Articles | Volume 22, issue 3
https://doi.org/10.5194/hess-22-1811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-1811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia
Natthachet Tangdamrongsub
CORRESPONDING AUTHOR
School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
Shin-Chan Han
School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
Mark Decker
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
In-Young Yeo
School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
Hyungjun Kim
Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
Related authors
Natthachet Tangdamrongsub, Susan C. Steele-Dunne, Brian C. Gunter, Pavel G. Ditmar, Edwin H. Sutanudjaja, Yu Sun, Ting Xia, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, https://doi.org/10.5194/hess-21-2053-2017, 2017
Short summary
Short summary
This paper investigates the assimilation of terrestrial water storage variation estimates derived from GRACE data using an EnKF 3D approach. The spatially correlated errors in GRACE data derived from its full error variance–covariance matrices were taken into account. The experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 % over the Hexi Corridor. The inclusion of error correlations provided an equal or greater improvement in the estimates.
N. Tangdamrongsub, S. C. Steele-Dunne, B. C. Gunter, P. G. Ditmar, and A. H. Weerts
Hydrol. Earth Syst. Sci., 19, 2079–2100, https://doi.org/10.5194/hess-19-2079-2015, https://doi.org/10.5194/hess-19-2079-2015, 2015
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Seoung Soo Lee, Kyung-Ja Ha, Manguttathil Gopalakrishnan Manoj, Mohammad Kamruzzaman, Hyungjun Kim, Nobuyuki Utsumi, Youtong Zheng, Byung-Gon Kim, Chang Hoon Jung, Junshik Um, Jianping Guo, Kyoung Ock Choi, and Go-Un Kim
Atmos. Chem. Phys., 21, 16843–16868, https://doi.org/10.5194/acp-21-16843-2021, https://doi.org/10.5194/acp-21-16843-2021, 2021
Short summary
Short summary
Using a modeling framework, a midlatitude stratocumulus cloud system is simulated. It is found that cloud mass in the system becomes very low due to interactions between ice and liquid particles compared to that in the absence of ice particles. It is also found that interactions between cloud mass and aerosols lead to a reduction in cloud mass in the system, and this is contrary to an aerosol-induced increase in cloud mass in the absence of ice particles.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Sangchul Lee, Gregory W. McCarty, Glenn E. Moglen, Haw Yen, Fangni Lei, Martha Anderson, Feng Gao, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-669, https://doi.org/10.5194/hess-2020-669, 2021
Publication in HESS not foreseen
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Sangchul Lee, In-Young Yeo, Ali M. Sadeghi, Gregory W. McCarty, Wells D. Hively, Megan W. Lang, and Amir Sharifi
Hydrol. Earth Syst. Sci., 22, 689–708, https://doi.org/10.5194/hess-22-689-2018, https://doi.org/10.5194/hess-22-689-2018, 2018
Short summary
Short summary
Climate change is expected to worsen water quality in the Chesapeake Bay Watershed. To efficiently mitigate climate change impacts, it is important to understand changes in hydrology and nutrient cycles under climate change. This study examined key factors vulnerable to climate change considering local characteristics. Croplands were a decisive factor in degrading water quality for this region. Thus, mitigation activities should be prepared for croplands to reduce water quality degradation.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Cherry May R. Mateo, Dai Yamazaki, Hyungjun Kim, Adisorn Champathong, Jai Vaze, and Taikan Oki
Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, https://doi.org/10.5194/hess-21-5143-2017, 2017
Short summary
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
Natthachet Tangdamrongsub, Susan C. Steele-Dunne, Brian C. Gunter, Pavel G. Ditmar, Edwin H. Sutanudjaja, Yu Sun, Ting Xia, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, https://doi.org/10.5194/hess-21-2053-2017, 2017
Short summary
Short summary
This paper investigates the assimilation of terrestrial water storage variation estimates derived from GRACE data using an EnKF 3D approach. The spatially correlated errors in GRACE data derived from its full error variance–covariance matrices were taken into account. The experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 % over the Hexi Corridor. The inclusion of error correlations provided an equal or greater improvement in the estimates.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016, https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary
Short summary
We analyzed simulated water balance components on global and continental scale as impacted by the uncertainty of climate forcing datasets. On average, around 62 % of precipitation on global land area evapotranspires and 38 % is discharge to oceans and inland sinks. Human water use increased during the 20th century by a factor of 5. Uncertainty of precipitation variable has most impact on model results, followed by shortwave downward radiation. Model calibration reduces this uncertainty.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Anna M. Ukkola, Andy J. Pitman, Mark Decker, Martin G. De Kauwe, Gab Abramowitz, Jatin Kala, and Ying-Ping Wang
Hydrol. Earth Syst. Sci., 20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, https://doi.org/10.5194/hess-20-2403-2016, 2016
M. Decker, A. Pitman, and J. Evans
Hydrol. Earth Syst. Sci., 19, 3433–3447, https://doi.org/10.5194/hess-19-3433-2015, https://doi.org/10.5194/hess-19-3433-2015, 2015
N. Tangdamrongsub, S. C. Steele-Dunne, B. C. Gunter, P. G. Ditmar, and A. H. Weerts
Hydrol. Earth Syst. Sci., 19, 2079–2100, https://doi.org/10.5194/hess-19-2079-2015, https://doi.org/10.5194/hess-19-2079-2015, 2015
J. Kala, J. P. Evans, A. J. Pitman, C. B. Schaaf, M. Decker, C. Carouge, D. Mocko, and Q. Sun
Geosci. Model Dev., 7, 2121–2140, https://doi.org/10.5194/gmd-7-2121-2014, https://doi.org/10.5194/gmd-7-2121-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Extended-range forecasting of stream water temperature with deep-learning models
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Projections of streamflow intermittence under climate change in European drying river networks
Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Multi-variable process-based calibration of a behavioural hydrological model
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
Hydrological regime index for non-perennial rivers
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Comparative Hydrological Modeling of Snow-Cover and Frozen Ground Impacts Under Topographically Complex Conditions
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Assesing the Value of High-Resolution Data and Parameters Transferability Across Temporal Scales in Hydrological Modeling: A Case Study in Northern China
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Assessing the adequacy of traditional hydrological models for climate change impact studies: A case for long-short-term memory (LSTM) neural networks
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025, https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Short summary
Land changes and landscape features critically impact water systems. Studying two watersheds in China’s Greater Bay Area, we found slope strongly influences water processes in mountainous areas. However, this relationship is weak in the lower regions of steeper watersheds. Urbanization leads to an increase in annual surface runoff, while flatter watersheds exhibit a buffering capacity against this effect. However, this buffering capacity diminishes with increasing annual rainfall intensity.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025, https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Short summary
Accurate early-warning systems are crucial for reducing the damage caused by flooding events. In this study, we explored the potential of long short-term memory networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025, https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conduct simulation experiments using data with various temporal resolutions across multiple catchments and find that higher-resolution data do not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025, https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for 32 consecutive days at 54 stations in Switzerland with our best-performing data-driven model. The average forecast error is 0.38 °C for 1 d ahead and increases to 0.90 °C for 32 d ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025, https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Short summary
Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use inputs of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 1549–1568, https://doi.org/10.5194/hess-29-1549-2025, https://doi.org/10.5194/hess-29-1549-2025, 2025
Short summary
Short summary
This study determines the value of subsurface water for ecosystem services' supply in an agricultural watershed in Ontario, Canada. Using a fully integrated water model and an economic valuation approach, the research highlights subsurface water's critical role in maintaining watershed ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025, https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025, https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Moritz Maximilian Heuer, Hadysa Mohajerani, and Markus Christian Casper
EGUsphere, https://doi.org/10.5194/egusphere-2025-636, https://doi.org/10.5194/egusphere-2025-636, 2025
Short summary
Short summary
This study presents a calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025, https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation–Runoff Relationships (DPRR) to explore the controlling changes in precipitation–runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation–runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-338, https://doi.org/10.5194/hess-2024-338, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The Desaguadero-Salado-Chadiluevú-Curacó (DSCC) River is a semiarid river which is severely dammed in its tributaries which collect the snowmelt runoff. This runoff feeds mostly gravitational irrigation systems of very low efficiency. As a result, the DSCC River does not have natural runoff. The proposed Hydrological Regime Index (HRI) is able to discriminate and quantify regime alterations under permanent and non-permanent flow conditions and with low and high impoundment conditions.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-324, https://doi.org/10.5194/hess-2024-324, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The hydrology of cold regions in the human population is poorly understood due to complex motion and limited data, hindering streamflow analysis. Using existing models, we compared runoff from an extended model with snowmelt and frozen ground, validating its reliability and integration. This study focuses on the effects of snowmelt and frozen ground on runoff, affecting precipitation type, surface-groundwater partitioning, and evapotranspiration.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2966, https://doi.org/10.5194/egusphere-2024-2966, 2024
Short summary
Short summary
We assessed the value of high-resolution data and parameters transferability across temporal scales based on 7 catchments in northern China. We found that higher resolution data does not always improve model performance, questioning the need for such data; Model parameters are transferable across different data resolutions, but not across computational time steps. It is recommended to utilize smaller computational time step when building hydrological models even without high-resolution data.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-279, https://doi.org/10.5194/hess-2024-279, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models, and thus cannot easily be used to select an appropriate model for a specific place.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-260, https://doi.org/10.5194/hess-2024-260, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a crucial hydrological model parameter. Root zone storage—the soil water accessible to plants—adapts to climate but is often treated as constant in models. We estimated climate-adapted storage for six Austrian Alps catchments. Although storage increased, streamflow projections showed minimal change, indicating that dynamic root zone representation is less critical in humid regions but warrants more study in arid areas.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2133, https://doi.org/10.5194/egusphere-2024-2133, 2024
Short summary
Short summary
This study compares Long Short-Term Memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrolgical models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Cited articles
Australian Bureau of Meteorology: Record-breaking La Niña events: An
analysis of the La Niña life cycle and the impacts and significance of the
2010–11 and 2011–12 La Niña events in Australia, National Climate Centre,
Bureau of Meteorology, http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf
(last access: 5 January 2017), 2012.
Bettadpur, S.: CSR Level-2 Processing Standards Document for Product Release 05,
GRACE 327-742, Center for Space Research, The University of Texas, Austin, 2012.
Chen, J. L., Wilson, C. R., Tapley, B. D., Scanlon, B., and Güntner, A.:
Long-term groundwater storage change in Victoria, Australia from satellite
gravity and in situ observations, Global Planet. Change, 139, 56–65,
https://doi.org/10.1016/j.gloplacha.2016.01.002, 2016.
Decker, M.: Development and evaluation of a new soil moisture and runoff
parameterization for the CABLE LSM including subgrid-scale processes, J. Adv.
Model. Earth Syst., 7, 1788–1809, https://doi.org/10.1002/2015MS000507, 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haiberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dumedah, G. and Walker, J. P.: Intercomparison of the JULES and CALBE land
surface models through assimilation of remote sensed soil moisture in southeast
Australia, Adv. Water Resour., 74, 231–244, https://doi.org/10.1016/j.advwatres.2014.09.011, 2014.
Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Müller Schmied,
H.: Calibration data assimilation approach for integrating GRACE data into the
WaterGAP Global Hydrology Model (WGHM) using an Ensemble Kalman Filter: First
Results, Surv. Geophys., 35, 1285–1309, https://doi.org/10.1007/s10712-014-9309-8, 2014.
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T.
H., Swenson, S. C., de Linage, C. R., and Rodell, M.: Satellites measure recent
rates of groundwater depletion in California's Central Valley, Geophys. Res.
Lett., 38, L03403, https://doi.org/10.1029/2010GL046442, 2011.
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S.: Australia's
unique influence on global sea level in 2010–2011, Geophys. Res. Lett., 40,
4368–4373, https://doi.org/10.1002/grl.50834, 2013.
Girotto, M., De Lannoy, G. J. M., Reichle, R. H., and Rodell, M.: Assimilation
of gridded terrestrial water storage observations from GRACE into a land surface
model, Water Resour. Res., 52, 4164–4183, https://doi.org/10.1002/2015WR018417, 2016.
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering
of Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon.
Weather Rev., 129, 2776–2790, 2001.
Han, S.-C.: Elastic deformation of the Australian continent induced by seasonal
water cycles and the 2010–11 La Niña determined using GPS and GRACE,
Geophys. Res. Lett., 44, 2763–2772, https://doi.org/10.1002/2017GL072999, 2017.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K.
P., Hong, Y., Stocker, E. F., and Wolf, D. B.: The TRMM multisatellite
precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Jekeli, C.: Alternative methods to smooth the Earth's gravity field, Rep. 327,
Dept. of Geod. Sci. and Surv., Ohio State Univ., Columbus, 1981.
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J.-M., Font, J., and
Berger, M.: Soil moisture retrieval from space: The soil moisture and ocean
salinity (SMOS) mission, IEEE T. Geosci. Remote, 39, 1729–1735, 2001.
Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., van Dijk, A.,
Schumacher, M., and Pattiaratchi, C.: Assessing sequential data assimilation
techniques for integrating GRACE data into a hydrological model, Adv. Water
Resour., 107, 301–316, https://doi.org/10.1016/j.advwatres.2017.07.001, 2017a.
Khaki, M., Schumacher, M., Forootan, E., Kuhn, M., Awange, J., and van Dijk, A.:
Accounting for spatial correlation errors in the assimilation of GRACE into
hydrological models through localization. Adv. Water Resour., 108, 99–112,
https://doi.org/10.1016/j.advwatres.2017.07.024, 2017b.
Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE
time-variable gravity solutions by GFZ, and their validation using a hydrological
model, J. Geodesy, 83, 903–913, https://doi.org/10.1007/s00190-009-0308-3, 2009.
Lambert, A., Huang, J., van der Kamp, G., Henton, J., Mazzotti, S., James, T.
S., Courtier, N., and Barr, A. G.: Measuring water accumulation rates using
GRACE data in areas experiencing glacial isostatic adjustment: The Nelson River
basin, Geophys. Res. Lett., 40, 6118–6122, https://doi.org/10.1002/2013GL057973, 2013.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water
storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Lemoine, J. M., Bourgogne, S., Bruinsma, S., Gégout, P., Reinquin, F., and
Biancale, R.: GRACE RL03-v2 monthly time series of solutions from CNES/GRGS,
EGU2015-14461, EGU General Assembly 2015, Vienna, Austria, 2015.
Long, D., Chen, X., Scanlon, B. R., Wada, Y., Hong, Y., Singh, V. P., Chen, Y.,
Wang, C., Han, Z., and Yang, W.: Have GRACE satellites overestimated groundwater
depletion in the Northwest India Aquifer?, Sci. Rep., 6, 24398, https://doi.org/10.1038/srep24398, 2016.
Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., and
Zehentner, N.: ITSG-Grace2016 – Monthly and Daily Gravity Field Solutions
from GRACE, GFZ Data Services, https://doi.org/10.5880/icgem.2016.007, 2016.
Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W.-D.,
Kusche, J., Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas, A., Klinger, B.,
Baur, O., Höck, E., Krauss, S., and Jäggi, A.: The combined satellite
gravity field model GOCO05s, EGU 2015, Vienna, 2015.
McGrath, G. S., Sadler, R.,Fleming, K., Tregoning, P., Hinz, C., and Veneklaas,
E. J.: Tropical cyclones and the ecohydrology of Australia's recent
continental-scale drought, Geophys. Res. Lett., 39, L03404, https://doi.org/10.1029/2011GL050263, 2012.
Njoku, E. G., Jackson, T. L., Lakshmi, V., Chan, T., and Nghiem, S. V.: Soil
Moisture Retrieval from AMSR-E, IEEE T. Geosci. Remote, 41, 215–229, 2003.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys. Res., 113, F01002,
https://doi.org/10.1029/2007JF000769, 2008.
Pearson, E. K.: Mining imperfect data: Dealing with contamination and incomplete
records, ProSanos Corporation, Harrisburg, Pennsylvania, https://doi.org/10.1137/1.9780898717884, 2005.
Rassam, D. W., Peeters, L., Pickett, T., Jolly, I., and Holz, L.: Accounting
for surfaceegroundwater interactions and their uncertainty in river and
groundwater models: A case study in the Namoi River, Australia, Environ. Model.
Softw., 50, 108–119, https://doi.org/10.1016/j.envsoft.2013.09.004, 2013.
Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite
soil moisture, Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938, 2004.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen,
J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D.,
Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R.,
Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
MERRA – NASA's Modern-Era Retrospective Analysis for Research and Applications,
J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.
J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K.,
Walker, J. P., Lohmann, D., and Toll, D.: The global land data assimilation
system, B. Am. Meteorol. Soc., 85, 381–394, 2004.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of
groundwater depletion in India, Nature, 460, 999–1002, https://doi.org/10.1038/nature08238, 2009.
Sakumura, C., Bettadpur, S., and Bruinsma, S.: Ensemble prediction and
intercomparison analysis of GRACE time-variable gravity field models, Geophys.
Res. Lett., 41, 1389–1397, https://doi.org/10.1002/2013GL058632, 2014.
Schumacher, M., Kusche, J., and Döll, P.: A Systematic Impact Assessment
of GRACE Error Correlation on Data Assimilation in Hydrological Models, J.
Geodesy, 90, 537–559, https://doi.org/10.1007/s00190-016-0892-y, 2016.
Schumacher, M., Forootan, E., van Dijk, A., Schmied, H. M., Crosbie, R., Kusche,
J., and Döll, P.: Improving drought simulations within the Murray-Darling
Basin by combined calibration/assimilation of GRACE data into the WaterGAP
Global Hydrology Model, Remote Sens. Environ., 204, 212–228, https://doi.org/10.1016/j.rse.2017.10.029, 2018.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-yr high-resolution
global dataset of meteorological forcings for land surface modeling, J. Climate,
19, 3088–3111, 2005.
Sorooshian, S., Hsu, K., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D.:
Evaluation of PERSIANN System Satellite-Based Estimates of Tropical Rainfall,
B. Am. Meteorol. Soc., 81, 2035–2046, 2000.
Swenson, S. C. and Wahr, J.: Post-processing removal of correlated errors in
GRACE data, Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285, 2006.
Tangdamrongsub, N., Ditmar, P. G., Steele-Dunne, S. C., Gunter, B. C., and
Sutanudjaja, E. H.: Assessing total water storage and identifying flood events
over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations
combined with hydrological models, Remote Sens. Environ., 181, 162–173,
https://doi.org/10.1016/j.rse.2016.03.030, 2016.
Tangdamrongsub, N., Steele-Dunne, S. C., Gunter, B. C., Ditmar, P. G., and
Weerts, A. H.: Data assimilation of GRACE terrestrial water storage estimates
into a regional hydrological model of the Rhine River basin, Hydrol. Earth Syst.
Sci., 19, 2079–2100, https://doi.org/10.5194/hess-19-2079-2015, 2015.
Tangdamrongsub, N., Steele-Dunne, S. C., Gunter, B. C., Ditmar, P. G., Sutanudjaja,
E. H., Xie, T, Wang, Z.: Improving estimates of water resources in a semi-arid
region by assimilating GRACE data into the PCR-GLOBWB hydrological model, Hydrol.
Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, 2017.
Tian, S., Tregoning, P., Renzullo, L. J., van Dijk, A. I. J. M., Walker, J. P.,
Pauwels, V. R. N., and Allgeyer, S.: Improved water balance component estimates
through joint assimilation of GRACE water storage and SMOS soil moisture
retrievals, Water Resour. Res., 53, 1–21, https://doi.org/10.1002/2016WR019641, 2017.
Trenberth, K. E.: Framing the way to relate climate extremes to climate change,
Climatic Change, 115, 283–290, https://doi.org/10.1007/s10584-012-0441-5, 2012.
Tscherning, C. C. and Rapp, R. H.: Closed covariance expressions for gravity
anomalies, geoid undulations, and deflections of the vertical implied by anomaly
degree variance models, Rep. 208, Dep. of Geod. Sci. and Surv., Ohio State Univ.,
Columbus, 1974.
Ukkola, A. M., Pitman, A. J., Decker, M., De Kauwe, M. G., Abramowitz, G., Kala,
J., and Wang, Y.-P.: Modelling evapotranspiration during precipitation deficits:
identifying critical processes in a land surface model, Hydrol. Earth Syst. Sci.,
20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, 2016.
Ummenhofer, C. C., Gupta, A., Briggs, P. R., England, M. H., McIntosh, P. C.,
Meyers, G. A., Pook, M. J., Raupach, M. R., and Risbey, J. S.: Indian and Pacific
Ocean influences on Southeast Australian drought and soil moisture, J. Climate,
24, 1313–1336, https://doi.org/10.1175/2010JCLI3475.1, 2011.
Van Dijk, A., Podger, G., and Kirby, M.: Integrated water resources management
in the Murray-Darling Basin, in: Increasing demands on decreasing supplies,
Reducing the Vulnerability of Societies to Water Related Risks at the Basin Scale,
edited by: Schumann, A. and Pahlow, M., IAHS Publ., Bochum, Germany, 24–30, 2007.
Van Dijk, A., Beck, H. E., Crosbie, R. S., De Jeu, E. A. M., Liu, Y. Y., Podger,
G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast
Australia (2001–2009): Natural and human causes and implications for water
resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057,
https://doi.org/10.1002/wrcr.20123, 2013.
Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and Swenson,
S. C.: Groundwater depletion in the Middle East from GRACE with implications
for transboundary water management in the Tigris-Euphrates-Western Iran region,
Water Resour. Res., 49, 904–914, https://doi.org/10.1002/wrcr.20078, 2013.
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity
field: Hydrological and oceanic effects and their possible detection using GRACE,
J. Geophys. Res., 103, 30205–30229, 1998.
Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates,
Geophys. Res. Lett., 33, L06401, https://doi.org/10.1029/2005GL025305, 2006.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Solid, 120, 2648–2671,
https://doi.org/10.1002/2014JB011547, 2015.
Welsh, W. D.: Water balance modelling in Bowen, Queensland, and the ten iterative
steps in model development and evaluation, Environ. Model. Softw., 23, 195–205, 2008.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res.,
52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wu, S. C., Kruizinga, G., and Bertiger, W.: Algorithm theoretical basis document
for GRACE Level-1B data processing V1.2, JPL D-27672, Jet Propul. Lab., Pasadena, California, 2006.
Xie, Z., Huete, A., Restrepo-Coupea, N., Maa, X., Devadasa, R., and Caprarellib,
G.: Spatial partitioning and temporal evolution of Australia's total water
storage under extreme hydroclimatic impacts, Remote Sens. Environ., 183, 43–52,
https://doi.org/10.1016/j.rse.2016.05.017, 2016.
Zaitchik, B. F., Rodell, M., and Reichle, E. H.: Assimilation of GRACE
terrestrial water storage data into a land surface model: Results for the
Mississippi basin, J. Hydrometeorol., 9, 535–548, 2008.
Short summary
We present a new approach to improve the water storage estimate. Our approach combines GRACE's raw data (least-squares normal equation) with the results from the Community Atmosphere Land Exchange (CABLE) model. No post-processing filter is applied to GRACE data, and the full GRACE signal and error information are exploited. The approach is applied over 10 Australian river basins, and the evident improvement of the water storage estimate, particularly groundwater component, is clearly observed.
We present a new approach to improve the water storage estimate. Our approach combines GRACE's...