Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1633-2019
https://doi.org/10.5194/hess-23-1633-2019
Research article
 | Highlight paper
 | 
20 Mar 2019
Research article | Highlight paper |  | 20 Mar 2019

Geostatistical interpolation by quantile kriging

Henning Lebrenz and András Bárdossy

Related authors

The use of personal weather station observations to improve precipitation estimation and interpolation
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021,https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Conditional simulation of surface rainfall fields using modified phase annealing
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020,https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
Technical note: Stochastic simulation of streamflow time series using phase randomization
Manuela I. Brunner, András Bárdossy, and Reinhard Furrer
Hydrol. Earth Syst. Sci., 23, 3175–3187, https://doi.org/10.5194/hess-23-3175-2019,https://doi.org/10.5194/hess-23-3175-2019, 2019
Short summary
Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data
Yingchun Huang, András Bárdossy, and Ke Zhang
Hydrol. Earth Syst. Sci., 23, 2647–2663, https://doi.org/10.5194/hess-23-2647-2019,https://doi.org/10.5194/hess-23-2647-2019, 2019
Short summary
Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling
Jens Grundmann, Sebastian Hörning, and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 225–237, https://doi.org/10.5194/hess-23-225-2019,https://doi.org/10.5194/hess-23-225-2019, 2019

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
Guiding community discussions on human–water challenges by serious gaming in the upper Ewaso Ngiro River basin, Kenya
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024,https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Levee system transformation in coevolution between humans and water systems along the Kiso River, Japan
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024,https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Reframing water demand management: a new co-governance framework coupling supply-side and demand-side solutions toward sustainability
Yueyi Liu, Hang Zheng, and Jianshi Zhao
Hydrol. Earth Syst. Sci., 28, 2223–2238, https://doi.org/10.5194/hess-28-2223-2024,https://doi.org/10.5194/hess-28-2223-2024, 2024
Short summary
HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024,https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Water productivity is in the eye of the beholder: benchmarking the multiple values produced by water use in the Phoenix metropolitan area
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024,https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary

Cited articles

Adhikary, P. P., Dash, C. J., Bej, R., and Chandrasekharan, H.: Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India, Environ. Monit. Assess., 176, 663–676, https://doi.org/10.1007/s10661-010-1611-4, 2011. a
Ahmed, S. and deMarsily, G.: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resour. Res., 23, 1717–1737, 1987. a
Armstrong, M.: Basic Linear Geostatistics, Springer, available at: http://books.google.de/books?id=-9vp1lVuMCsC, Springer Berlin Heidelberg, 1998. a
Basistha, A., Arya, D. S., and Goel, N. K.: Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region, Water Resour. Manag., 22, 1325–1346, https://doi.org/10.1007/s11269-007-9228-2, 2008. a
Bourennane, H., King, D., and Couturier, A.: Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities, Geoderma, 97, 255–271, https://doi.org/10.1016/S0016-7061(00)00042-2, 2000. a
Download
Short summary
Many variables, e.g., in hydrology, geology, and social sciences, are only observed at a few distinct measurement locations, and their actual distribution in the entire space remains unknown. We introduce the new geostatistical interpolation method of quantile kriging, providing an improved estimator and associated uncertainty. It can also host variables, which would not fulfill the implicit presumptions of the traditional geostatistical interpolation methods.