Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3189-2019
https://doi.org/10.5194/hess-23-3189-2019
Research article
 | 
02 Aug 2019
Research article |  | 02 Aug 2019

Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand

Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen

Related authors

The impact of terrain model source and resolution on snow avalanche modeling
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022,https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 12, 3477–3497, https://doi.org/10.5194/tc-12-3477-2018,https://doi.org/10.5194/tc-12-3477-2018, 2018
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Detecting snowfall events over the Arctic using optical and microwave satellite measurements
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024,https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024,https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023,https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023,https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023,https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary

Cited articles

Andersen, T.: Operational snow mapping by Satellites, Hydrological Aspects of Alpine and High Mountain Areas (Proceedings of the Exeter Symposium), IAHS Publ. no. 138, 1982. a
Baba, K. and Renwick, J.: Aspects of intraseasonal variability of Antarctic sea ice in austral winter related to ENSO and SAM events, J. Glaciol., 63, 1–9, https://doi.org/10.1017/jog.2017.49, 2017. a
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE T. Geosci. Remote, 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a
Barringer, J. R. F.: A Variable Lapse Rate Snowline Model for the Remarkables, Central Otago, New Zealand, J. Hydrol., 28, 32–46, 1989. a
Download
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.