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Abstract. An accurate estimation of soil moisture and
groundwater is essential for monitoring the availability of
water supply in domestic and agricultural sectors. In or-
der to improve the water storage estimates, previous stud-
ies assimilated terrestrial water storage variation (1TWS)
derived from the Gravity Recovery and Climate Experi-
ment (GRACE) into land surface models (LSMs). However,
the GRACE-derived 1TWS was generally computed from
the high-level products (e.g. time-variable gravity fields, i.e.
level 2, and land grid from the level 3 product). The grid-
ded data products are subjected to several drawbacks such
as signal attenuation and/or distortion caused by a posteriori
filters and a lack of error covariance information. The post-
processing of GRACE data might lead to the undesired al-
teration of the signal and its statistical property. This study
uses the GRACE least-squares normal equation data to ex-
ploit the GRACE information rigorously and negate these
limitations. Our approach combines GRACE’s least-squares
normal equation (obtained from ITSG-Grace2016 product)
with the results from the Community Atmosphere Biosphere
Land Exchange (CABLE) model to improve soil moisture
and groundwater estimates. This study demonstrates, for the
first time, an importance of using the GRACE raw data. The
GRACE-combined (GC) approach is developed for optimal
least-squares combination and the approach is applied to es-
timate the soil moisture and groundwater over 10 Australian
river basins. The results are validated against the satellite
soil moisture observation and the in situ groundwater data.
Comparing to CABLE, we demonstrate the GC approach de-
livers evident improvement of water storage estimates, con-

sistently from all basins, yielding better agreement on sea-
sonal and inter-annual timescales. Significant improvement
is found in groundwater storage while marginal improvement
is observed in surface soil moisture estimates.

1 Introduction

The changes in terrestrial water storage (1TWS) de-
rived from the Gravity Recovery And Climate Experi-
ment (GRACE) data products have been used in the last
decade to study global water resources, including ground-
water depletion in India and the Middle East (Rodell et
al., 2009; Voss et al., 2013), water storage accumulation
in Canada (Lambert et al., 2013), and flood-influenced wa-
ter storage fluctuation in Cambodia (Tangdamrongsub et al.,
2016). The gravity data obtained from GRACE satellites are
commonly processed and released in three different product
levels (L) that increase in the amount of processing, L1B –
satellite tracking data (e.g. Wu et al., 2006), L2 – global grav-
itational Stokes coefficients (e.g. Bettadpur, 2012), and L3 –
global grids (e.g. Landerer and Swenson, 2012). The original
(L1B) GRACE information is inevitably altered due to data
processing and successive post-processing filterings, because
the error covariance information is not propagated through
each post-processing step.

The GRACE-derived 1TWS has been computed widely
from the higher-level products (e.g. L2 and L3) on which var-
ious ad hoc post-processing filters were applied (e.g. Gaus-
sian smoothing filter, Jekeli, 1981; destripe filter, Swenson
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and Wahr, 2006). 1TWS obtained from these filters lacks
proper error covariance information and is attenuated and
distorted. To overcome the signal attenuation in GRACE
high-level products, empirical approaches have been devel-
oped, including the application of scale factors computed
from land surface models (LSMs; Landerer and Swenson,
2012) to the GRACE L3 products. GRACE uncertainty in
the high-level product is usually unknown or assumed. For
example, Zaitchik et al. (2008) derived empirically a global
average uncertainty that is variable depending on choices of
post-processing filters (Sakumura et al., 2014). Furthermore,
GRACE error and sensitivity is dependent on latitudes due
to the orbit convergence toward poles (Wahr et al., 2006) and
any post-processing filters will alter the GRACE data and
their error information. Rigorous statistical error information
is of equal importance to derivation of 1TWS for data assim-
ilation and model calibration (Tangdamrongsub et al., 2017;
Schumacher et al., 2016, 2018). 1TWS and its uncertainty
estimates should be formulated directly from L1B data con-
sidering the complete statistical information.

The GRACE information is not fully exploited in
many studies. For example, groundwater storage varia-
tion (1GWS) is often computed by subtracting the soil mois-
ture variation (1SM) component simulated by the land sur-
face model from GRACE-derived 1TWS data (Rodell et al.,
2009; Famiglietti et al., 2011), assuming the model 1SM
is error-free. This may result in the inaccurate 1GWS and
the associated error estimate as the uncertainties in obser-
vation and of the land surface model outputs are neglected
in the combination (or regression) of two noisy data (e.g.
Long et al., 2016). In data assimilation, the GRACE uncer-
tainty is often derived empirically, not necessarily reflect-
ing the actual GRACE error characteristics (e.g. Zaitchik et
al., 2008; Tangdamrongsub et al., 2015; Tian et al., 2017).
For example, Girotto et al. (2016) used the L3 product and
showed that it was necessary to adjust GRACE observation
and its uncertainty in order to make their water storage es-
timates more accurate. Similarly, Tian et al. (2017) reported
the need for the application of a scale factor to GRACE un-
certainty (from mascon, mass concentration, product) in their
GRACE assimilation process. It is apparent that the use of
post-processed GRACE products often requires data tuning,
leading possibly to an integration of the altered gravity infor-
mation into the data assimilation system. Some recent stud-
ies began to employ the full variance–covariance information
in the data assimilation scheme to enhance the quality of the
estimates (Eicker et al., 2014; Schumacher et al., 2016; Tang-
damrongsub et al., 2017; Khaki et al., 2017a, b).

This study aims to use the GRACE information of 1TWS
measurement directly from the least-squares normal equation
data. The approach optimally combines GRACE’s normal
equations with the model simulation results from the Com-
munity Atmosphere Biosphere Land Exchange (CABLE,
Decker, 2015) to improve 1SM and 1GWS estimates. The
proposed approach presents three main advantages. Firstly,

Figure 1. (a) Geographical location of 10 Australian river basins.
Red and blue polygons indicate the boundaries of the groundwater
networks in Queensland (b) and Victoria (c), respectively. Triangles
(in b and c) represent the selected bore locations used in this study.

one can exploit the full GRACE signal and error informa-
tion by using the normal equation data sets. Secondly, the
approach is developed for optimal least-squares combination
(e.g. Ramillien et al., 2004), which maximizes the model
and observation strength while simultaneously suppressing
their weaknesses. Finally, the method bypasses empirical,
multiple-step post-processing filters.

The main objective of this study is to present the GRACE-
combined (GC) approach to improve the model-estimated
1SM and 1GWS on regional scales. We demonstrate our
approach applied to 10 Australian river basins (Fig. 1a). One
advantage of the study area is that the state vector can be sim-
ply defined by 1SM and 1GWS as other hydrological com-
ponents (e.g. snow, glacier) are negligible. We validate the
top layer of 1SM estimates against the satellite soil moisture
observation (the Advanced Microwave Scanning Radiome-
ter aboard the Earth Observing System (EOS) – AMSR-E,
Njoku et al., 2003) over all 10 basins and the 1GWS es-
timates against the in situ groundwater data available over
Queensland and Victoria (Fig. 1b and c).

This paper is outlined as follows: firstly, the derivation of
the GC approach is presented in Sect. 2 while the description
of GRACE data processing, including the use of the GRACE
normal equation, is given in Sect. 3. Secondly, the CABLE
modelling is outlined in Sect. 4. This includes the deriva-
tion of model uncertainty based on the quality of precipita-
tion data and the model parameter inputs. The processing of
validation data is also described in Sect. 4. Thirdly, Sect. 5
presents the result of 1SM and 1GWS estimates and com-
parison to in situ data. The long-term trends in the Australian
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mass variation over the last 13 years are also investigated in
this section.

2 A method of combining GRACE L1B data with land
surface model outputs

The statistical information of 1TWS computed from a land
surface model can be written as

h̃= h+ ε; ε ∼N(0,C), (1)

where h is the “truth” (unknown) model state vector while
h̃ is the calculated state vector characterized with the model
error ε. The model error is assumed to have zero mean and
covariance C.

The term h is used to represent a vector including the
global 1TWS grid, and terms with a subscript “R” (e.g. hR,
CR) are used to represent only a regional set of 1TWS (for
example, in Australia). As such, the observation equation
over a region can be rewritten as

h̃R = hR+ ε; ε ∼N (0,CR) . (2)

As soil moisture and groundwater are the major components
of 1TWS in Australia (surface water storage being insignif-
icant), the vector hR can be defined as

hR =
[

1SM top 1SMrz 1GWS
]T

, (3)

where 1SM top, 1SMrz, and 1GWS represent the vectors
of top (surface) soil moisture, root zone soil moisture, and
groundwater storage variations, respectively.

A least-squares normal equation of GRACE can be written
as

Nx = c, (4)

where N is a normal matrix, x contains the spherical har-
monic coefficients (SHC) of the geopotential, and c is
the normal vector. In this study, N and c can be ob-
tained from the ITSG-Grace2016 products (Mayer-Gürr
et al., 2016; https://www.tugraz.at/institute/ifg/downloads/
gravity-field-models/itsg-grace2016, see more details in
Sect. 3.1). Equation (4) can be written in terms of h as fol-
lows (see Appendix A for the derivation):(

HT YT NYH
)
ĥ=HT YT c, (5)

where Y converts 1TWS to geopotential coefficients con-
sidering the load Love numbers (e.g. Wahr et al., 1998) and
H is the operational matrix converting 1SM top, 1SMrz, and
1GWS to 1TWS. Equation (5) is based on the assumption
that the GRACE orbital perturbation is a result of 1TWS
variation on the surface. If M is the number of model grid
cells, Nmax is the maximum degree of the geopotential coef-
ficients, and L= (Nmax+ 1)2

− 4 is the number of geopoten-
tial coefficients from GRACE; the dimension of Y, H, and

h are L×M , M × 3M , and 3M × 1, respectively. Note that
Eq. (5) is defined with the global grid of h. For a regional
application, Eq. (5) can be modified as

[
HT

RYT
R |H

T
o YT

o

]
N
[

YRHR
YoHo

][
ĥR
ĥo

]
=

[
HT

RYT
R |H

T
o YT

o

]
c, (6)

where the subscript “R” indicates the grid 1TWS only in
a region of interest and “o” for the rest of the globe. The
number of the model grid cells associated with R is J , and
the number of grid cells outside cells is M − J . As such, the
dimensions of YR, HR, ĥR, Yo, Ho, ĥo are L× J , J × 3J ,
3J × 1, L× (M − J ), (M − J )× 3(M − J ), 3(M − J )× 1,
respectively. The dimension of N and c remain unchanged,
since they are essentially from the normal equations of the
original GRACE L1B data (to be discussed in the following
section).

From Eq. (6), the normal equations associated with 1TWS
in the region of interest can then be written as

HT
RYT

RNYRHRĥR =HT
RYT

Rc−HT
RYT

RNYoHoĥo (7)

or

NRĥR = cR, (8)

where NR=HT
RYT

RNYRHR and cR=HT
RYT

Rc−HT
RYT

RNYo

Hoĥo. As seen, Eq. (7) is the regional representation of
Eq. (5) where only the grid cells inside the study region are
used, while the contribution from the grid cells outside the
region needs to be removed or corrected. Combining the nor-
mal equation of Eqs. (2) and (8), the optimal combined solu-
tion of ĥR can be resolved as follows:

ĥR =
(

C−1
R +NR

)−1(
C−1

R h̃R+ cR.
)
. (9)

The computation of model covariance matrix CR will be dis-
cussed in Sect. 4.2. The a posteriori covariance of ĥR can be
estimated as follows:

6̂ =
(

C−1
R +NR

)−1
, (10)

and the uncertainty estimate of ĥR is simply calculated as

σ
ĥ
=

√
diag(6̂), (11)

where diag( ) represents the diagonal element of the given
matrix.

3 GRACE data

3.1 GRACE least-squares normal equations

In this study, the least-squares normal equations are obtained
from the ITSG-Grace2016 products between January 2003
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and March 2016. All L1B data including K-band range
(KBR) inter-satellite tracking data, attitude, accelerometer,
GPS-based kinematic orbit data, and AOD1B corrections are
reduced in terms of the normal equations. These data prod-
ucts are usually used to compute the Earth’s geopotential
field to the maximum harmonic degree and order of 90, or at
a spatial resolution of∼ 220 km. The products contain the in-
formation of the normal matrix N and the vector c (as shown
in Eq. 4) as well as the a priori time-varying gravity field co-
efficients predicted with the GOCO05s solution (Mayer-Gürr
et al., 2015). Note that the solution of the ITSG-Grace2016
normal equation is the anomalous geopotential coefficient
vector (1x), which is referenced to the a priori time-varying
gravity field (x0), through:

N1x = d, (12)

where d and x0 are given. To obtain a complete gravity field
variation between the study period (x term in Eq. 4), the
a priori time-varying gravity field, x0, is firstly restored to
Eq. (12), and the mean gravity field (x0) computed from all
x0 between January 2003 and March 2016 is then removed
as follows:

N(1x+ x0− x0)= d +N(x0− x0) , (13)
Nx = d +N(x0− x0) . (14)

Therefore, in Sect. 2 (e.g. Eq. 5), the matrix N remains
unchanged while the vector c can be simply replaced by
c= d +N(x0− x0).

3.2 GRACE-derived 1TWS products

Three monthly GRACE-derived 1TWS products are
also used: the ITSG-Grace2016 DDK5 solution (ITSG-
DDK5 for short, http://icgem.gfz-potsdam.de/series/
99_non-iso/ITSG-Grace2016), the CNES/GRGS Re-
lease 3 (RL3) (GRGS for short, Lemoine et al., 2015;
http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/
grace-solutions-release-03), and the JPL RL05M
mascon-CRI version 2 product (mascon for short,
Watkins et al., 2015; Wiese et al., 2016; http:
//grace.jpl.nasa.gov/data/get-data/jpl_global_mascons).
The ITSG-DDK5 product is the post-processed version of
the ITSG L2 solution where the non-isotropic filter DDK5
(Kusche et al., 2009) is applied. The DDK5 solution is
empirically selected here to be a good balance between
the over-smoothed (e.g. DDK1) and noisy (e.g. DDK8)
solutions. The GRGS solution provides 1TWS at 1◦× 1◦

globally, derived from the Earth’s geopotential coefficients
up to the maximum degree and order 80, and no filter nor
scale factor is applied (L2 data product). Mascon provides
1TWS at equal-area 3◦ spherical cap grid globally. In
contrast to the ITSG-DDK5 and GRGS solutions, the
mascon uses a gain factor derived from the land surface
model to restore mitigated signals and reduce leakage errors

(L3 data products) (Watkins et al., 2015; Wiese et al., 2016).
Additionally, mascon provides the 1TWS uncertainty to-
gether with the solution. The uncertainty is computed based
on several geophysical models (see Watkins et al., 2015,
and Wiese et al., 2016, for more details). The uncertainty
information is not available in the ITSG-DDK5 or GRGS
product.

The GRACE data are obtained between January 2003 and
March 2016. After retrieval, the long-term mean value be-
tween January 2003 and March 2016 is computed and sub-
tracted from the monthly products. To be consistent with CA-
BLE grid spacing (see Sect. 4), the 1TWS is computed using
0.5◦ spatial resolution. The coarse-scale datasets (e.g. mas-
con, GRGS) are resampled to 0.5◦× 0.5◦ using the nearest
grid values.

In this study, the independent GRACE solutions are used
for two main reasons:

1. To obtain the 1TWS values outside Australia. As
shown in Eq. (7), the ĥo vector needs to be known,
which can be from the GRACE-derived 1TWS solu-
tion. We use the GRGS solutions as the GRGS solution
is not subject to the filter choice and it provides 1TWS
at a spatial resolution comparable to the normal equa-
tion data.

2. To compare with the 1TWS estimates from our ap-
proaches. All solutions are used to compare and validate
our 1TWS estimates.

4 Hydrology model and validation data

4.1 Model setup

The extensive description of the CABLE model is given in
Decker (2015) and Ukkola et al. (2016). This section de-
scribes the model setup and specific changes applied to this
study. CABLE is a public available land surface model and
can be used to estimate soil moisture and groundwater in
terms of volumetric water content every 3 h at a 0.5◦× 0.5◦

spatial resolution. The soil moisture and groundwater storage
can be simply computed by multiplying the estimates with
thicknesses of various layers. For soil moisture, the thickness
of six soil layers is 0.022, 0.058, 0.154, 0.409, 1.085, and
2.872 m, from top to bottom, respectively. The thickness of
the groundwater layer is modelled to be 20 m uniformly. Re-
calling Eq. (3), 1SM top is defined as the soil moisture stor-
age variation at the top 0.022 m thick layer, while 1SMrz is
the variation accumulated over the second to the bottom soil
layers (depth between 0.022 and 4.6 m).

CABLE is initially forced with the data from the Global
Soil Wetness Project Phase 3 (GSWP3), which is currently
available until December 2010 (http://hydro.iis.u-tokyo.ac.
jp/GSWP3, https://doi.org/10.20783/dias.501). We replace
GSWP3 forcing data with GLDAS data (Rodell et al., 2004)
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Table 1. Precipitation data from seven different products used in this study, the Global Soil Wetness Project Phase 3 (GSWP3), the Global
Land Data Assimilation System (GLDAS), the Tropical Rainfall Measuring Mission (TRMM), the Modern-Era Retrospective Analysis for
Research and Applications (MERRA), the European Centre for Medium-Range Weather Forecasts (ECMWF), Princeton’s Global Mete-
orological Forcing Dataset (Princeton), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN). The temporal resolution of all products is 3 h. Most products are available to present while GSWP3, MERRA, and
Princeton terminate earlier.

Product Availability Spatial References
resolution

GSWP3 Jan 1901–Dec 2010 0.5◦× 0.5◦ http://dx.doi.org/10.20783/DIAS.501
GLDAS (NOAH025SUBP 3H) Mar 2000–present 0.25◦× 0.25◦ Rodell et al. (2004)
TRMM (3B42) Jan 1998–present 0.25◦× 0.25◦ Huffman et al. (2007)
MERRA (MSTMNXMLD.5.2.0) Jan 1980–Feb 2016 0.5◦× 0.67◦ Rienecker et al. (2011)
ECMWF (ERA-Interim) Jan 1979–present 0.75◦× 0.75◦ Dee et al. (2011)
Princeton (V2 0.5◦) Jan 1987–Dec 2012 0.5◦× 0.5◦ Sheffield et al. (2005)
PERSIANN (3 h) Mar 2002–present 0.25◦× 0.25◦ Sorooshian et al. (2000)

Table 2. Model parameters that are sensitive to SM and GWS estimates. The following parameters were perturbed using the additive noise
with the boundary conditions given in the last column. The further parameter description can be found in Decker (2015) and Ukkola et
al. (2016).

Parameter Name Spatial Perturbed
variability range

fclay, fsand, fsilt Fraction of clay, sand, and silt Yes 0–1
fsat Fraction of grid cell that is saturated No 810–990
qsub Maximum rate of subsurface drainage No 0.009–0.01

assuming a fully saturated soil column
fp Tuneable parameter controlling drainage speed No 1.9–2.2

to compute the water storage changes to 2016. The forcing
data used in CABLE are precipitation, air temperature, snow-
fall rate, wind speed, humidity, surface pressure, and short-
wave and long-wave downward radiations. To investigate the
impact of different forcing data, the offline sensitivity study
is conducted by comparing the water storage estimates com-
puted using

1. all eight forcing data components of GSWP3 and

2. GSWP3 data with the replacement of one component
obtained from GLDAS forcing data.

It is found that the water storage estimate is most sensitive
to the replacement of precipitation data, as expected, and rel-
atively less sensitive to the change in other forcing compo-
nents. We use the GLDAS forcing data in this study and also
further test seven different precipitation data products (see
more details in Sect. 4.2). The forcing data are up- or down-
sampled to a 0.5◦× 0.5◦ spatial grid to reconcile with the
CABLE spatial resolution.

4.2 Model uncertainty

In this study, the CABLE uncertainty is derived from 210 en-
semble estimates associated with different forcing data and
model parameters. The seven different precipitation products

(see Table 1) are used to run the model independently. Most
products are available to present day while GSWP3, Prince-
ton, and MERRA are only available until December 2010,
December 2012, and February 2016, respectively. For each
precipitation forcing, 30 ensembles are generated by perturb-
ing the model parameters within ±10 % of the nominal val-
ues. The perturbed size of 10 % is similar to Dumedah and
Walker (2014). Based on the CABLE structure, the 1SM

and 1GWS estimates are most sensitive to the model pa-
rameters listed in Table 2. For example, the fractions of clay,
sand, and silt (fclay, fsand, fsilt) are used to compute soil
parameters including field capacity, hydraulic conductivity,
and soil saturation which mainly affect soil moisture storage.
Similarly, the drainage parameters (e.g. qsub, fp) control the
amount of subsurface runoff, which has a direct impact on
root zone soil moisture and groundwater storages.

From ensemble generations, total K = 210 sets of the en-
semble water storage estimates (he) are obtained:

HR =
[
he|k=1 he|k=2 he|k=3 . . . he|k=K

]
, (15)

and the mean value of HR is computed as follows:

h̃R =
1
K

K∑
k=1

he|k. (16)
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Figure 2. Histograms of the model errors computed from 210 ensemble members (H′R) without the mean. The basin averaged values (from
all 10 Australian basins) of January 2003, for example, are shown.

Note that due to the absence of GSWP3, Princeton, and
MERRA data, the number of ensembles reduces to K = 180
after December 2010, K = 150 after December 2012, and
K = 120 after February 2016, respectively. The GC approach
assumes that model errors are normally distributed with zero
mean. Any violation of this assumption will yield a bias in
the combined solutions. Therefore, the mean value is re-
moved from each ensemble member, H′R=HR− h̃R, and
the error covariance matrix of the model is empirically com-
puted as

CR =H′R
(
H′R

)T
/(K − 1). (17)

The h̃R (Eq. 16) and CR (Eq. 17) terms can be directly used
in Eq. (9). The distribution of model errors is demonstrated
in Fig. 2. The figure illustrates the histogram of model er-
rors (H′R) computed using 210 ensemble members of the
model-estimated 1SM and 1GWS in January 2003. The
histogram indicates that the model error may be approxi-
mately described by a normal distribution as introduced in
Eq. (1).

Furthermore, in practice, the sampling error caused by fi-
nite sample size might lead to spurious correlations in the
model covariance matrix (Hamill et al., 2001). The effect
can be reduced by applying an exponential decay with a
particular spatial correlation length to CR. In this study, the
correlation length is determined based on the empirical co-
variance of model-estimated 1TWS. The covariance func-
tion of 1TWS is firstly assumed isotropic, and it is com-
puted empirically based on the method given in Tscherning
and Rapp (1974). The distance where the maximum value
of the variance decreases to half is defined as the correlation
length. The obtained values vary month to month, and the
mean value of 250 km is used in this study.

It is emphasized that the model omission error caused
by imperfect modelling of hydrological processes within the
LSM is not taken into account in the above description. The
omission error may increase the model covariance and intro-
duce a bias as well. We account for the omission error by
increasing 20 % of the model covariance. (i.e. multiplying
CR by 1.2). We determine such omission error based on trial

and error such that it increases the model error (due to the
omission error) but does not exceed the model error value
reported by Dumedah and Walker (2014). We acknowledge
that this is only a simple practical way of accounting for the
omission error into the total model error.

4.3 Validation data

4.3.1 Satellite soil moisture observation

The satellite-observed surface soil moisture data are obtained
from the Advanced Microwave Scanning Radiometer aboard
the Earth Observing System using the Land Parameter Re-
trieval Model (Njoku et al., 2003). The observation is used to
validate our estimates of top soil moisture changes (1SMtop).
The AMSR-E product provides volumetric water content in
the top layer derived from a passive microwave data (from
NASA EOS Aqua satellite) and forward radiative transfer
model. In this study, the level 3 product, available daily be-
tween June 2002 and June 2011 at 0.25◦× 0.25◦ spatial res-
olution, is used (Owe et al., 2008). The measurements from
ascending and descending overpasses are averaged for each
frequency band (C and X). Then, the monthly mean value is
computed by averaging the daily data within a month. To ob-
tain the variation in the surface soil moisture, the long-term
mean between June 2002 and June 2011 is removed from the
monthly data. Regarding the different depth measured in CA-
BLE and AMSR-E, the cumulative density function (CDF)-
matching technique (Reichle and Koster, 2004) is used to re-
duce the bias between the top soil moisture model and the
observation. The CDF is built using the 2003–2004 data, and
it is used for the entire period. There are no satellite-observed
or ground-measured root zone soil moisture data for mean-
ingful comparison with our results, particularly on a conti-
nental scale. Validation of 1SMrz on regional and continen-
tal scales is currently unachievable due to a complete lack of
observations on this spatial scale.

4.3.2 In situ groundwater

The in situ groundwater levels from bore measurements are
obtained from two different ground observation networks
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(see Fig. 1). The data in Queensland are obtained from the
Department of Natural Resources and Mines (DNRM) while
the data in Victoria are from the Department of Environ-
ment and Primary Industries (DWPI). More than 10 000 mea-
surements are available from each network, but the data gap
and outliers are present. Therefore, the bore measurement is
firstly filtered by removing the sites that present no data or
data gap longer than 30 months during the study period.

To obtain the monthly mean value, the hourly or daily data
are averaged in a particular month. The outliers are detected
and fixed using the Hampel filter (Pearson, 2005) where the
remaining data gaps are filled using the cubic spline interpo-
lation. To obtain the groundwater level variation, the long-
term mean groundwater level computed between the study
period is removed from the monthly values. The groundwa-
ter level variation (1L) is then converted to 1GWS using
1GWS= Sy ·1L, where Sy is specific yield. Based on Chen
et al. (2016), Sy= 0.1 is used for the Victoria network. Spe-
cific yields of Queensland’s network have been found rang-
ing from 0.045 (Rassam et al., 2013) to 0.06 (Welsh, 2008),
and an averaged Sy= 0.05 is used in this study. Finally, the
mean value computed from all data (in each network) is used
to represent the in situ data of the network.

5 Results

5.1 Model-only performance

We study the model 1TWS changes under different meteoro-
logical forcing and land parameterization. A total of 210 esti-
mates of monthly TWS (sum of SMtop, SMrz, and GWS) are
obtained between January 2003 and March 2016 from the
ensemble run based on seven different precipitation inputs.
Then, the averaged values of the TWS estimates are com-
puted from the 30 precipitation-associated ensemble mem-
bers. This results in seven sets of monthly mean TWS esti-
mates from seven different precipitation data. For each set,
the monthly 1TWS is computed by removing the long-term
mean computed between January 2003 and March 2016.

The precipitation-based 1TWS values are then compared
with the GRACE mascon solution (see Sect. 3.2) over 10 dif-
ferent Australian basins. The comparison is carried out be-
tween January 2003 and March 2016. Due to the availability
of the data, the periods used are shorter in cases of GSWP3,
Princeton, and MERRA precipitation (see Table 1). The met-
ric used to evaluate a goodness of fit between the CABLE run
and GRACE mascon estimates is the Nash–Sutcliffe (NS) co-
efficient (see Eq. B1) (Fig. 3).

Figure 3 demonstrates CABLE 1TWS varies noticeably
by precipitation as well as locations. The area-weighted aver-
age values (see Eq. B2) computed from Princeton, GSWP3,
and TRMM yield the model 1TWS, reasonably agreeing
with GRACE by giving an NS coefficient greater than 0.45,
while MERRA, PERSIANN, and GLDAS show NS=∼ 0.3.

Figure 3. NS coefficients between the model and GRACE mas-
con 1TWS over 10 Australian basins (in ordinate). The NS val-
ues were computed based on CABLE 1TWS computed with seven
different precipitation data (in abscissa), including GSWP3 (GS),
GLDAS (GL), ECMWF (EC), MERRA (MR), PERSIANN (PR),
TRMM (TR). The NS value of the mean 1TWS estimates (the av-
erage of seven variants) is also shown (MN). The area-weighted av-
erage NS value over all basins is also shown (AVG). The NS value
of 1TWS from the GRACE-combined (GC) approach is shown in
the last column. The full name of the basins can be found in Fig. 1.

The lower agreement is mainly due to the quality of rainfall
estimates over Australia. The NS of ECMWF is around 0.4.

All model ensembles are consistent with the GRACE data
over the Timor Sea and inner parts of Australia (e.g. Lake
Eyre, LKE; Murray–Darling, MRD; North West Plateau,
NWP) where the NS value can reach as high as 0.9 (see
e.g. TRMM over TIM, Timor Sea). On the contrary, the
lower agreement is found mostly over the coastal basins.
Very small or even negative NS values indicate the misfit be-
tween the CABLE and GRACE mascon solutions, and they
are observed over the Indian Ocean (see GLDAS), North East
Coast (NEC; see GSWP3, PERSIANN, TRMM), South East
Coast (see MERRA, TRMM), South West Coast (SWC; see
GSWP3, GLDAS, MERRA), and South West Plateau (SWP;
see MERRA).

By averaging all 1TWS estimates from seven different
precipitation datasets, the mean-ensemble estimate (MN) de-
livers the best agreement with GRACE as seen by the highest
average NS value (MN of AVG= 0.55) among all ensembles.
Particularly, NS values are greater than 0.4 in all basins and
no negative NS values are presented in MN. On average, it
can be clearly seen that using the mean value (MN) is a viable
option to increase the overall performance of the 1TWS es-
timates. Therefore, only the CABLE MN result will be used
in further analyses. The comparison with the GRGS GRACE

www.hydrol-earth-syst-sci.net/22/1811/2018/ Hydrol. Earth Syst. Sci., 22, 1811–1829, 2018



1818 N. Tangdamrongsub et al.: On the use of the GRACE normal equation of inter-satellite tracking data

solution was also evaluated (not shown here) and the overall
results are similar to Fig. 3.

5.2 Impact of GRACE on storage estimates

5.2.1 Contribution of GRACE

This section investigates the impact of the GC approach
on the estimates of various water storage components. The
1TWS estimate obtained from the GC approach is demon-
strated in Sect. 5.1, by comparing with the independent
GRACE mascon solution. Figure 3 shows the GC result
yields the highest NS values in all basins, outperforming all
other CABLE runs. In the average (AVG), the NS value in-
creases by ∼ 35 % (0.55 to 0.74) from the MN case. Simi-
lar behaviour is also seen when compared with the GRGS
GRACE solution (not shown); the average NS value in-
creases from 0.50 to 0.74. This is not surprising as the
GC approach uses the fundamental GRACE tracking data as
GRACE mascon and GRGS solutions do. Improvement of
the NS coefficient indicates merely the successfulness of in-
tegrating GRACE data and the model estimates.

Figures 4 and 5 show the GC results of 1TWS as well
as 1SMtop, 1SMrz, and 1GWS in different basins. The
monthly time series and the deseasonalized time series
are shown. In general, GRACE tends to increase 1TWS
when the model 1TWS (MN) is predicted to be underesti-
mated (see e.g. LKE, MRD, NWP, SWP, TIM between 2011
and 2012) and decrease 1TWS when it is determined to be
overestimated (see all basins between 2008 and 2010). A
clear example is seen over the Gulf of Carpentaria (GOC,
Fig. 4d), where CABLE overestimates 1TWS and produces
phase delay between 2008 and 2010. The overestimated am-
plitude and phase delay seen in CABLE 1GWS during this
above period (Fig. 4c) is caused by an overestimation of
soil and groundwater storage. The positively biased soil and
groundwater storage causes a phase delay by increasing the
amount of time required for the subsurface drainage (base-
flow) to reduce to soil and groundwater stores. The overesti-
mation of water storage is the result of overestimated precip-
itation or underestimated evapotranspiration. The amplitude
and phase of the water storage estimate are adjusted toward
GRACE observation in the GC approach.

The impact of GRACE varies across the individual storage
as well as across the geographical location (climate regime).
In general, the major contributors to 1TWS are 1SMrz

and 1GWS. Due to a small store size (only ∼ 2 cm thick),
1SMtop contributes only ∼ 2 % to 1TWS. As such, 1SMrz

and 1GWS have greater variations, which commonly lead
to greater uncertainty compared to 1SMtop, and, therefore,
the stores anticipate greater shares from the GRACE update.
This behaviour is seen over all basins where the differences
between the CABLE-simulated and GC 1SMrz, and 1GWS
estimates are greater (compared to 1SMtop).

Furthermore, the impact of GRACE on 1SMrz and
1GWS is different across the continent. For example, over
central and southern Australia (see e.g. LKE, MRD, NWP,
SWP), the dry climate is responsible for a small amount of
groundwater recharge and most of the infiltration is stored in
soil compartments. In this climate condition, 1SMrz ampli-
tude is significantly larger than 1GWS and it plays a greater
role in 1TWS, and, consequently, the GRACE contribution
is mostly seen in the 1SMrz component. Different behaviour
is seen over northern Australia (GOC, NEC, TIM) where
1GWS amplitudes are greater (∼ 40 % of 1TWS) compared
to other basins (only ∼ 17 % of 1TWS). This is due to the
sufficient amount of rainfall over the wet climate region, re-
plenishing groundwater recharges and resulting in greater
variability in 1GWS. Therefore, compared to the dry climate
basin, GRACE contributes to 1GWS over these basins by a
larger amount.

5.2.2 Impact on long-term trend estimates

The spatial patterns of the long-term trends of water stor-
age changes over January 2003 and March 2016 are anal-
ysed before and after applying the GC approach (Fig. 6).
For comparison, the long-term trends of 1TWS derived from
the ITSG-DDK5, mascon, and GRGS solutions are shown in
Fig. 7. From Fig. 6b, GRACE effectively changes the long-
term trend estimates in most basins in a way the spatial pat-
tern of the 1TWS trend of the GC solution consistent to the
GRACE solutions while satisfying the model processes and
keeping the spatial resolution. The trend of 1SMtop is in-
significant (Fig. 6c) and the GC approach does not change
(Fig. 6d). The largest adjustment is seen in 1SMrz and
1GWS components, to be consistent with the GRACE data
in most basins (Fig. 6 and h).

GRACE shows significant changes in the 1TWS trend es-
timates particularly over the northern and western parts of
the continent (Fig. 7). The model estimates around the Gulf
of Carpentaria basin show a strong negative trend that is in-
consistent from the GRACE data. It is found that underesti-
mated precipitation after 2012 is likely the cause of such an
incompatible negative trend (see Fig. 4d). Applying the GC
approach clearly improves the trend (Fig. 6a vs. Fig. 6b). The
other example is seen over the western part of the continent
(see rectangular area in Fig. 6a and b) where the averaged
long-term trend of 1TWS was predicted to be −0.4 cm yr−1

but changed to be −1.2 cm yr−1 (see also Sect. 5.4) by the
GC approach. The precipitation over Western Australia is
understood to be overestimated after 2012, evidently seen
by the fact that the model 1TWS is always greater than the
GC solution (see e.g. Figs. 4h, 5d and p). The GC approach
reveals that the water loss over Western Australia is at least
2 times greater than what has been predicted by the CABLE
model.

In addition, the shortage of water storage in the south-
eastern part of the continent from the Millennium Drought
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Figure 4. The monthly time series of 1SMtop, 1SMrz, 1GWS, and 1TWS estimated from model (blue) and GC (red) solutions over the
Gulf of Carpentaria (GOC), Indian Ocean (IND), Lake Eyre (LKE), Murray–Darling (MRD), and North East Coast (NEC). The deseasonal-
ized time series is also shown.

(McGrath et al., 2012) has been recovered (seen as a positive
water storage trend in Fig. 6) after the rainfall between 2009
and 2012, while the western part is still drying out (seen as
negative trends). The trend estimates in terms of mass change
are discussed in more detail in Sect. 5.4.

5.2.3 Reduction of uncertainty

Influenced by climate pattern, the uncertainty in water stor-
age estimates significantly varies across Australia. The un-
certainty in the model estimate is computed from the vari-
ability induced by different precipitation and model parame-
ters while the uncertainty in the GC solution is computed us-
ing Eq. (11). As expected, larger uncertainties are observed
in 1SMrz and 1GWS than in 1SMtop (an order of magni-
tude smaller) since 1SMtop is smaller than others (Fig. 8).
Over the wet basins, larger amplitude of the water storage
leads to larger uncertainty, seen over the Gulf of Carpentaria,

North East Coast, South East Coast, and Timor Sea where
the CABLE-simulated 1TWS uncertainty is approximately
28 % larger than other basins. The smaller uncertainty is
found over the dry regions (e.g. LKE, SWP). In most basins,
the uncertainty in 1SMrz is larger than the 1GWS, except
the wet basins (e.g. GOC, NEC, TIM) where the greater
groundwater recharge leads to a larger uncertainty in 1GWS.

Figure 8 demonstrates how much the formal error of each
of the storage components is reduced by the GC approach.
Overall, the estimated CABLE uncertainties averaged over
all basins (AVG) are 0.2, 4.0, 4.0, and 5.7 cm for 1SMtop,
1SMrz, 1GWS, and 1TWS, respectively. With the GC ap-
proach, the uncertainties in 1SMtop, 1SMrz, 1GWS, and
1TWS decrease by approximately 26, 35, 39, and 37 %, re-
spectively.

It is worth mentioning that the model uncertainty is mainly
influenced by the meteorological forcing data. The uncer-
tainty in precipitation derived from seven different precipi-
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Figure 5. Similar to Fig. 3, but estimated over the North West Plateau (NWP), South East Coast (SEC), South West Coast (SWC), South
West Plateau (SWP), and Timor Sea (TIM).

tation products is shown in Fig. 8e. The spatial pattern of the
precipitation uncertainty is correlated with the uncertainty
in water storage estimates. The larger water storage uncer-
tainty is deduced from the larger precipitation uncertainty.
The quality of precipitation forcing data is found to be an
important factor to determine the accuracy of water storage
computation.

5.3 Comparison with independent data

5.3.1 Soil moisture

The 1SMtop estimates are compared with the AMSR-E-
derived soil moisture. The processing of AMSR-E data is
described in Sect. 4.3.1. The performance is assessed using
Nash–Sutcliffe coefficients, given in Table 3. In general, CA-
BLE (MN) shows a good performance in the top soil mois-
ture simulation showing an NS value of > 0.4 for most of
the basins. The top soil moisture estimate shows slightly bet-

ter agreement with the C-band measurement of the AMSR-E
product. This is likely caused by the greater emitting depth
of the C-band measurement (∼ 1 cm), which is closer to the
depth of the top soil layer (∼ 2 cm) used in this study (Njoku
et al., 2003).

The GC approach leads to a small bit of improvement
of the top soil estimate consistently from C- and X-band
measurements and from all basins. No degradation of the
NS value is observed in the GC solutions. The largest im-
provement is seen over LKE and NEC, where NS increases
by 10–15 %. For other regions, the change in the NS coeffi-
cient may be incremental.

5.3.2 Groundwater

The 1GWS estimates from the model and the GC method
are compared with the in situ data obtained from two differ-
ent ground networks in Queensland and Victoria. For each
network, all 1GWS data inside the groundwater network
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Figure 6. Long-term trends of 1TWS (a, b), 1SMtop (c, d),
1SMrz (e, f), and 1GWS (g, h) estimated from the model-only
(left) and the GC solutions (right). The eastern part of North West
Plateau basin is shown as a rectangle polygon in (a) and (b).

boundary (see polygons in Fig. 1) are used to compute the
average 1GWS time series. From the comparison given in
Fig. 9, it is found that the GC solutions of 1GWS follow
the overall inter-annual pattern of CABLE but with a con-
siderably larger amplitude. This results in a better agreement
with the in situ 1GWS data seen from both networks. The
NS coefficient of 1GWS between the estimates and the in
situ data are given in Table 4. The CABLE 1GWS performs
significantly better in Queensland (NS=∼ 0.5) than Victo-
ria (NS=∼ 0.3). Significant improvement is found from the
GC solutions in both networks, where the NS value increases
from 0.5 to 0.6 (∼ 22 %) in Queensland and from 0.3 to 0.6
(∼ 85 %) in Victoria. Even greater improvement is seen when
the inter-annual patterns are compared. The NS value in-
creases from 0.5 to 0.7 (∼ 32 %) and 0.4 to 0.8 (∼ 93 %) in
Queensland and Victoria, respectively.

The comparison of the long-term trend of 1GWS is also
evaluated. The estimated trends in Queensland and Victoria
are given in Table 4. Beneficially from the GC approach, the
1GWS trend is improved by approximately 20 % (from 0.4
to 0.6, compared to 1.6 cm yr−1) in Queensland. The increase
in 1GWS is mainly influenced by the large amount of rain-
fall during the 2009–2012 La Niña episodes (see Fig. 9a). In

Table 3. NS coefficients between top soil moisture estimates and
the satellite soil moisture observations from AMSR-E products
over 10 different Australian basins. The area-weighted average
value (AVG) is also shown.

C band X band

CABLE GC CABLE GC

GOC 0.67 0.68 0.58 0.60
IND 0.53 0.54 0.41 0.41
LKE 0.48 0.53 0.36 0.42
MRD 0.77 0.80 0.75 0.78
NEC 0.34 0.39 0.14 0.19
NWP 0.33 0.36 0.38 0.42
SEC 0.68 0.68 0.69 0.71
SWC 0.85 0.85 0.89 0.89
SWP 0.55 0.56 0.46 0.48
TIM 0.44 0.45 0.16 0.16
AVG 0.53 0.56 0.47 0.50

Victoria, a significant improvement of the 1GWS trend by
about 76 % (from 0.1 to −0.2, compared to −0.3 cm yr−1) is
observed. Similar improvement of long-term trend estimates
is seen in deseasonalized time series (improves by ∼ 15 %
in Queensland and by ∼ 74 % in Victoria). The decrease in
1GWS in Victoria is mainly due to the highly demanded
groundwater consumption by agriculture and domestic activ-
ities (Van Dijk et al., 2007; Chen et al., 2016). As the ground-
water consumption is not parameterized in CABLE, the de-
crease in the 1GWS estimate cannot be properly captured
in the model simulation. Applying GC approach effectively
reduces the model deficiency and improves the quality of the
groundwater estimations.

5.4 Assessment of mass variation in the past 13 years

Australia experiences significant climate variability; for ex-
ample, the Millennium Drought starting from late 1990
(Van Dijk et al., 2013) and extremely wet conditions dur-
ing several La Niña episodes (Trenberth, 2012; Han, 2017).
These periods are referred as “Big Dry” and “Big Wet” (Um-
menhofer et al., 2011; Xie et al., 2016). To understand the
total water storage (mass) variation influenced by these two
distinct climate variabilities, the water storage change ob-
tained from the GC approach during Big Dry and Big Wet is
separately investigated over 10 basins. The time window be-
tween January 2003 and December 2009 is defined as the Big
Dry period while between January 2010 and December 2012
it is defined as the Big Wet period following Xie et al. (2016).
In each period, the long-term trends of GC estimates of
1TWS, 1SMtop, 1SMrz, and 1GWS are firstly calculated.
Then, the total water storage variation (in m) is simply ob-
tained by multiplying the long-term trend (in m yr−1) with
the number of years in the specific period – 7 years for Big
Dry and 3 years for Big Wet. To obtain the mass variation,
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Figure 7. Long-term trends of GRACE-derived 1TWS from ITSG-DDK5 (a), mascon (b), and GRGS solution (c).

Figure 8. Uncertainties in 1SMtop, 1SMrz, 1GWS, and 1TWS estimated from the model (blue) and the GC solutions (red) in 10 different
Australian basins. The uncertainty in the precipitation is shown in (e). The area-weighted average value (AVG) is also shown.

Figure 9. The monthly time series of 1GWS estimated from the
model, GC solutions, and measured from the in situ groundwater
network in Queensland (a) and Victoria (b). Deseasonalized time
series are shown in thick lines.

the water storage variation is multiplied by the area of the
basin and the density of water (1000 kg m−3). The estimated
mass variations during Big Dry and Big Wet are displayed
in Fig. 10. The long-term mass variation in the entire period
(January 2003–March 2016) is also shown.

During Big Dry (2003–2009), a significant loss of total
storage (40–60 Gt over 7 years) is observed over the LKE,
MRD, NWP, and SWP basins. The largest groundwater loss
of > 20 Gt is found from LKE and MRD. No significant
change is observed over the tropical climate regions (e.g.
GOC, NEC). The mass loss mostly occurs in the root zone
and groundwater compartments where the sum of 1SMrz

and 1GWS explains more than 90 % of the 1TWS value.
The mass loss is also observed in 1SMtop but is > 10 times
smaller than 1SMrz and 1GWS.

During Big Wet (2010–2012), the basins such as LKE,
MRD, and TIM exhibit the significant total storage gain of
> 100 Gt. The gain is particularly larger in 1SMrz over the
basins that experienced the significant loss during Big Dry.
For example, over LKE and MRD, the gain of 1SMrz is ap-
proximately 2–3 times greater than 1GWS. It implies that
most of the infiltration (from the 2009–2012 La Niña rain-
fall) is stored as soil moisture through the long drought pe-
riod and that the groundwater recharge is secondary to the
1SMrz increase.

The opposite behaviour is observed over the basins (such
as NEC and GOC) that experienced mass gain during Big

Hydrol. Earth Syst. Sci., 22, 1811–1829, 2018 www.hydrol-earth-syst-sci.net/22/1811/2018/



N. Tangdamrongsub et al.: On the use of the GRACE normal equation of inter-satellite tracking data 1823

Table 4. NS coefficient and long-term trend of 1GWS estimated from the model-only and GC solutions in Queensland and Victoria ground-
water network. The long-term trend of the in situ data is also shown.

Queensland Victoria

In situ CABLE GC In situ CABLE GC

Original time series

NS (–) – 0.49 0.60 – 0.34 0.63
Trend (cm yr−1) 1.60± 0.05 0.39± 0.02 0.63± 0.05 −0.27± 0.05 0.10± 0.02 −0.18± 0.03

Deseasonalized time series

NS (–) – 0.50 0.66 – 0.43 0.83
Trend (cm yr−1) 1.60± 0.05 0.39± 0.02 0.57± 0.04 −0.25± 0.05 0.10± 0.02 −0.16± 0.03

Figure 10. Mass changes (Gt, Gigatonne) of 1TWS, 1SMtop, 1SMrz, and 1GWS estimated from GC solutions over 10 Australian basins
in three different periods: Big Dry (January 2003–December 2009), Big Wet (January 2010–December 2012), and the entire period (Jan-
uary 2003–March 2016).

Dry. The water storage gain is greater in 1GWS com-
pared to 1SMrz. In NEC, 1GWS gain is ∼ 8 times larger
than 1SMrz during Big Wet. The soil compartment may
be saturated during Big Dry and additional infiltration from
the Big Wet precipitation leads to an increased groundwa-
ter recharge. The 1SMrz loss observed over GOC is sim-
ply caused by the timing selection of the Big Wet period,
which ends earlier (∼ 2011) in GOC than in other basins.
The 1SMrz gain becomes ∼ 26 Gt if the Big Wet period
is defined as 2008–2011. During the post-Big-Wet period

(2012 and afterwards), the decreasing trend of water stor-
age is observed from all basins (see Figs. 4 and 5). This is
mainly caused by the decrease in precipitation after 2012 and
by gradual water loss through evapotranspiration (Fasullo et
al., 2013).

The overall water storage change in the last 13 years
demonstrates that the severe water loss from most basins dur-
ing Big Dry (the Millennium Drought) is balanced with the
gain during Big Wet (the La Niña). The negative 1TWS es-
timated during Big Dry becomes positive in LKE, MRD, and
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SEC and less negative in TIM, and the greatest gain is ob-
served from NEC by ∼ 50 Gt during the 13-year period (see
Fig. 10c). However, the water mass loss is still detected over
the western basins (e.g. IND, NWP, SWP, SWC), and their
magnitudes are even larger than the mass loss during Big
Dry. For example, the greatest 1TWS loss of ∼ 79 Gt is ob-
served over NWP, which is∼ 25 Gt greater than the loss dur-
ing Big Dry (see Fig. 10a and c). The basin is less affected
by the La Niña, and the rainfall during Big Wet is clearly in-
adequate to support the water storage recovery in the basin.
Rainfall deficiency also reduces the groundwater recharge,
resulting in even more decreasing of 1GWS, compared to
the Millennium Drought period (see Fig. 10j and l). The con-
tinual decrease in water storage over western basins is likely
caused by the interaction of complex climate patterns such as
the El Niño–Southern Oscillation, Indian Ocean Dipole, and
Southern Annular Mode cycles (Australian Bureau of Mete-
orology, 2012; Xie et al., 2016).

5.5 Comparison of the GC approach with alternatives

The simplest approach to estimate 1GWS is to subtract the
model soil moisture component from GRACE 1TWS data,
without considering uncertainty in the model output, as used
in Rodell et al. (2009) and Famiglietti et al. (2011). This
method is called Approach 1 (App 1). In Approach 2 (App 2)
as in Tangdamrongsub et al. (2017), by accounting for the un-
certainty in model outputs and GRACE data, the water stor-
age states are updated through a Kalman filter:

ĥR = h̃R+HCT
R

(
HRHT

+CR

)−1(
b−Hh̃R

)
, (18)

where h̃R, H, CR are described in Sect. 2; b is an obser-
vation vector containing GRACE-derived 1TWS; and R is
an error variance–covariance matrix of the observation. The
GRACE-derived 1TWS and its error information is obtained
from the mascon solution. The matrix R is a (diagonal) error
variance matrix since no covariance information is given in
the mascon product. Note that the model uncertainty remains
the same as in GC approach (Sect. 4.2). The different results
from App 1 and App 2 are mainly attributed to the different
estimates of the uncertainty.

The 1GWS estimates from App 1, App 2, and GC in
Queensland and Victoria are shown in Fig. 11. It is clearly
seen that 1GWS values from App 1 are overestimated while
the one from App 2 fits the ground data significantly bet-
ter. This behaviour was also seen in Tangdamrongsub et
al. (2017), where the water storage estimates tend to be over-
estimated when error components such as spatial correla-
tion error were neglected as in App 1. 1GWS from App 2
shows clear improvements in terms of NS coefficients in
both networks. Considering the deseasonalized 1GWS es-
timates, in Queensland, the trend increases from 0.39± 0.03
to 0.42± 0.03 cm yr−1 (improves by 1.5 %) and the NS value
increases from 0.46 to 0.53. In Victoria, the trend decreases

Figure 11. 1GWS estimated from Approach 1 (App 1) and Ap-
proach 2 (App 2) in Queensland (a) and Victoria (b). The in situ
groundwater network data and the GC solutions are also shown.
Deseasonalized time series are shown in thick lines.

from 0.73± 0.10 to 0.46± 0.05 cm yr−1 (improves by 27 %)
and the NS value increases from −0.89 to 0.30. Although
App 2 is not yet as good as the GC solution based on the most
comprehensive error propagation, this simple test demon-
strates the importance of considering the uncertainty. The
reason for App 2 being less accurate than GC is likely the
too-simplified error information implemented in App 2.

6 Conclusion

This study presents an approach to combine the raw GRACE
observation with model simulation to improve water storage
estimates over Australia. Distinct from other methods, we ex-
ploit the fundamental GRACE satellite tracking data and the
full data error variance–covariance information to avoid al-
teration of signal and measurement error information present
in higher-level data products.

We compare groundwater storage estimates from the
GC approach and two other approaches, subject to inclusion
of GRACE uncertainty in the 1GWS calculation. Validat-
ing three results of 1GWS against the in situ groundwater
data, we find that the GC approach delivers the most accu-
rate groundwater estimate, followed by the approach based
on incomplete information of GRACE’s data error. The poor-
est estimate of groundwater storage is seen when the GRACE
uncertainty is completely ignored. This confirms the critical
value of using the complete GRACE signal and error infor-
mation at the raw data level.
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The analysis of water storage change between 2003
and 2016 reveals that half of the continent (5 out of 10 basins)
has still not fully recovered from the Millennium Drought.
The TWS decrease in Western Australia has been most char-
acteristic, and the GC approach finds that the water loss
mainly occurs in the groundwater layer. Rainfall inadequacy
is attributed to the continual dry condition, leading to a
greater decrease in groundwater recharge and storage over
Western Australia.

The land surface model we used is deficient in anthro-
pogenic groundwater consumption. The model calibration
will never help, and the groundwater consumption must be
brought in by external sources. On the contrary, statistical
approaches similar to our GC approach may be useful to fill
in the missing component and lead to a more comprehensive
water storage inventory.

However, it is difficult to constrain different water stor-
age components by only using total storage observation such
as GRACE. In addition, it is challenging to improve surface
soil moisture varying rapidly in time, using a monthly mean
GRACE observation. Tian et al. (2017) utilized the satel-
lite soil moisture observation from Soil Moisture and Ocean
Salinity (SMOS, Kerr et al., 2001) in addition to GRACE
data for their data assimilation and showed a clear improve-
ment in the top soil moisture estimate. The GC approach
with complementary observations at higher temporal resolu-
tion should be considered, particularly to enhance the surface
soil moisture computation.

Furthermore, the GC approach can be simply extended
for GRACE data assimilation. Assimilating the raw GRACE
data into land surface models like CABLE enables the model
state and parameter to be adjusted with the realistic error in-
formation, allowing more reliable storage computation.

Data availability. This study is based on third-party data. The data
providers are acknowledged in the data sections (Sects. 3 and 4).
The CABLE model can be obtained after registration at https://trac.
nci.org.au/trac/cable.
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Appendix A: Least-squares normal equation of GRACE

A linearized GRACE satellite-tracking observation equation
is formulated as

y = Ax+ e; e ∼N(0,6), (A1)

where y is the observation vector containing various kinds
of L1B data including the inter-satellite ranging data; A is
the design (partial derivative) matrix relating the data and the
Earth gravity field variations; x contains the Stokes coeffi-
cients of time-varying geopotential fields (e.g. Wahr et al.,
1998); and e is the L1B data noise, which has zero mean and
covariance 6. Equation (A1) can be modified explicitly in
terms of soil moisture and groundwater storage variations as

y = ASYHh+ e; e ∼N(0,6), (A2)

where S contains a factor used to convert 1TWS to geopo-
tential coefficients considering the load Love numbers (e.g.
Wahr et al., 1998) and Y converts the gridded data into the
corresponding spherical harmonic coefficients. For conve-
nience, the term Y=SY is used in the further derivation. A
least-squares solution of Eq. (A2) is given as(

HT YT AT6−1AYH
)
ĥ=HT YT AT6−1y. (A3)

It can be simplified as

HT YT NYHĥ=HT YT c, (A4)

where N=AT6−1A and c=AT6−1y. Equation (A4) is
identical to Eq. (5).

Appendix B: Nash–Sutcliffe coefficient and
area-weighted average

The Nash–Sutcliffe coefficient (NS) is computed as follows:

NS= 1−

N∑
i=1

(
yi − x̂i

)2
N∑

i=1

(
yi − y

)2 , (B1)

where y is an observation vector, y is the mean of the obser-
vation, x̂ is a vector containing the simulated result, i is the
index of observation, and N is the number of observations.

Area-weighted average (Z) is compute as follows:

Z =

M∑
j=1

wjzj

M∑
j=1

wj

, (B2)

where w is the area size, z is the mean value inside the con-
sidered area, j is the area index, and M is the number of
considered areas.
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