Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4233-2019
https://doi.org/10.5194/hess-23-4233-2019
Research article
 | 
22 Oct 2019
Research article |  | 22 Oct 2019

River-ice and water velocities using the Planet optical cubesat constellation

Andreas Kääb, Bas Altena, and Joseph Mascaro

Related authors

Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2309,https://doi.org/10.5194/egusphere-2023-2309, 2023
Short summary
Brief communication: Rapid  ∼  335  ×  106 m3 bed erosion after detachment of the Sedongpu Glacier (Tibet)
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023,https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023,https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Coastal retreat rates of high-Arctic rock cliffs on Brøgger peninsula, Svalbard, accelerate during the past decade
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-321,https://doi.org/10.5194/egusphere-2023-321, 2023
Short summary
Interdecadal glacier inventories in the Karakoram since the 1990s
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023,https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
Remote quantification of the trophic status of Chinese lakes
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023,https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
High-resolution automated detection of headwater streambeds for large watersheds
Francis Lessard, Naïm Perreault, and Sylvain Jutras
EGUsphere, https://doi.org/10.5194/egusphere-2023-1521,https://doi.org/10.5194/egusphere-2023-1521, 2023
Short summary
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023,https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023,https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022,https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary

Cited articles

Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science, 361, 585–587, https://doi.org/10.1126/science.aat0636, 2018. 
Altena, B. and Kääb, A.: Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits, Remote. Sens.-Basel, 9, 300, https://doi.org/10.3390/rs9030300, 2017. 
Beltaos, S. and Kääb, A.: Estimating river discharge during ice breakup from near-simultaneous satellite imagery, Cold Reg. Sci. Technol., 98, 35–46, https://doi.org/10.1016/j.coldregions.2013.10.010, 2014. 
Bjerklie, D. M., Birkett, C. M., Jones, J. W., Carabajal, C., Rover, J. A., Fulton, J. W., and Garambois, P. A.: Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska, J. Hydrol., 561, 1000–1018, https://doi.org/10.1016/j.jhydrol.2018.04.005, 2018. 
Brown, M.: Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) Applications: Monitoring Fresh Water Availability, available at: https://icesat-2.gsfc.nasa.gov/sites/default/files/ICESat-2_InlandWater_Whitepaper_040116.pdf, last access: 10 July 2019. 
Download
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.