Articles | Volume 22, issue 5
https://doi.org/10.5194/hess-22-3075-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-3075-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precipitation alters plastic film mulching impacts on soil respiration in an arid area of northwest China
Guanghui Ming
Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Hongchang Hu
Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Zhenyang Peng
Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Pengju Yang
Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Yiqi Luo
Department of Earth System Science, Tsinghua University, Beijing 100084, China
College of Engineering, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, Arizona, USA
Related authors
No articles found.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2966, https://doi.org/10.5194/egusphere-2024-2966, 2024
Short summary
Short summary
We assessed the value of high-resolution data and parameters transferability across temporal scales based on 7 catchments in northern China. We found that higher resolution data does not always improve model performance, questioning the need for such data; Model parameters are transferable across different data resolutions, but not across computational time steps. It is recommended to utilize smaller computational time step when building hydrological models even without high-resolution data.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Zhen Cui and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2177, https://doi.org/10.5194/egusphere-2024-2177, 2024
Short summary
Short summary
This study investigates stormflow patterns in a forested watershed in North China, revealing that delayed stormflow is influenced by soil water content and groundwater levels. When soil moisture exceeds its storage capacity, excess water recharges groundwater, which then flows into streams more slowly. As groundwater levels rise, they enhance water movement and connectivity, causing a delayed stormflow peak to merge with the direct stormflow peak.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1438, https://doi.org/10.5194/egusphere-2024-1438, 2024
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conducted simulation experiments using data with various temporal resolutions across multiple catchments, and found that higher resolution data does not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Khosro Morovati, Lidi Shi, Yadu Pokhrel, Maozhu Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-96, https://doi.org/10.5194/hess-2024-96, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study addresses the regional contribution of the transboundary dammed Mekong River to daily large river flow fluctuations. Regional studies for cross-border rivers hold significant importance for regional water resource management and provide insights into how regional human activities and climate change influence the mainstream flow. The developed sub-basin approach holds significant potential for managing river fluctuations and have broader applicability beyond the specific basin studied.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021, https://doi.org/10.5194/hess-25-1603-2021, 2021
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Songjun Han and Fuqiang Tian
Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, https://doi.org/10.5194/hess-24-2269-2020, 2020
Short summary
Short summary
The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship to employing generalized nonlinear functions. We also compare the polynomial and sigmoid types of generalized complementary functions and discuss their future development.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Haoyu Xu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue
Geosci. Model Dev., 11, 3027–3044, https://doi.org/10.5194/gmd-11-3027-2018, https://doi.org/10.5194/gmd-11-3027-2018, 2018
Short summary
Short summary
This study proposes a new parameter calibration method based on surrogate optimization techniques to improve the prediction accuracy of soil organic carbon. Experiments on three popular global soil carbon cycle models show that the surrogate-based optimization method is effective and efficient in terms of both accuracy and cost. This research would help develop and improve the parameterization schemes of Earth climate systems.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Mohd Yawar Ali Khan and Fuqiang Tian
Proc. IAHS, 379, 61–66, https://doi.org/10.5194/piahs-379-61-2018, https://doi.org/10.5194/piahs-379-61-2018, 2018
Short summary
Short summary
This study has been conducted on Ramganga River, a major tributary of Ganges River, India, to observe the spatial variation of DOC, dissolved inorganic carbon (DIC), SOC and suspended inorganic carbon (SIC) in river water. The significant conclusions of this investigation revealed that the river and its tributaries show abundance amount of TSC (SOC and SIC) and TDC (DOC and DIC) both in the upstream and downstream. TDC accounts more in river concentration as compared to TSC.
Ran Xu, Hongchang Hu, Fuqiang Tian, Chao Li, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-251, https://doi.org/10.5194/hess-2018-251, 2018
Manuscript not accepted for further review
Short summary
Short summary
We provide a comprehensive and updated assessment of the impacts of climate change on YBR streamflow by integrating a physically based hydrological model, regional climate integrations, different bias correction methods, and Bayesian model averaging method. By the year 2035, the annual mean streamflow is projected to change respectively by 6.8 % (12.9 %), −0.4 % (13.1 %), and −4.1 % (19.9 %) under RCP4.5 (8.5) relative to the historical period at the Bahadurabad, the upper Brahmaputra outlet, and Nuxia.
Yaner Yan, Xuhui Zhou, Lifeng Jiang, and Yiqi Luo
Biogeosciences, 14, 5441–5454, https://doi.org/10.5194/bg-14-5441-2017, https://doi.org/10.5194/bg-14-5441-2017, 2017
Short summary
Short summary
The effects of C turnover time on ecosystem C storage have not been well explored, so we quantified the spatial variation in ecosystem C storage over time from changes in C turnover time and/or NPP. Our results showed that the terrestrial C release caused by the decrease in MTT only accounted for about 13.5 % of that due to the change in NPP uptake. However, the larger uncertainties in the spatial variation of MTT than temporal changes would lead to a greater impact on ecosystem C storage.
Songjun Han, Fuqiang Tian, Ye Liu, and Xianhui Duan
Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, https://doi.org/10.5194/hess-21-3619-2017, 2017
Short summary
Short summary
The history of the co-evolution of the coupled human–groundwater system in Cangzhou (a region with the most serious depression cone in the North China Plain) is analyzed with a particular focus on how the groundwater crisis unfolded and how people attempted to settle the crisis. The evolution of the system was substantially impacted by two droughts. Further restoration of groundwater environment could be anticipated, but the occurrence of drought still remains an undetermined external forcing.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Rashid Rafique, Jianyang Xia, Oleksandra Hararuk, Ghassem R. Asrar, Guoyong Leng, Yingping Wang, and Yiqi Luo
Earth Syst. Dynam., 7, 649–658, https://doi.org/10.5194/esd-7-649-2016, https://doi.org/10.5194/esd-7-649-2016, 2016
Short summary
Short summary
Traceability analysis was used to diagnose the causes of differences in simulating ecosystem carbon storage capacity between two land models: CLMA-CASA and CABLE. Results showed that the simulated ecosystem carbon storage capacity is largely influenced by the photosynthesis parameterization, residence time and organic matter decomposition.
Junyi Liang, Xuan Qi, Lara Souza, and Yiqi Luo
Biogeosciences, 13, 2689–2699, https://doi.org/10.5194/bg-13-2689-2016, https://doi.org/10.5194/bg-13-2689-2016, 2016
Short summary
Short summary
It is unclear how the nitrogen (N) cycle regulates climate change through influencing carbon sequestration. By using meta-analysis, we tested a popular hypothesis, progressive N limitation (PNL), which postulates that greater N sequestration in organisms leads to declining N availability for further plant growth under elevated CO2. Our analyses suggest that extra nitrogen supply by increased biological N fixation and decreased leaching may potentially alleviate PNL.
Zhenyang Peng, Hongchang Hu, Fuqiang Tian, Qiang Tie, and Sihan Zhao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-112, https://doi.org/10.5194/hess-2016-112, 2016
Manuscript not accepted for further review
Short summary
Short summary
Preferential flow (PF) occurred by a frequency of 40.7 % in a semi humid catchment. Possibility of PF occurrence is positively correlated with rainfall features, i.e. rainfall amount, duration, maximum and average intensity, among which the rainfall amount is the dominant driven factor of PF. PF is more likely to occur on gentle slopes with thick surface covers, while high antecedent soil moisture is more likely to be consequence of infiltration capacity, rather than an inducer of PF.
Fuqiang Tian, Yu Sun, Hongchang Hu, and Hongyi Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-88, https://doi.org/10.5194/hess-2016-88, 2016
Preprint withdrawn
Y. P. Wang, J. Jiang, B. Chen-Charpentier, F. B. Agusto, A. Hastings, F. Hoffman, M. Rasmussen, M. J. Smith, K. Todd-Brown, Y. Wang, X. Xu, and Y. Q. Luo
Biogeosciences, 13, 887–902, https://doi.org/10.5194/bg-13-887-2016, https://doi.org/10.5194/bg-13-887-2016, 2016
Short summary
Short summary
Comparing two nonlinear microbial models, we found that,
in response to warming, soil C decreases in one model but can increase or decrease in the other model, and sensitivity of priming response to carbon input increases with soil T in one model but decreases in the other model
Significance: these differences in the responses can be used to discern which model is more realistic, which will improve our understanding of the significance of soil microbial processes in the terrestrial C cycle.
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
D. Liu, F. Tian, M. Lin, and M. Sivapalan
Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, https://doi.org/10.5194/hess-19-1035-2015, 2015
Short summary
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
W. Zhang, X. Zhu, Y. Luo, R. Rafique, H. Chen, J. Huang, and J. Mo
Biogeosciences, 11, 4941–4951, https://doi.org/10.5194/bg-11-4941-2014, https://doi.org/10.5194/bg-11-4941-2014, 2014
R. Rafique, J. Xia, O. Hararuk, and Y. Luo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-9979-2014, https://doi.org/10.5194/bgd-11-9979-2014, 2014
Revised manuscript not accepted
Y. P. Wang, B. C. Chen, W. R. Wieder, M. Leite, B. E. Medlyn, M. Rasmussen, M. J. Smith, F. B. Agusto, F. Hoffman, and Y. Q. Luo
Biogeosciences, 11, 1817–1831, https://doi.org/10.5194/bg-11-1817-2014, https://doi.org/10.5194/bg-11-1817-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
Z. Zhang, F. Tian, H. Hu, and P. Yang
Hydrol. Earth Syst. Sci., 18, 1053–1072, https://doi.org/10.5194/hess-18-1053-2014, https://doi.org/10.5194/hess-18-1053-2014, 2014
L. Yang, F. Tian, Y. Sun, X. Yuan, and H. Hu
Hydrol. Earth Syst. Sci., 18, 775–786, https://doi.org/10.5194/hess-18-775-2014, https://doi.org/10.5194/hess-18-775-2014, 2014
Z. Shi, M. L. Thomey, W. Mowll, M. Litvak, N. A. Brunsell, S. L. Collins, W. T. Pockman, M. D. Smith, A. K. Knapp, and Y. Luo
Biogeosciences, 11, 621–633, https://doi.org/10.5194/bg-11-621-2014, https://doi.org/10.5194/bg-11-621-2014, 2014
Z. He, F. Tian, H. C. Hu, H. V. Gupta, and H. P. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-1253-2014, https://doi.org/10.5194/hessd-11-1253-2014, 2014
Revised manuscript not accepted
Y. Sun, Z. Hou, M. Huang, F. Tian, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 17, 4995–5011, https://doi.org/10.5194/hess-17-4995-2013, https://doi.org/10.5194/hess-17-4995-2013, 2013
Y. Tang, Q. Tang, F. Tian, Z. Zhang, and G. Liu
Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, https://doi.org/10.5194/hess-17-4471-2013, 2013
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
O. Hararuk, D. Obrist, and Y. Luo
Biogeosciences, 10, 2393–2407, https://doi.org/10.5194/bg-10-2393-2013, https://doi.org/10.5194/bg-10-2393-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
Related subject area
Subject: Biogeochemical processes | Techniques and Approaches: Theory development
Hydraulic shortcuts increase the connectivity of arable land areas to surface waters
Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale
A post-wildfire response in cave dripwater chemistry
Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review
Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments
Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water
Phosphorus transport and retention in a channel draining an urban, tropical catchment with informal settlements
HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"
Urs Schönenberger and Christian Stamm
Hydrol. Earth Syst. Sci., 25, 1727–1746, https://doi.org/10.5194/hess-25-1727-2021, https://doi.org/10.5194/hess-25-1727-2021, 2021
Short summary
Short summary
Pesticides are a major pollutant of surface waters. In this study, we assessed how so-called hydraulic shortcuts (e.g. inlet and maintenance shafts of road or field storm drainage systems) influence surface runoff and pesticide transport to Swiss surface waters. The study suggests that transport via hydraulic shortcuts is an important pesticide transport pathway and that current regulations may fall short in addressing this pathway.
Hang Wen, Julia Perdrial, Benjamin W. Abbott, Susana Bernal, Rémi Dupas, Sarah E. Godsey, Adrian Harpold, Donna Rizzo, Kristen Underwood, Thomas Adler, Gary Sterle, and Li Li
Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, https://doi.org/10.5194/hess-24-945-2020, 2020
Short summary
Short summary
Lateral carbon fluxes from terrestrial to aquatic systems remain central uncertainties in determining ecosystem carbon balance. This work explores how temperature and hydrology control production and export of dissolved organic carbon (DOC) at the catchment scale. Results illustrate the asynchrony of DOC production, controlled by temperature, and export, governed by flow paths; concentration–discharge relationships are determined by the relative contribution of shallow versus groundwater flow.
Gurinder Nagra, Pauline C. Treble, Martin S. Andersen, Ian J. Fairchild, Katie Coleborn, and Andy Baker
Hydrol. Earth Syst. Sci., 20, 2745–2758, https://doi.org/10.5194/hess-20-2745-2016, https://doi.org/10.5194/hess-20-2745-2016, 2016
Short summary
Short summary
Our current understanding of wildfires on Earth is filled with knowledge gaps. One reason for this is our poor record of fire in natural archives. We open the possibility for speleothems to be "a missing piece to the fire-puzzle". We find by effecting surface evaporation and transpiration rates, wildfires can have a multi-year impact on speleothem, forming dripwater hydrology and chemistry. We open a new avenue for speleothems as potential palaeo-fire archives.
M. M. R. Jahangir, K. G. Richards, M. G. Healy, L. Gill, C. Müller, P. Johnston, and O. Fenton
Hydrol. Earth Syst. Sci., 20, 109–123, https://doi.org/10.5194/hess-20-109-2016, https://doi.org/10.5194/hess-20-109-2016, 2016
Short summary
Short summary
Removal efficiency of carbon and nitrogen in constructed wetlands is inconsistent and does not reveal whether the removal processes are from physical attenuation or transformation to other reactive forms. Previous research did not consider "pollution swapping" driven by transformational processes. Herein the biogeochemical dynamics and fate of carbon and nitrogen and their potential impact on the environment, as well as novel ways in which these knowledge gaps may be eliminated, are explored.
E. M. Herndon, A. L. Dere, P. L. Sullivan, D. Norris, B. Reynolds, and S. L. Brantley
Hydrol. Earth Syst. Sci., 19, 3333–3347, https://doi.org/10.5194/hess-19-3333-2015, https://doi.org/10.5194/hess-19-3333-2015, 2015
Short summary
Short summary
Solute concentrations in headwater streams vary with discharge due to changing flow paths through the catchment during precipitation events. A comparison of stream chemistry across three headwater catchments reveals that solute heterogeneity across each landscape controls how different solutes respond to increasing discharge. Solute heterogeneity is at least partially controlled by landscape distributions of vegetation and soil organic matter.
B. van der Grift, J. C. Rozemeijer, J. Griffioen, and Y. van der Velde
Hydrol. Earth Syst. Sci., 18, 4687–4702, https://doi.org/10.5194/hess-18-4687-2014, https://doi.org/10.5194/hess-18-4687-2014, 2014
Short summary
Short summary
Exfiltration of anoxic groundwater containing Fe(II) to surface water is an important mechanism controlling P speciation in the lowland catchments. Due to changes in pH and temperature, the Fe(II) oxidation rates were much lower in winter than in summer. This study also shows a fast transformation of dissolved P to structural P during the initial stage of the Fe oxidation process resulting in low dissolved P concentrations in the surface water throughout the year.
P. M. Nyenje, L. M. G. Meijer, J. W. Foppen, R. Kulabako, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 1009–1025, https://doi.org/10.5194/hess-18-1009-2014, https://doi.org/10.5194/hess-18-1009-2014, 2014
K. Michaelian
Hydrol. Earth Syst. Sci., 16, 2629–2645, https://doi.org/10.5194/hess-16-2629-2012, https://doi.org/10.5194/hess-16-2629-2012, 2012
Cited articles
Adhikari, R., Bristow, K. L., Casey, P. S., Freischmidt, G., Hornbuckle, J. W., and Adhikari, B.: Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency, Agric. Water Manage., 169, 1–13, https://doi.org/10.1016/j.agwat.2016.02.006, 2016.
Baker, J. M., Ochsner, T. E., Venterea, R. T., and Griffis, T. J.: Tillage and soil carbon sequestration – What do we really know?, Agric. Ecosyst. Environ., 118, 1–5, 2007.
Berger, S., Kim, Y., Kettering, J., and Gebauer, G.: Plastic mulching in agriculture – Friend or foe of N2O emissions?, Agric. Ecosyst. Environ., 167, 43–51, https://doi.org/10.1016/j.agee.2013.01.010, 2013.
Bonan, G.: Ecological climatology, Cambridge University Press, Cambridge, 352–359, 2008.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Buyanovsky, G. A., Kucera, C. L., and Wagner, G. H.: Comparative Analyses of Carbon Dynamics in Native and Cultivated Ecosystems, Ecology, 68, 2023–2031, https://doi.org/10.2307/1939893, 1987.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.
Davidson, E. A., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biol., 4, 217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Davidson, E. A., Verchot, L. V., Catt, X., Nio, J. H., Ackerman, I. L., and Carvalho, J. E. M.: Effects of Soil Water Content on Soil Respiration in Forests and Cattle Pastures of Eastern Amazonia, Biogeochemistry, 48, 53–69, 2000.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of respiration in terrestrial ecosystems: moving beyond Q10, Global Change Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006.
Guo, S., Qi, Y., Peng, Q., Dong, Y., He, Y., Yan, Z., and Wang, L.: Influences of drip and flood irrigation on soil carbon dioxide emission and soil carbon sequestration of maize cropland in the North China Plain, J. Arid Land, 9, 222–233, https://doi.org/10.1007/s40333-017-0011-9, 2017.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lei, L.: Study of effect of plastic film mulching on CO2 and CH4 emissions from a vegetable field, Master of Environmental Engineering, Southwest University, Chongqing, China, 59 pp., 2016.
Li, N., Tian, F., Hu, H., Lu, H., and Ming, G.: Effects of Plastic Mulch on Soil Heat Flux and Energy Balance in a Cotton Field in Northwest China, Atmosphere, 7, 1–16, 2016.
Li, Z.-G., Zhang, R.-H., Wang, X.-J., Wang, J.-P., Zhang, C.-P., and Tian, C.-Y.: Carbon Dioxide Fluxes and Concentrations in a Cotton Field in Northwestern China: Effects of Plastic Mulching and Drip Irrigation, Pedosphere, 21, 178–185, https://doi.org/10.1016/s1002-0160(11)60116-1, 2011.
Linn, D. M. and Doran, J. W.: Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils1, Soil Sci. Soc. Am. J., 48, 1267–1272, https://doi.org/10.2136/sssaj1984.03615995004800060013x, 1984.
Liu, L., Wang, X., Lajeunesse, M. J., Miao, G., Piao, S., Wan, S., Wu, Y., Wang, Z., Yang, S., Li, P., and Deng, M.: A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes, Global Change Biol., 22, 1394–1405, https://doi.org/10.1111/gcb.13156, 2016.
Liu, Q., Chen, Y., Li, W., Liu, Y., Han, J., Wen, X., and Liao, Y.: Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China, Sci. Rep., 6, 28150, https://doi.org/10.1038/srep28150, 2016.
Liu, X., Wan, S., Su, B., Hui, D., and Luo, Y.: Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem, Plant Soil, 240, 213–223, https://doi.org/10.1023/a:1015744126533, 2002.
Luo, Y. and Zhou, X. (Eds.): Soil respiration and the environment, Elsevier, New York, 35–40, 2006.
Luo, Y., Wan, S., Hui, D., and Wallace, L. L.: Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 413, 622–625, 2001.
Mielnick, P. C. and Dugas, W. A.: Soil CO2 flux in a tallgrass prairie, Soil Biol. Biochem., 32, 221–228, https://doi.org/10.1016/S0038-0717(99)00150-9, 2000.
Nishimura, S., Komada, M., Takebe, M., Yonemura, S., and Kato, N.: Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field, Biol. Fertil. Soils, 48, 787–795, https://doi.org/10.1007/s00374-012-0672-7, 2012.
Okuda, H., Noda, K., Sawamoto, T., Tsuruta, H., Hirabayashi, T., Yonemoto, J. Y., and Yagi, K.: Emission of N2O and CO2 and Uptake of CH4 in Soil from a Satsuma Mandarin Orchard under Mulching Cultivation in Central Japan, J. Jpn. Soc. Hort. Sci., 76, 279–287, https://doi.org/10.2503/jjshs.76.279, 2007.
Qian-Bing, Z., Ling, Y., Jin, W., Hong-Hai, L., Ya-Li, Z., and Wang-Feng, Z.: Effects of Different Irrigation Methods and Fertilization Measures – on Soil Respiration and Its Component Contrib, Sci. Agricult. Sin., 45, 2420–2430, 2012.
Raich, J. W. and Schlesinger, W. H.: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus B, 44, 81–99, https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x, 1992.
Raich, J. W. and Tufekciogul, A.: Vegetation and soil respiration: Correlations and controls, Biogeochemistry, 48, 71–90, https://doi.org/10.1023/a:1006112000616, 2000.
Reichstein, M. and Beer, C.: Soil respiration across scales: The importance of a model–data integration framework for data interpretation, J. Plant Nutr. Soil Sci., 171, 344–354, https://doi.org/10.1002/jpln.200700075, 2008.
van't Hoff, J.: Lectures on Theoretical and Physical Chemistry. Part 1. Chemical Dynamics, Edward Arnold, London, 224–226, 1898.
Wang, J., Fenghua, Z., and Zhu, O.: Effects of irrigation quantity on soil respiration in wheat field in filling stage, Agricult. Boreali-Sim., 25, 186–189, 2010.
Wang, J., Lv, S., Zhang, M., Chen, G., Zhu, T., Zhang, S., Teng, Y., Christie, P., and Luo, Y.: Effects of plastic film residues on occurrence of phthalates and microbial activity in soils, Chemosphere, 151, 171–177, https://doi.org/10.1016/j.chemosphere.2016.02.076, 2016.
Wang, Y. P., Li, X. G., Fu, T., Wang, L., Turner, N. C., Siddique, K. H. M., and Li, F.-M.: Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China, Agric. For. Meteorol., 228–229, 42–51, 2016.
Wichern, F., Luedeling, E., Müller, T., Joergensen, R. G., and Buerkert, A.: Field measurements of the CO2 evolution rate under different crops during an irrigation cycle in a mountain oasis of Oman, Appl. Soil Ecol., 25, 85–91, 2004.
Xiang, G., Weiping, H., Fengxue, G., and Rui, G.: The impact of rainfall on soil respiration in a rain-fed maize cropland, Acta Ecol. Sin., 32, 7883–7893, 2012.
Xiang, G., Gong, D., and Fengxue, G.: Inhibiting soil respiration and improving yield of spring maize in fields with plastic film mulching, T. Chinese Soc. Agr. Eng., 30, 62–70, 2014.
Xu, L. and Baldocchi, D. D.: Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California, Agric. For. Meteorol., 123, 79–96, https://doi.org/10.1016/j.agrformet.2003.10.004, 2004.
Xu, L., Baldocchi, D. D., and Tang, J.: How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Global Biogeochem. Cy., 18, 1–10, https://doi.org/10.1029/2004gb002281, 2004.
Yan, M., Zhou, G., and Zhang, X.: Effects of irrigation on the soil CO2 efflux from different poplar clone plantations in arid northwest China, Plant Soil, 375, 89–97, https://doi.org/10.1007/s11104-013-1944-1, 2014.
Yinkun, L., Minpeng, C., Xu, X., and Xurong, M.: Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition, Ecol. Environ. Sci., 22, 18–24, 2013.
Yu, Y., Zhao, C., Stahr, K., Zhao, X., Jia, H., and de Varennes, A.: Plastic mulching increased soil CO2 concentration and emissions from an oasis cotton field in Central Asia, Soil Use Manage., 32, 230–239, https://doi.org/10.1111/sum.12266, 2016.
Zhang, F., Zhang, W., Qi, J., and Li, F.-M.: A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China, Agric. For. Meteorol., 248, 458–468, https://doi.org/10.1016/j.agrformet.2017.10.030, 2018.
Zhang, Z., Tian, F., Zhong, R., and Hu, H.: Spatial and Temporal pattern of soil temperature in cotton field under mulched drip irrigation conditions in Xinjiang, T. CSAE, 27, 44–51, 2011.
Zhang, Z., Hu, H., Tian, F., Yao, X., and Sivapalan, M.: Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China, Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, 2014.
Short summary
The purpose of this research was to detect the effect of plastic film mulching (PFM), a widely applied cultivation method, on soil respiration. We found that soil respiration was not only affected by PFM, but it was also affected by irrigation and precipitation, and whether the PFM increases soil respiration compared to a non-mulched field largely depends on precipitation in the field. The result has an important meaning for agricultural carbon sequestration in the context of global warming.
The purpose of this research was to detect the effect of plastic film mulching (PFM), a widely...