Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5111-2018
https://doi.org/10.5194/hess-22-5111-2018
Research article
 | 
04 Oct 2018
Research article |  | 04 Oct 2018

An improved method for calculating the regional crop water footprint based on a hydrological process analysis

Xiao-Bo Luan, Ya-Li Yin, Pu-Te Wu, Shi-Kun Sun, Yu-Bao Wang, Xue-Rui Gao, and Jing Liu

Related authors

Hydrological drivers of groundwater recharge changes under different emission scenarios in agricultural lands
Xinyu Chang, Fei Gao, Ziyuan Gong, Tianqi Hu, and Shikun Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3186,https://doi.org/10.5194/egusphere-2024-3186, 2024
Preprint archived
Short summary
Depth scaling of soil moisture content from surface to profile: multistation testing of observation operators
Xiaodong Gao, Xining Zhao, Luca Brocca, Gaopeng Huo, Ting Lv, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292,https://doi.org/10.5194/hess-2017-292, 2017
Preprint retracted
Short summary
Upscaling of soil moisture content from surface to profile: multi-station testing of observation operators
Xiaodong Gao, Xining Zhao, Luca Brocca, Ting Lv, Gaopeng Huo, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-617,https://doi.org/10.5194/hess-2016-617, 2016
Preprint retracted
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
Interdecadal cycles in Australian annual rainfall
Tobias F. Selkirk, Andrew W. Western, and J. Angus Webb
Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025,https://doi.org/10.5194/hess-29-2167-2025, 2025
Short summary
Synchronization frequency analysis and stochastic simulation of multi-site flood flows based on the complicated vine copula structure
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025,https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Phosphorus transport in a hotter and drier climate: in-channel release of legacy phosphorus during summer low-flow conditions
Christine L. Dolph, Jacques C. Finlay, Brent Dalzell, and Gary W. Feyereisen
Hydrol. Earth Syst. Sci., 28, 5249–5294, https://doi.org/10.5194/hess-28-5249-2024,https://doi.org/10.5194/hess-28-5249-2024, 2024
Short summary
Have river flow droughts become more severe? A review of the evidence from the UK – a data-rich temperate environment
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293,https://doi.org/10.5194/hess-2024-293, 2024
Preprint under review for HESS
Short summary
User-Validated Drought Vulnerability Factors in Forested Cold Climates: Multi-Sectoral Perspectives from Sweden
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-1988,https://doi.org/10.5194/egusphere-2024-1988, 2024
Short summary

Cited articles

Abbaspour, K. C.: SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual, Eawag: Swiss Federal Institute Science and Technology, available at: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (last access: 15 November 2016), 2012. 
Abbaspour, K. C., Vejdani, M., and Haghighat S.: SWAT-CUP calibration and uncertainty programs for SWAT, in: Modsim 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, Christchurch, New Zealand, 2007. 
AHID – Administration of Hetao Irrigation District: Bayannaoer Department of Water, Inner Mongolia Autonomous Region, China, available at: http://www.htgq.gov.cn/, last access: 5 September 2015. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 1998. 
Bao, C. and Fang, C.: Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development, Water Resour. Manage., 26, 531–552, https://doi.org/10.1007/s11269-011-9930-y, 2012. 
Download
Short summary
At present, the water footprint calculated by the quantitative method of crop production water footprint is only a field-scale water footprint, which does not contain all the water consumption of the crop growth process, so its calculated crop production water footprint is incomplete. In this study, the hydrological model SWAT was used to analyze the real water consumption in the course of crop growth, so that the actual water consumption of the crops could be more accurately reflected.
Share