Articles | Volume 22, issue 11
https://doi.org/10.5194/hess-22-5639-2018
Special issue:
https://doi.org/10.5194/hess-22-5639-2018
Opinion article
 | 
01 Nov 2018
Opinion article |  | 01 Nov 2018

HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community

Chaopeng Shen, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jerad Bales, Fi-John Chang, Sangram Ganguly, Kuo-Lin Hsu, Daniel Kifer, Zheng Fang, Kuai Fang, Dongfeng Li, Xiaodong Li, and Wen-Ping Tsai

Related authors

Improving Streamflow Simulation through Machine Learning-Powered Data Integration and Its Implications for Forecasting in the Western U.S.
Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph
EGUsphere, https://doi.org/10.5194/egusphere-2025-1708,https://doi.org/10.5194/egusphere-2025-1708, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
From RNNs to Transformers: benchmarking deep learning architectures for hydrologic prediction
Jiangtao Liu, Chaopeng Shen, Fearghal O'Donncha, Yalan Song, Wei Zhi, Hylke E. Beck, Tadd Bindas, Nicholas Kraabel, and Kathryn Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1706,https://doi.org/10.5194/egusphere-2025-1706, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
A novel hybrid fine-tuning method for supercharging deep learning model development for hydrological prediction
Mohammad Sina Jahangir, John Quilty, Chaopeng Shen, Andrea Scott, Scott Steinschneider, and Jan Adamowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-846,https://doi.org/10.5194/egusphere-2025-846, 2025
Short summary
Ensembling Differentiable Process-based and Data-driven Models with Diverse Meteorological Forcing Datasets to Advance Streamflow Simulation
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-483,https://doi.org/10.5194/egusphere-2025-483, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Comprehensive Global Assessment of 23 Gridded Precipitation Datasets Across 16,295 Catchments Using Hydrological Modeling
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194,https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary

Cited articles

Abramowitz, G., Gupta, H., Pitman, A., Wang, Y., Leuning, R., Cleugh, H., Hsu, K., Abramowitz, G., Gupta, H., Pitman, A., Wang, Y., Leuning, R., Cleugh, H., and Hsu, K.: Neural Error Regression Diagnosis (NERD): A Tool for Model Bias Identification and Prognostic Data Assimilation, J. Hydrometeorol., 7, 160–177, https://doi.org/10.1175/JHM479.1, 2006. 
Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E., Wang, Y., Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E., and Wang, Y.: Systematic Bias in Land Surface Models, J. Hydrometeorol., 8, 989–1001, https://doi.org/10.1175/JHM628.1, 2007. 
Ajami, H., Khan, U., Tuteja, N. K., and Sharma, A.: Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation, Environ. Model. Softw., 85, 319–331, https://doi.org/10.1016/J.ENVSOFT.2016.09.002, 2016. 
Albert, A., Strano, E., Kaur, J., and Gonzalez, M.: Modeling urbanization patterns with generative adversarial networks, arXiv:1801.02710, available at: http://arxiv.org/abs/1801.02710, last access: 24 March 2018. 
Allamano, P., Croci, A., and Laio, F.: Toward the camera rain gauge, Water Resour. Res., 51, 1744–1757, https://doi.org/10.1002/2014WR016298, 2015. 
Download
Short summary
Recently, deep learning (DL) has emerged as a revolutionary tool for transforming industries and scientific disciplines. We argue that DL can offer a complementary avenue toward advancing hydrology. New methods are being developed to interpret the knowledge learned by deep networks. We argue that open competitions, integrating DL and process-based models, more data sharing, data collection from citizen scientists, and improved education will be needed to incubate advances in hydrology.
Share
Special issue