferred age, thus potentially becoming a useful groundwater age tracer where other tracers are compromised.
Colby M. Steelman, Celia S. Kennedy, Donovan C. Capes, and Beth L. Parker
Hydrol. Earth Syst. Sci., 21, 3105–3123, https://doi.org/10.5194/hess-21-3105-2017, https://doi.org/10.5194/hess-21-3105-2017, 2017
Short summary
Short summary
The Eramosa River flows along a fractured sedimentary bedrock aquifer with large subsurface channel features. This study examines the potential for groundwater–surface water exchange beneath the fractured bedrock riverbed and the impacts of seasonal and intraseasonal flow system transience on the geoelectrical properties of the rock. Our results will have implications to the conceptual understanding of groundwater–surface water interaction within fractured bedrock river environments.
Linsong Wang, Chao Chen, Jinsong Du, and Tongqing Wang
Hydrol. Earth Syst. Sci., 21, 2905–2922, https://doi.org/10.5194/hess-21-2905-2017, https://doi.org/10.5194/hess-21-2905-2017, 2017
Short summary
Short summary
The North China Plain (NCP), as the interest region in this study, is one of the most uniformly and extensively altered areas due to overexploitation of groundwater by humans. Here, we use GRACE and GPS to study the seasonal and long-term mass change and its resulting vertical displacement. We also removed the vertical rates, which are induced by terrestrial water storage (TWS) from GPS-derived data to obtain the corrected vertical velocities caused by tectonic movement and human activities.
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
Donald O. Rosenberry, Martin A. Briggs, Emily B. Voytek, and John W. Lane
Hydrol. Earth Syst. Sci., 20, 4323–4339, https://doi.org/10.5194/hess-20-4323-2016, https://doi.org/10.5194/hess-20-4323-2016, 2016
Short summary
Short summary
The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were thought to be located in areas of substantial groundwater discharge to the river. Physical, thermal, and geophysical methods applied at several spatial scales indicate that DWM are located within or directly downstream of areas of substantial groundwater discharge to the river. DWM may depend on groundwater discharge for their survival.
T. McCormack, O. Naughton, P. M. Johnston, and L. W. Gill
Hydrol. Earth Syst. Sci., 20, 2119–2133, https://doi.org/10.5194/hess-20-2119-2016, https://doi.org/10.5194/hess-20-2119-2016, 2016
Short summary
Short summary
In this study, the influence of surface water–groundwater interaction on the nutrient flux in a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Results indicated that denitrification within a number of ephemeral lakes is the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition.
Dongmei Han, Xianfang Song, and Matthew J. Currell
Hydrol. Earth Syst. Sci., 20, 1983–1999, https://doi.org/10.5194/hess-20-1983-2016, https://doi.org/10.5194/hess-20-1983-2016, 2016
Short summary
Short summary
We report new data for carbon and sulfur isotopes of the groundwater flow system in a coastal carbonate aquifer of northeast China. It shows how these can be used to determine the major processes controlling sulfate cycling and transport. Hopefully the study will be of broad international interest, and is expected to improve the understanding of techniques to determine impacts on groundwater quality and flow, leading to improved groundwater protection and monitoring strategies.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, and R. I. Acworth
Hydrol. Earth Syst. Sci., 20, 39–54, https://doi.org/10.5194/hess-20-39-2016, https://doi.org/10.5194/hess-20-39-2016, 2016
Short summary
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
M. J. Hendry, E. Schmeling, L. I. Wassenaar, S. L. Barbour, and D. Pratt
Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, https://doi.org/10.5194/hess-19-4427-2015, 2015
Short summary
Short summary
Improvements and limitations to the measurement δ2H and δ18O of pore waters in geologic core samples using laser spectrometry are presented. These included the use of a δ2H spike to assess the extent of drill fluid contamination and the effect of storage time and type of sample bag on pore water values.
M. Beyer, R. van der Raaij, U. Morgenstern, and B. Jackson
Hydrol. Earth Syst. Sci., 19, 2775–2789, https://doi.org/10.5194/hess-19-2775-2015, https://doi.org/10.5194/hess-19-2775-2015, 2015
Short summary
Short summary
We assess the potential of Halon-1301 as a new groundwater age tracer, which had not been assessed in detail. We determine Halon-1301 and infer age in 17 New Zealand groundwater samples and various modern waters. Halon-1301 reliably inferred age in 71% of the sites within 1 SD of the ages inferred from tritium and SF6. The remaining (anoxic) waters show reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
A. Armandine Les Landes, L. Aquilina, P. Davy, V. Vergnaud-Ayraud, and C. Le Carlier
Hydrol. Earth Syst. Sci., 19, 1413–1426, https://doi.org/10.5194/hess-19-1413-2015, https://doi.org/10.5194/hess-19-1413-2015, 2015
Short summary
Short summary
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin of the saline component in the fluids on the regional scale. High chloride concentrations are attributed to three past marine transgressions. The relationship between chloride concentration and transgression age provides constraints for the timescales of fluid circulation. This time frame is useful information for developing conceptual models of the paleo-functioning of Armorican aquifers.
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Hydrol. Earth Syst. Sci., 19, 1107–1123, https://doi.org/10.5194/hess-19-1107-2015, https://doi.org/10.5194/hess-19-1107-2015, 2015
Short summary
Short summary
This paper examines modern and historical groundwater recharge rates to determine the impacts of reforestation in south-eastern Australia. This study shows that over both the long and short term, groundwater recharge in the study area occurs predominantly in the lower catchment areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations, especially when looking to conserve water for downstream users in low rainfall regions.
F. Liu, X. Song, L. Yang, Y. Zhang, D. Han, Y. Ma, and H. Bu
Hydrol. Earth Syst. Sci., 19, 551–565, https://doi.org/10.5194/hess-19-551-2015, https://doi.org/10.5194/hess-19-551-2015, 2015
Short summary
Short summary
Due to intensive groundwater exploitation in energy base, significant changes in groundwater system will take place. This research identified the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activity, enhancing the knowledge of lake basins in groundwater discharge area and providing valuable groundwater information for decision makers to formulate sustainable groundwater management strategies for other similar lake basins in arid regions.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
C. E. Bon, A. S. Reeve, L. Slater, and X. Comas
Hydrol. Earth Syst. Sci., 18, 953–965, https://doi.org/10.5194/hess-18-953-2014, https://doi.org/10.5194/hess-18-953-2014, 2014
U. Lauber, W. Ufrecht, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 435–445, https://doi.org/10.5194/hess-18-435-2014, https://doi.org/10.5194/hess-18-435-2014, 2014
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi
Hydrol. Earth Syst. Sci., 17, 2917–2928, https://doi.org/10.5194/hess-17-2917-2013, https://doi.org/10.5194/hess-17-2917-2013, 2013
X. Chen, W. Dong, G. Ou, Z. Wang, and C. Liu
Hydrol. Earth Syst. Sci., 17, 2569–2579, https://doi.org/10.5194/hess-17-2569-2013, https://doi.org/10.5194/hess-17-2569-2013, 2013
Y. Zhou, J. Wenninger, Z. Yang, L. Yin, J. Huang, L. Hou, X. Wang, D. Zhang, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 17, 2435–2447, https://doi.org/10.5194/hess-17-2435-2013, https://doi.org/10.5194/hess-17-2435-2013, 2013
Cited articles
Acuña, V. and Tockner, K.: Surface-subsurface water exchange rates along alluvial river reaches control the thermal patterns in an Alpine river
network, Freshwater Biol., 54 306–320, https://doi.org/10.1111/j.1365-2427.2008.02109.x, 2009.
Alexeevsky, N. I., Chalov, R. S., Berkovich, K. M., and Chalov, S. R.: Channel changes in largest Russian rivers: Natural and anthropogenic effects, Int. J. River Basin Manage., 11, 175–191, https://doi.org/10.1080/15715124.2013.814660, 2013.
Al-Hazaimay, S., Huisman, J. A., Zimmermann, E., and Vereecken, H.: Using
electrical anisotropy for structural characterization of sediments: An
experimental validation study, Near Surf. Geophys., 14, 357–369,
https://doi.org/10.3997/1873-0604.2016026, 2016.
Andersen, M. S.: Heat as a Ground Water Tracer, Ground Water, 43, 951–968,
https://doi.org/10.1111/j.1745-6584.2005.00052.x, 2005.
Ashmore, P.: Laboratory modelling of gravel braided stream morphology, Earth
Surf. Proc. Land., 7, 201–225, https://doi.org/10.1002/esp.3290070301, 1982.
Ashmore, P.: Anabranch confluence kinetics and sedimentation processes in
gravel-braided streams, in: Braided Rivers, edited by: Best, J. L. and Bristow, C. S., Geological Society Special Publication No. 75, The Geological Society, Bath, UK, 129–146, 1993.
Baalousha, H. M.: Characterisation of groundwater–surface water interaction
using field measurements and numerical modelling: A case study from the
Ruataniwha Basin, Hawke's Bay, New Zealand, Appl. Water Sci., 2, 109–118, https://doi.org/10.1007/s13201-012-0028-3, 2012.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413, 2016.
Bandini, F., Butts, M., Vammen Jacobsen, T., and Bauer-Gottwein, P.: Water
level observations from unmanned aerial vehicles for improving estimates of
surface water–groundwater interaction, Hydrol. Process., 31, 4371–4383, 10.1002/hyp.11366, 2017.
Banks, E. W., Shanafield, M. A., Noorduijn, S., McCallum, J., Lewandowski,
J., and Batelaan, O.: Active heat pulse sensing of 3-D-flow fields in
streambeds, Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, 2018.
Barlow, P. M. and Harbaugh, A. W.: USGS Directions in MODFLOW Development,
Ground Water, 44, 771–774, https://doi.org/10.1111/j.1745-6584.2006.00260.x, 2006.
Bernini, A., Caleffi, V., and Valiani, A.: Numerical modelling of alternate bars in shallow channels, in: Braided Rivers, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, 153–175, 2006.
Binley, A., Ullah, S., Heathwaite, A. L., Heppell, C., Byrne, P., Lansdown, K., Trimmer, M., and Zhang, H.: Revealing the spatial variability of water
fluxes at the groundwater-surface water interface, Water Resour. Res., 49, 3978–3992, https://doi.org/10.1002/wrcr.20214, 2013.
Blackstock, J.: Isotope study of moisture sources, recharge areas, and
groundwater flow paths within the Christchurch Groundwater System, Master of
Science in Geology, Geology, University of Canterbury, Christchurch, New
Zealand, available at: https://ir.canterbury.ac.nz/handle/10092/7042 (last access: 22 October 2019), 2011.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.: Hyporheic flow and transport processes: Mechanisms,
models, and biogeochemical implications, Rev. Geophys., 52, 603–679, https://doi.org/10.1002/2012RG000417, 2014.
Botting, J.: Groundwater flow patterns and origin on the North Bank of the
Wairau River, Marlborough, New Zealand, Master of Science in Engineering Geology, Geology, University of Canterbury, Christchurch, New Zealand, available at: https://ir.canterbury.ac.nz/handle/10092/5519 (last access: 22 October 2019), 2010.
Briggs, M. A., Lautz, L. K., Buckley, S. F., and Lane, J. W.: Practical
limitations on the use of diurnal temperature signals to quantify groundwater upwelling, J. Hydrol., 519, 1739–1751, https://doi.org/10.1016/j.jhydrol.2014.09.030, 2014.
Briggs, M. A., Buckley, S. F., Bagtzoglou, A. C., Werkema, D. D., and Lane, J. W.: Actively heated high-resolution fiber-optic-distributed temperature
sensing to quantify streambed flow dynamics in zones of strong groundwater
upwelling, Water Resour. Res., 52, 5179–5194, https://doi.org/10.1002/2015WR018219, 2016.
Brodie, R. S., Sundaram, B., Tottenham, R., Hostetler, S., and Ransley, T.: An overview of tools for assessing groundwater-surface water connectivity, Bureau of Rural Sciences, Canberra, Australia, 2007.
Brodie, R. S., Baskaran, S., Ransley, T., and Spring, J.: Seepage meter:
Progressing a simple method of directly measuring water flow between surface
water and groundwater systems, Aust. J. Earth Sci., 56, 3–11, https://doi.org/10.1080/08120090802541879, 2009.
Brown, L. J.: Canterbury, in: Groundwaters of New Zealand, edited by: Rosen,
M. R. and White, P. A., New Zealand Hydrological Society Inc, Wellington,
441–459, 2001.
Brunner, P., Cook, P. G., and Simmons, C. T.: Hydrogeologic controls on
disconnection between surface water and groundwater, Water Resour. Manage., 45, W01422, https://doi.org/10.1029/2008WR006953, 2009.
Brunner, P., Simmons, C. T., Cook, P. G., and Therrien, R.: Modeling Surface
Water–Groundwater Interaction with MODFLOW: Some Considerations, Ground Water, 48, 174–180, https://doi.org/10.1111/j.1745-6584.2009.00644.x, 2010.
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Franssen, H.-J. H.: Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854, https://doi.org/10.1002/2017RG000556, 2017.
Burbery, L., and Ritson, J.: Integrated study of surface water and shallow
groundwater resources of the Orari catchment, R10/36, Environment Canterbury,
Christchurch, New Zealand, available at: http://docs.niwa.co.nz/library/public/ECtrR10-36.pdf (last access:
15 March 2019), 2010.
Burnett, W. C., Kim, G., and Lane-Smith, D.: A continuous monitor for assessment of 222Rn in the coastal ocean, J. Radioanal. Nucl. Chem., 249, 167–172, https://doi.org/10.1023/A:1013217821419, 2001.
Busato, L., Boaga, J., Perri, M. T., Majone, B., Bellin, A., and Cassiani, G.: Hydrogeophysical characterization and monitoring of the hyporheic and
riparian zones: The Vermigliana Creek case study, Sci. Total Environ., 648, 1105–1120, https://doi.org/10.1016/j.scitotenv.2018.08.179, 2019.
Butts, M., Feng, K., Klinting, A., Stewart, K., Nath, A., Manning, P., Hazlett, T., Jacobsen, T., and Larsen, J.: Real-time surface water-ground
water modelling of the Big Cypress Basin, Florida, DHI Water & Environment, Horsholm, Denmark, available at: http://feflow.info/fileadmin/FEFLOW/content_tagung/TagungsCD/papers/31.pdf, last access: 11 April 2019.
Cantafio, L. J. and Ryan, M. C.: Quantifying baseflow and water-quality impacts from a gravel-dominated alluvial aquifer in an urban reach of a large Canadian river, Hydrogeol. J., 22, 957–970, https://doi.org/10.1007/s10040-013-1088-7, 2014.
Carbonneau, P. E. and Piegay, H.: Fluvial Remote Sensing for Science and
Management, 1st Edn., Advancing River Restoration and Management Series, John
Wiley & Sons, West Sussex, UK, 2012.
Cardenas, M. B.: Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus, Water Resour. Res., 51, 3601–3616,
https://doi.org/10.1002/2015WR017028, 2015.
Caruso, B. S.: Project river recovery: Restoration of braided gravel-bed river habitat in New Zealand's high country, Environ. Manage., 37,
840–861, https://doi.org/10.1007/s00267-005-3103-9, 2006.
Cey, E. E., Rudolph, D. L., Parkin, G. W., and Aravena, R.: Quantifying
groundwater discharge to a small perennial stream in southern Ontario, Canada, J. Hydrol., 210, 21–37, https://doi.org/10.1016/s0022-1694(98)00172-3, 1998.
Chadwick, D. B., Groves, J. G., He, L., Smith, C. F., Paulsen, R. J., and Harre, B.: New Techniques for Evaluating Water and Contaminant Exchange at
the Groundwater-Surface Water Interface, Oceans Conference Record, 4, 2098–2104, 2002.
Chalov, S. R. and Alexeevsky, N. I.: Braided rivers: Structure, types and
hydrological effects, Hydrol. Res., 46, 258–275, https://doi.org/10.2166/nh.2013.023,
2015.
Charlton, R.: Fundamentals of Fluvial Geomorphology, Routledge, London, New York, 2008.
Chen, X.: Hydrologic connections of a stream-aquifer vegetation zone in
south-central Platte River Valley, Nebraska, Journal of Hydrology, 333,
554-568, 10.1016/j.jhydrol.2006.09.020, 2007.
Cheng, C. and Chen, X.: Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river, Hydrogeol. J., 15, 669–678, https://doi.org/10.1007/s10040-006-0135-z, 2007.
Cheng, C., Song, J., Chen, X., and Wang, D.: Statistical distribution of
streambed vertical hydraulic conductivity along the Platte River, Nebraska,
Water Resour. Manage., 25, 265–285, https://doi.org/10.1007/s11269-010-9698-5, 2010.
Close, M.: Analysis of radon data from the Wairau River and adjoining Wairau
Plains Aquifer February 2014, Environmental Science and Research Limited (ESR), CSC14001, available at: https://www.marlborough.govt.nz/repository/libraries/id:1w1mps0ir17q9sgxanf9/hierarchy/Documents/Environment/Groundwater/Groundwater Reports 2014 List/ESR Radon in Wairau Aquifer Recharge_Sector_Report_for_MDC_23_June_2014.pdf (last access: 15 March 2019), 2014.
Close, M., Matthews, M., Burbery, L., Abraham, P., and Scott, D.: Use of radon to characterise surface water recharge to groundwater, J. Hydrol., 53, 113–127, 2014.
Close, M., Knowling, M., and Moore, C.: Modelling of Temperature in Wairau
Aquifer, Institute of Environmental Science and Research Limited (ESR), CSC 16007, available at:
http://envirolink.govt.nz/assets/Envirolink/1623-MLDC109-Modelling-of-Temperature-in-Wairau-Aquifer
(last access: 15 March 2019), 2016.
Close, M. E., Stanton, G. J., and Pang, L.: Use of rhodamine WT with XAD-7 resin for determining groundwater flow paths, Hydrogeol. J., 10, 368–376, https://doi.org/10.1007/s10040-002-0202-z, 2002.
Coluccio, K.: A comparison of methods for estimating groundwater-surface water interactions in braided rivers, Masters of Water Resource Management,
University of Canterbury, Christchurch, New Zealand, available at: http://hdl.handle.net/10092/15390 (last access: 22 October 2019), 2018.
Copley, V. R. and Moore, J. M.: Debris provenance mapping in braided drainage using remote sensing, in: Braided Rivers, edited by: Best, J. L. and Bristow, C. S., The Geological Society, London, 405–412, 1993.
Culbertson, C. W., Huntington, T. G., Caldwell, J. M., and O'Donnell, C.: Evaluation of aerial thermal infrared remote sensing to identify groundwater–discharge zones in the Meduxnekeag River, Houlton, Maine, US Geological Survey Open-File Report 2013-1168, US Geological Survey, p. 21, https://doi.org/10.3133/ofr20131168, 2014.
Dann, R. L., Close, M. E., Pang, L., Flintoft, M. J., and Hector, R. P.:
Complementary use of tracer and pumping tests to characterize a heterogeneous channelized aquifer system in New Zealand, Hydrogeol. J., 16, 1177–1191, https://doi.org/10.1007/s10040-008-0291-4, 2008.
Davies, T. R., Davies, T. R. H., and Griffiths, G. A.: Physical model study of stage-discharge relationships in a gorge of a braided river, J. Hydrol., 35, 239–258, 1996.
Doering, M., Uehlinger, U., and Tockner, K.: Vertical hydrological exchange,
and ecosystem properties and processes at two spatial scales along a floodplain river (Tagliamento, Italy), Freshwater Sci., 32, 12–25,
https://doi.org/10.1899/12-013.1, 2013.
Doeschl, A. B., Ashmore, P., and Davison, M.: Methods for assessing exploratory computational models of braided rivers, in: Braided Rivers:
Processes, Deposits, Ecology and Managements, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing,
Malden, MA, USA, 177–197, 2006.
Dommisse, J.: Hydrogeology of the Hinds Rangitata Plain, and the Impacts of
the Mayfield-Hinds Irrigation Scheme, Master of Science in Environmental Science, Environmental Science, University of Canterbury, Christchurch,
available at: https://ir.canterbury.ac.nz/handle/10092/1400 (last access: 22 October 2019), 2006.
Eschbach, D., Piasny, G., Schmitt, L., Pfister, L., Grussenmeyer, P., Koehl, M., Skupinski, G., and Serradj, A.: Thermal-infrared remote sensing of surface water– groundwater exchanges in a restored anastomosing channel
(Upper Rhine River, France), Hydrol. Process., 31, 1113–1124, https://doi.org/10.1002/hyp.11100, 2017.
Farrow, D.: Ashley-Waimakariri: Major Rivers Characterisation, Aqualinc,
C160201, available at:
https://api.ecan.govt.nz/TrimPublicAPI/documents/download/2997369 (last access: 15 March 2019), 2016.
Febria, C. M., Beddoes, P., Fulthorpe, R. R., and Williams, D. D.: Bacterial
community dynamics in the hyporheic zone of an intermittent stream, ISME J., 6, 1078–1088, https://doi.org/10.1038/ismej.2011.173, 2011.
Ferguson, R. I., Ashmore, P. E., Ashworth, P. J., Paola, C., and Prestegaard, K. L.: Measurements in a braided river chute and lobe: 1. Flow pattern, sediment transport and channel change, Water Resour. Res., 28, 1877–1886, https://doi.org/10.1029/92WR00700, 1992.
Fernández-Álvarez, J.-P., González-Quirós, A., and Rubio-Melendi, D.: Assessment of the value of microgravity to estimate the
principal directions of the anisotropic transmissivity of aquifers from pumping tests: A study using a Hough transform based automatic algorithm,
J. Appl. Geophys., 134, 172–182, https://doi.org/10.1016/j.jappgeo.2016.09.015, 2016.
Ferreira, V. V. M., Moreira, R. M., Rocha, Z., Chagas, C. J., Fonseca, R. L.
M., Santos, T. O., Rodrigues, P. C. H., and Menezes, M. A. B. C.: Use of radon isotopes, gamma radiation and dye tracers to study water interactions
in a small stream in Brazil, Environ. Earth Sci., 77, 1–12,
https://doi.org/10.1007/s12665-018-7879-3, 2018.
Fetter, C. W.: Applied Hydrogeology, 4th Edn., Pearson Education Limited, Essex, England, 2001.
Fleckenstein, J. H., Krause, S., Hannah, D. M., and Boano, F.:
Groundwater–surface water interactions: New methods and models to improve
understanding of processes and dynamics, Adv. Water Resour., 33, 1291–1295, https://doi.org/10.1016/j.advwatres.2010.09.011, 2010.
Flury, M. and Wai, N. N.: Dyes as tracers for vadose zone hydrology, Rev. Geophys., 41, 1002–1037, https://doi.org/10.1029/2001RG000109, 2003.
Fritz, B. G., Mackley, R. D., and Arntzen, E. V.: Conducting slug tests in
mini-piezometers, Groundwater, 54, 291–295, https://doi.org/10.1111/gwat.12335, 2016.
Furman, A.: Modeling coupled surface–subsurface flow processes: A review,
Vadose Zone J., 7, 741–756, https://doi.org/10.2136/vzj2007.0065, 2008.
Genereux, D. P. and Hooper, R. P.: Oxygen and Hydrogen Isotopes in
Rainfall-Runoff Studies in: Isotope Tracers in Catchment Hydrology, edited
by: Kendall, C. and McDonnell, J. J., Elsevier Science, Amsterdam, 1998.
Gilfedder, B. S., Cartwright, I., Hofmann, H., and Frei, S.: Explicit modeling of radon-222 in HydroGeoSphere during steady state and dynamic
transient storage, Groundwater, 57, 36–47, https://doi.org/10.1111/gwat.12847, 2019.
Goderniaux, P., Brouyère, S., Fowler, H. J., Blenkinsop, S., Therrien, R., Orban, P., and Dassargues, A.: Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves,
J. Hydrol., 373, 122–138, https://doi.org/10.1016/j.jhydrol.2009.04.017, 2009.
González-Pinzón, R., Ward, A. S., Hatch, C. E., Wlostowski, A. N.,
Singha, K., Gooseff, M. N., Haggerty, R., Harvey, J. W., Cirpka, O. A., and
Brock, J. T.: A field comparison of multiple techniques to quantify
groundwater–surface-water interactions, Freshwater Sci., 34, 139–160,
https://doi.org/10.1086/679738, 2015.
Gordon, R. P., Lautz, L. K., Briggs, M. A., and McKenzie, J. M.: Automated
calculation of vertical pore-water flux from field temperature time series
using the VFLUX method and computer program, J. Hydrol., 420–421,
https://doi.org/10.1016/j.jhydrol.2011.11.053, 2012.
Gordon, R. P., Lautz, L. K., and Daniluk, T. L.: Spatial patterns of hyporheic exchange and biogeochemical cycling around cross-vane restoration
structures: Implications for stream restoration design, Water Resour. Res., 49, 2040–2055, https://doi.org/10.1002/wrcr.20185, 2013.
Guggenmos, M. R., Daughney, C. J., Jackson, B. M., and Morgenstern, U.:
Regional-scale identification of groundwater-surface water interaction using
hydrochemistry and multivariate statistical methods, Wairarapa Valley, New
Zealand, Hydrol. Earth Syst. Sci., 15, 3383–3398, https://doi.org/10.5194/hess-15-3383-2011, 2011.
Handcock, R. N., Torgersen, C. E., Cherkauer, K. A., Gillespie, A. R., Tockner, K., Faux, R. N., and Tan, J.: Thermal Infrared Remote Sensing of
Water Temperature in Riverine Landscapes, in: Fluvial Remote Sensing for
Science and Management, 1st Edn., edited by: Carbonneau, P. E. and Piegay, H., John Wiley & Sons, Ltd, West Sussex, UK, 2012.
Hanson, C., and Abraham, P.: Depth and spatial variation in groundwater
chemistry-Central Canterbury Plains, Environment Canterbury, Christchurch,
New Zealand, R09/39, available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.799.6355&rep=rep1&type=pdf
(last access: 15 March 2019), 2009.
Harbaugh, A. W.: MODFLOW-2005: The U.S. Geological Survey modular
ground-water model – the ground-water flow process, US Geological Survey, Reston, Virginia, 2005.
Hare, D. K., Briggs, M. A., Rosenberry, D. O., Boutt, D. F., and Lane, J. W.: A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water, J. Hydrol., 530, 153–166, https://doi.org/10.1016/j.jhydrol.2015.09.059, 2015.
Harrington, G. A., Gardner, W. P., and Munday, T. J.: Tracking groundwater
discharge to a large river using tracers and geophysics, Groundwater, 52,
837–852, https://doi.org/10.1111/gwat.12124, 2014.
Hayashi, M. and Rosenberry, D. O.: Effects of ground water exchange on the
hydrology and ecology of surface water, Ground Water, 40, 309–316,
https://doi.org/10.1111/j.1745-6584.2002.tb02659.x, 2002.
Hibbert, B. and Brown, K.: Braided River Field Guide, Twizel, New Zealand,
available at:
https://www.doc.govt.nz/globalassets/documents/conservation/land-and-freshwater/freshwater/prr/braided-river-field-guide.pdf
(last access: 15 March 2019), 2001.
Hicks, D. M., Shankar, U., Duncan, M. J., Rebuffé, M., and Aberle, J.:
Use of remote-sensing with two-dimensional hydrodynamic models to assess impacts of hydro-operations on a large, braided, gravel-bed river: Waitaki
River, New Zealand, in: Braided Rivers: Process, Deposits, Ecology and
Management, Special Publication Number 36 of the International
Association of Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA,
2006.
House, A. R., Thompson, J. R., Sorensen, J. P. R., Roberts, C., and Acreman,
M. C.: Modelling groundwater/surface water interaction in a managed riparian
chalk valley wetland, Hydrol. Process., 30, 447–462, https://doi.org/10.1002/hyp.10625, 2016.
Huber, E. and Huggenberger, P.: Subsurface flow mixing in coarse, braided river deposits, Hydrol. Earth Syst. Sci., 20, 2035–2046,
https://doi.org/10.5194/hess-20-2035-2016, 2016.
Huggenberger, P.: Radar facies: Recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland, in: Braided Rivers, edited by: Best, J. L. and Bristow, C. S., The Geological Society, London, Bath, UK, 163–176, 1993.
Huggenberger, P. and Regli, C.: A sedimentological model to characterize
braided river deposits for hydrogeological applications, in: Braided Rivers:
Process, Deposits, Ecology and Management, Special Publication Number 36 of the International Association of Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing,
Malden, MA, USA, 2006.
Hughes, B.: Streambed Conductance Survey, Sinclair Knight Merz, Christchurch, New Zealand, available at: https://www.marlborough.govt.nz/repository/libraries/id:1w1mps0ir17q9sgxanf9/hierarchy/Documents/Environment/Groundwater/Groundwater Reports 2006 List/Stream_Depletion_Report_Stage_1_ December_2006.pdf (last access: 15 March 2019), 2006.
Irvine, D. J., Briggs, M. A., Lautz, L. K., Gordon, R. P., McKenzie, J. M.,
and Cartwright, I.: Using diurnal temperature signals to infer vertical
groundwater–surface water exchange, Groundwater, 55, 10–26, https://doi.org/10.1111/gwat.12459, 2017.
Johnson, S. L.: Stream temperature: Scaling of observations and issues for
modelling, Hydrol. Process., 17, 497–499, https://doi.org/10.1002/hyp.5091, 2003.
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006.
Kelly, S. E. and Murdoch, L. C.: Measuring the hydraulic conductivity of
shallow submerged sediments, Ground Water, 41, 431–439,
https://doi.org/10.1111/j.1745-6584.2003.tb02377.x, 2003.
Kilroy, C., Scarsbrook, M., and Fenwick, G.: Dimensions in biodiversity of a
braided river, Water & Atmosphere, 12, available at: https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/braided.pdf
(last access: 30 April 2019), 2004.
Klinkenberg, J.: Characterising groundwater-surface water interaction using
fibre-optic distributed temperature sensing and validating techniques in
Whakaipo Bay, Lake Taupo, New Zealand, Faculty of Geosciences, Utrecht
University, Utrecht, available at: https://dspace.library.uu.nl/handle/1874/324367 (last access: 13 March 2019), 2015.
Knöll, P. and Scheytt, T.: A tracer test to determine a hydraulic connection between the Lauchert and Danube karst catchments (Swabian Alb,
Germany), Hydrogeol. J., 26, 429–437, https://doi.org/10.1007/s10040-017-1678-x, 2018.
Kraemer, T. F. and Genereux, D. P.: Applications of uranium- and thorium-series radionuclides in catchment hydrology studies, in: Isotope
Tracers in Catchment Hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier Science B. V., Amsterdam, 1998.
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D.,
Pickup, R., Pinay, G., Robertson, A. L., and Wood, P. J.: Inter-disciplinary
perspectives on processes in the hyporheic zone, Ecohydrology, 4, 481–499,
https://doi.org/10.1002/eco.176, 2011.
LaBaugh, J. W. and Rosenberry, D. O.: Introduction and Characteristics of Flow, in: Field Techniques for Estimating Water Fluxes Between Surface Water
and Ground Water: U.S. Geological Survey Techniques and Methods 4-D2,
edited by: Rosenberry, D. O. and LaBaugh, J. W., US Geological Survey, Reston, Virginia, 2008.
Landon, M. K., Rus, D. L., and Harvey, F. E.: Comparison of instream methods
for measuring hydraulic conductivity in sandy streambeds, Ground Water, 39,
870–885, https://doi.org/10.1111/j.1745-6584.2001.tb02475.x, 2001.
Lane, S.: Approaching the system-scale understanding of braided river behaviour, in: Braided Rivers: Process, Deposits, Ecology and Management,
Special Publication Number 36 of the International Association of
Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, 2006.
Larned, S. T., Hicks, D. M., Schmidt, J., Davey, A. J. H., Dey, K., Scarsbrook, M., Arscott, D. B., and Woods, R. A.: The Selwyn River of New
Zealand: A benchmark system for alluvial plain rivers, River Res. Appl., 24, 1–21, https://doi.org/10.1002/rra.1054, 2008.
Larned, S. T., Unwin, M. J., and Boustead, N. C.: Ecological dynamics in the
riverine aquifers of a gaining and losing river, Freshwater Sci., 34, 245–262, https://doi.org/10.1086/678350, 2015.
Lee, D. R.: A device for measuring seepage flux in lakes and estuaries, Limnol. Oceanogr., 22, 140–147, https://doi.org/10.4319/lo.1977.22.1.0140, 1977.
Lee, D. R. and Cherry, J. A.: A Field Exercise on Groundwater Flow Using
Seepage Meters and Mini-piezometers, J. Geol. Educ., 27, 6–10, https://doi.org/10.5408/0022-1368-27.1.6, 1978.
Liu, C., Liu, J., Hu, Y., Wang, H., and Zheng, C.: Airborne Thermal Remote
Sensing for Estimation of Groundwater Discharge to a River, Groundwater, 54,
363-373, 10.1111/gwat.12362, 2016.
Lovett, A.: Groundwater-Surface Water Interaction Workshop, 31 August–1 September 2015, Te Papa Tongarewa Museum, Wellington – Presentations, GNS Science, Wellington, NZ, available at: https://www.gns.cri.nz/static/download/TP/2015-Workshop-Te-Papa-Presentations.pdf
(last access: 30 April 2019), 2015.
Lovett, A., Cameron, S., Reeves, R., Meijer, E., Verhagen, F., van der Raaij, R., Westerhoff, R., Moridnejad, M., and Morgenstern, U.: Characterisation of groundwater-surface water interaction at three case study sites within the Upper Waikato River Catchment using temperature sensing and hydrochemistry techniques, Institute of Geological and Nuclear Sciences Limited (GNS), GNS Science Report 2014/64, available at: http://shop.gns.cri.nz/sr_2014-064-pdf/ (last access: 30 April 2019), 2015.
Magliozzi, C., Grabowski, R. C., Packman, A. I., and Krause, S.: Toward a
conceptual framework of hyporheic exchange across spatial scales, Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, 2018.
Malard, F., Mangin, A., Uehlinger, U., and Ward, J. V.: Thermal heterogeneity in the hyporheic zone of a glacial floodplain, Can. J. Fish. Aquat. Sci., 58, 1319–1335, https://doi.org/10.1139/cjfas-58-7-1319, 2001.
Marcus, W. A.: Remote sengins of the hydraulic environment in gravel-bed rivers, in: Gravel Bed Rivers: Processes, Tools, Environments, 2nd Edn., edited by: Church, M., Biron, P., and Roy, A., John Wiley & Sons, Inc., West Sussex, UK, 2012.
Martindale, H.: Use of radon and complementary hydrochemistry tracers for the identification of groundwater-surface water interaction in New Zealand, Master of Environmental Management, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand, availablel at: http://mro.massey.ac.nz/handle/10179/7900 (last access: 22 October 2019), 2015.
Mathias, S. A. and Butler, A. P.: Flow to a finite diameter well in a
horizontally anisotropic aquifer with wellbore storage, Water Resour. Res., 43, W07501, https://doi.org/10.1029/2006WR005839, 2007.
McLachlan, P. J., Chambers, J. E., Uhlemann, S. S., and Binleya, A.: Geophysical characterisation of the groundwater–surface water interface,
Adv. Water Resour., 109, 302–319, https://doi.org/10.1016/j.advwatres.2017.09.016, 2017.
Meijer, E. C.: Using fibre-optic distributed temperature sensing and heat
modelling to characterize groundwater- surface water interaction in Whakaipo
Bay, Lake Taupo, New Zealand, Master of Science in Water Science and Management, Geosciences, Utrecht University, Utrecht, the Netherlands, available at: https://dspace.library.uu.nl/handle/1874/311429 (last access: 22 October 2019), 2015.
Meunier, P., Metivier, F., Lajeunesse, E., Meriaux, A. S., and Faure, J.:
Flow pattern and sediment transport in a braided river: The “torrent de St Pierre” (French Alps), J. Hydrol., 330, 496–505, https://doi.org/10.1016/j.jhydrol.2006.04.009, 2006.
Moore, W.: High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large
groundwater source, Earth Planet. Sc. Lett., 150, 141–150,
https://doi.org/10.1016/S0012-821X(97)00083-6, 1997.
Mutch, R. D.: A distance-drawdown aquifer test method for aquifers with
areal anisotropy, Ground Water, 43, 935–938,
https://doi.org/10.1111/j.1745-6584.2005.00105.x, 2005.
Mwakanyamale, K., Slater, L., Day-Lewis, F., Elwaseif, M., and Johnson, C.:
Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data, Geophys. Res. Lett., 39, L06401, https://doi.org/10.1029/2011GL050824, 2012.
Naranjo, R. C. and Turcotte, R.: A new temperature profiling probe for
investigating groundwater–surface water interaction, Water Resour. Res., 51, 7790–7797, https://doi.org/10.1002/2015WR017574, 2015.
Neuman, S. P., Walter, G. R., Bentley, H. W., and Ward, J. J.: Determination
of horizontal aquifer anisotropy with three wells, Ground Water, 22, 66–72,
1984.
Nicholas, A. P., Thomas, R., and Quine, T. A.: Cellular modelling of braided
river form and process, in: Braided Rivers: Process, Deposits, Ecology and
Management, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Special Publication Number 36 of the International
Association of Sedimentologists, Blackwell Publishing, Malden, MA, USA, 2006.
Pai, H., Malenda, H. F., Gooseff, M. N., Briggs, M. A., Tyler, S. W., Singha, K., González-Pinzón, R., and Team, A.: Potential for small unmanned aircraft systems applications for identifying groundwater–surface water exchange in a meandering river reach, Geophys. Res. Lett., 44, 11868–11877, https://doi.org/10.1002/2017GL075836, 2017.
Passadore, G., Sottanib, A., Altissimoc, L., Puttid, M., and Rinaldoa, A.:
Groundwater thermal monitoring to characterize streambed water fluxes of the
Brenta River (Northern Italy), Proced. Environ. Sci., 25, 199–205,
https://doi.org/10.1016/j.proenv.2015.04.027, 2015.
Piégay, H., Grant, G., Nakamura, F., and Trustrum, N.: Braided river
management: From assessment of river behaviour to improved sustainable development, in: Braided Rivers: Process, Deposits, Ecology and Management,
Special Publication Number 36 of the International Association of
Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, 2006.
Pirot, G., Renard, P., Huberb, E., Straubhaar, J., and Huggenberger, P.:
Influence of conceptual model uncertainty on contaminant transport forecasting in braided river aquifers, J. Hydrol., 531, 124–141,
https://doi.org/10.1016/j.jhydrol.2015.07.036, 2015.
Ramanathan, R., Guin, A., Ritzi Jr., R. W., Dominic, D. F., Freedman, V. L.,
Scheibe, T. D., and Lunt, I. A.: Simulating the heterogeneity in braided channel belt deposits: 1. A geometric-based methodology and code, Water Resour. Res., 46, W04515, https://doi.org/10.1029/2009WR008111, 2010.
Rautio, A. B., Korkka-Niemi, K. I., and Salonen, V.-P.: Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland, Hydrogeol. J., 26, 163–183, https://doi.org/10.1007/s10040-017-1630-0, 2018.
Riegler, A.: Influence of groundwater levels on zero river flow: North
Branch, Ashburton River, New Zealand, Department of Geography and Regional
Research, University of Vienna, Vienna, Austria, available at: http://othes.univie.ac.at/22451/1/2012-06-17_0600876.pdf (last access: 22 October 2019), 2012.
Rodgers, P., Soulsby, C., Petry, J., Malcolm, I., Gibbins, C., and Dunn, S.:
Groundwater–surface-water interactions in a braided river: A tracer-based
assessment, Hydrol. Process., 18, 1315–1332, https://doi.org/10.1002/hyp.1404, 2004.
Rosenberry, D. O. and LaBaugh, J. W.: Field techniques for estimating water
fluxes between surface water and ground water: U.S. Geological Survey
Techniques and Methods 4-D2, US Geological Survey, Reston, Virginia, 128 pp., 2008.
Rosenberry, D. O., Lewandowski, J., Meinikmann, K., and Nützmann, G.:
Groundwater – the disregarded component in lake water and nutrient budgets.
Part 1: Effects of groundwater on hydrology, Hydrol. Process., 29, 2895–2921, https://doi.org/10.1002/hyp.10403, 2015.
Rosenberry, D. O., Briggs, M. A., Delin, G., and Hare, D. K.: Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream, Water Resour. Res., 52, 4486–4503, https://doi.org/10.1002/2016WR018808, 2016.
Rounds, S. A. and Wilde, F. D.: Alkalinity and Acid Neutralizing Capacity, in: Techniques of Water-Resources Investigations, US Geological Survey,
Reston, Virginia, 2002.
Sarker, M. H., Thorne, C. R., Aktar, M. N., and Ferdous, M. R.: Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh, Geomorphology,
215, 45–59, https://doi.org/10.1016/j.geomorph.2013.07.025, 2014.
Sarris, T. S., Close, M., and Abraham, P.: Using solute and heat tracers for
aquifer characterization in a strongly heterogeneous alluvial aquifer, J. Hydrol., 558, 55–71, https://doi.org/10.1016/j.jhydrol.2018.01.032, 2018.
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39, https://doi.org/10.1007/s10040-001-0176-2, 2002.
Schmidt, C., Bayer-Raich, M., and Schirmer, M.: Characterization of spatial
heterogeneity of groundwater–stream water interactions using multiple depth
streambed temperature measurements at the reach scale, Hydrol. Earth Syst. Sci., 10, 849–859, https://doi.org/10.5194/hess-10-849-2006, 2006.
Schwartz, F. W. and Zhang, H.: Fundamentals of Ground Water, John Wiley & Sons, Inc., New York, NY, USA, 2003.
Scott, D. M. and Thorley, M.: Steady-state groundwater models of the area
between the Rakaia and Waimakariri Rivers, R09/20, Environment Canterbury,
Christchurch, New Zealand, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.799.7405&rep=rep1&type=pdf
(last access: 15 March 2019), 2009.
Sharp, Z.: Principles of Stable Isotope Geochemistry, Pearson Prentice Hall,
Upper Saddle River, NJ, 2007.
Shu, L. and Chen, X.: Simulation of water quantity exchange between groundwater and the Platte River water, central Nebraska, J. Central S. Univers. Technol., 9, 212–215, https://doi.org/10.1007/s11771-002-0029-8, 2002.
Simonds, W. and Sinclair, K. A.: Surface Water–Ground Water Interactions Along the Lower Dungeness River and Vertical Hydraulic Conductivity of Streambed Sediments, Clallam County, Washington, September 1999–July 2001,
Washington State Department of Ecology Report 02-03-027, US Geological Survey, Tacoma, Washington, 2002.
Singha, K., Pidlisecky, A., Day-Lewis, F. D., and Gooseff, M. N.: Electrical
characterization of non-Fickian transport in groundwater and hyporheic systems, Water Resour. Res., 44, W00D07, https://doi.org/10.1029/2008WR007048, 2008.
Soulsby, C., Rodgers, P. J., Petry, J., Hannah, D. M., Malcolm, I. A., and
Dunn, S. M.: Using tracers to upscale flow path understanding in mesoscale
mountainous catchments: Two examples from Scotland, J. Hydrol., 291, 174–196, https://doi.org/10.1016/j.jhydrol.2003.12.042, 2004.
Stanford, J. A.: Physical Processes, in: Methods in Stream Ecology, 2nd Edn.,
edited by: Hauer, F. R. and Lamberti, G. A., Elsevier Science, Burlington,
MA, San Diego, CA, London, UK, 2007.
Steelman, C. M., Kennedy, C. S., Capes, D. C., and Parker, B. L.: Electrical
resistivity dynamics beneath a fractured sedimentary bedrock riverbed in
response to temperature and groundwater–surface water exchange, Hydrol. Earth Syst. Sci., 21, 3105–3123, https://doi.org/10.5194/hess-21-3105-2017, 2017.
Stefania, G. A., Rotiroti, M., Fumagalli, L., Simonetto, F., Capodaglio, P.,
Zanotti, C., and Bonomi, T.: Modeling groundwater/surface-water interactions
in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater
abstraction on surface-water resources, Hydrogeol. J., 26, 147–162,
https://doi.org/10.1007/s10040-017-1633-x, 2018.
Stoner, S. A., Boswell, C. E., and Pierce Jr, L. D.: Groundwater dye tracing in central Missouri utilizing a multi-sensor fluorometer deployed in Hahatonka Spring, Carbon. Evaporit., 28, 159–165,
https://doi.org/10.1007/s13146-013-0131-z, 2013.
Tang, Q., Kurtz, W., Schilling, O. S., Brunner, P., Vereecken, H., and
Hendricks Franssen, H.-J.: The influence of riverbed heterogeneity patterns
on river-aquifer exchange fluxes under different connection regimes, J. Hydrol., 554, 383–396, https://doi.org/10.1016/j.jhydrol.2017.09.031, 2017.
Taylor, C. B., Wilson, D. D., Brown, L. J., Stewart, M. K., Burden, R. J., and Brailsford, G. W.: Sources and flow of North Canterbury Plains groundwater, New Zealand, J. Hydrol., 106, 311–340,
https://doi.org/10.1016/0022-1694(89)90078-4, 1989.
Tockner, K. and Stanford, J. A.: Riverine flood plains: Present state and
future trends, Environ. Conserv., 29, 308–330, https://doi.org/10.1017/S037689290200022X, 2002.
Tockner, K., Paetzold, A., Karaus, U., Claret, C., and Zettel, J.: Ecology of braided rivers, in: Braided Rivers: Process, Deposits, Ecology and Management, edited by: Smith, G. H. S., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, Oxford, UK, Carlton,
Victoria, Australia, 2006.
Van't Woudt, B. D. and Nicolle, K.: Flow processes below a gravelly riverbed, J. Hydrol., 17, 103–120, 1978.
Vienken, T., Huber, E., Kreck, M., Huggenberger, P., and Dietrich, P.: How to chase a tracer – combining conventional salt tracer testing and direct push electrical conductivity profiling for enhanced aquifer characterization, Adv. Water Resour., 99, 60–66, https://doi.org/10.1016/j.advwatres.2016.11.010, 2017.
Vincent, C.: Hydrogeology of the Upper Selwyn Catchment, Master of Science in Engineering Geology, Geology, University of Canterbury, Christchurch, New
Zealand, available at: https://ir.canterbury.ac.nz/handle/10092/1137 (last access: 22 October 2019), 2005.
White, P. A.: Avon River springs catchment, Christchurch City, New Zealand,
Aust. J. Earth Sci., 56, 61–70, https://doi.org/10.1080/08120090802542075, 2009.
White, P. A., Kovacova, E., Zemansky, G., Jebbour, N., and Moreau-Fournier, M.: Groundwater–surface water interaction in the Waimakariri River, New
Zealand, and groundwater outflow from the river bed, J. Hydrol., 51, 1–24, 2012.
Williams, P. A. and Wiser, S.: Determinants of regional and local patterns in the floras of braided riverbeds in New Zealand, J. Biogeogr., 31, 1355–1372, https://doi.org/10.1111/j.1365-2699.2004.01084.x, 2004.
Williams, R. D., Brasington, J., and Hicks, D. M.: Numerical Modelling of
Braided River Morphodynamics: Review and Future Challenges, Geogr. Compass, 10, 102–127, https://doi.org/10.1111/gec3.12260, 2016.
Wilson, S. and Wohling, T.: Wairau River–Wairau Aquifer Interaction,
1003-5-R1, Lincoln Agritech Ltd, Lincoln, New Zealand, available at: http://envirolink.govt.nz/assets/Envirolink/1514-MLDC96-Wairau-River-Wairau-Aquifer-interaction-report.pdf
(last access: 15 March 2019), 2015.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M.: Ground Water
and Surface Water: A Single Resource, Denver, Colorado, US Geological Survey
Circular 1139, US Geological Survey, Denver, Colorado, 1998.
Wohling, T., Gosses, M. J., Wilson, S. R., and Davidson, P.: Quantifying
river–groundwater interactions of New Zealand's gravel-bed rivers: The Wairau Plain, Groundwater, 56, 647–666, https://doi.org/10.1111/gwat.12625, 2018.
Young, W. J., and Davies, T. R. H.: Bedload transport in a braided gravel-bed river model, Earth Surf. Proc. Land., 16, 499–511, https://doi.org/10.1002/esp.3290160603, 1991.
Young, W. J. and Warburton, J.: Principles and practice of hydraulic modelling of braided gravel-bed rivers, J. Hydrol., 35, 175–198, 1996.
Short summary
Braided rivers are uncommon internationally but are important freshwater resources. However, there is limited understanding of how characteristics unique to braided rivers affect groundwater–surface water flow paths. This article reviews prior studies that have investigated groundwater–surface water interactions in these rivers and their associated aquifers to provide guidance on methodologies most suitable for future work in braided rivers and highlight gaps in current knowledge.
Braided rivers are uncommon internationally but are important freshwater resources. However,...